On Fuzzy Interior Gamma - Ideals Of gamma - Semi Groups

T. Rami Reddy[†] and G. Shobhalatha ^{††}

[†] Dept. of Mathematics, Acharya Institute of Technology, Bangalore -560 107, India ^{††} Dept of Mathematics, Sri Krishnadevaraya University Anantapur – 515 005, A.P., India.

Abstract: In this paper we introduce the concept of ternary Γ - semi group and we proved some properties of prime Γ -ideals and fuzzy weakly completely prime Γ -ideals of ternary Γ - semi groups. It is proved that, in a ternary Γ - semi group S if $A \subseteq S$, then the following statements are equivalent (1) A is prime Γ -ideal of a ternary Γ - semi group S (2) The characteristic function C_A of A is a fuzzy weakly completely prime Γ -ideal of S.

Key words: Γ - semi group, Ternary Γ - semi group, prime Γ -ideals, fuzzy weakly completely prime Γ -ideals.

I. Introduction and preliminaries

Lehmer.D.H [4] gave the definition of a ternary semi group. Banach showed that a ternary semi group doesn't necessarily reduce to an ordinary semi group. J.Los [2] showed that any ternary semi group however may be embedded in an ordinary semi group in such a way that the operation in ternary semi groups is an (ternary) extension of the (binary) operation of the containing semi group. Kim.J [3], Lyapin.E.S. [5] and F.M.Sioson [1] have also studied the properties of ternary semi groups. M.K.Sen [6] defined the concepts of Γ -semi group. It is known that Γ -semi group is a generalization of semi group. Many classical notions of semi groups have been extended to Γ -semi groups. In this paper we introduced the concept of ternary Γ - semi group and discussed the results on prime Γ -ideals and fuzzy weakly completely prime Γ -ideals of ternary Γ -semi groups.

1.1.1. Definition: Let S and Γ be two non-empty sets. If there exists a mapping $S \times \Gamma \times S \to S$, defined by $(a, \alpha, b) = a\alpha b$. Then S is called Γ - semi group when S satisfies the identities $(a\alpha b)\beta c = a\alpha(b\beta c)$ for all $a, b, c \in S$ and $\alpha, \beta \in \Gamma$.

1.1.2. Definition: A ternary Γ - semi group is an algebraic structure $(S, \Gamma, *)$ such that S is a non-empty set and $*: S \times \Gamma \times S \times \Gamma \times S \to S$ is a ternary operation satisfying the following associative law $(a\alpha b\beta c)\gamma d\delta e = a\alpha (b\beta c\gamma d)\delta e = a\alpha b\beta (c\gamma d\delta e)$ for all $a, b, c, d, e \in S$, $\alpha, \beta, \gamma, \delta \in \Gamma$.

1.1.3. Definition: A non-empty subset A of a ternary Γ - semi group S is called a ternary sub Γ - semi group of S if $A\Gamma A \subseteq A$.

1.1.4. Definition: A non – empty subset A of a ternary Γ - semi group S is called a left (right, lateral) Γ - ideal of S if $S\Gamma S\Gamma A \subseteq A$ ($A\Gamma S\Gamma S \subseteq A$, $S\Gamma A\Gamma S \subseteq A$)

1.1.5. Definition: A non-empty subset A of S is called a two sided Γ - ideal of S if it is both left Γ - ideal and right Γ - ideal of S.

1.1.6. Definition: A fuzzy set μ of a ternary Γ - semi group S is a fuzzy Γ -ideal of S if it is fuzzy left Γ -ideal, fuzzy right Γ - ideal and fuzzy lateral Γ - ideal of S.

1.1.7. Definition: Let A be a subset of a ternary Γ - semi group S. Then the characteristic function of A is $\int_{\Gamma} 1 \, if \, x \in A$

defined by $C_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$

1.1.8. Definition: A subset A of a ternary Γ - semi group S is said to be a prime ideal of S if $x\Gamma y\Gamma z \subseteq A$ implies $x \in A$ or $y \in A$ or $z \in A$.

1.1.9. Definition: A fuzzy Γ -ideal μ of a ternary Γ - semi group S is called a fuzzy weakly completely prime Γ -ideal of S if $\mu(x) \ge \mu(x \alpha y \beta z)$ or $\mu(y) \ge \mu(x \alpha y \beta z)$ or $\mu(z) \ge \mu(x \alpha y \beta z)$ for all $x, y, z \in S$ and $\alpha, \beta \in \Gamma$

1.1.10. Definition: A fuzzy Γ -ideal μ of a ternary Γ - semi group S is called a fuzzy prime Γ -ideal of S if $\inf_{\alpha,\beta\in\Gamma} \mu(x\alpha\,y\beta\,z) \ge \max\{\mu(x),\mu(y),\mu(z)\}$ for all $x, y, z \in S$ and $\alpha, \beta \in \Gamma$.

Based on these preliminaries we prove some results on prime Γ -ideals and fuzzy weakly completely prime Γ -ideals of ternary Γ - semi groups.

1.2. Main Results:

1.2.1. Theorem: Let μ be a non-empty fuzzy subset of a ternary Γ - semi group S. Then $1 - \mu$ is a fuzzy ternary sub- Γ - semi group of S if and only if μ is a fuzzy weakly completely prime Γ -ideal of S.

Proof: Let $1 - \mu$ be a fuzzy ternary sub Γ - semi group of S. Let $x, y, z \in S$ and $\alpha, \beta \in \Gamma$.

Then
$$1 - \mu(x\alpha y\beta z) = 1 - \min\{\mu(x), \mu(y), \mu(z)\}$$

$$\geq \min\{1 - \mu(x), 1 - \mu(y), 1 - \mu(z)\}$$

$$1 - \mu(x\alpha y\beta z) \geq 1 - \max\{\mu(x), \mu(y), \mu(z)\}$$

$$-\mu(x\alpha y\beta z) \geq -\max\{\mu(x), \mu(y), \mu(z)\}$$

ie. max{ $\mu(x), \mu(y), \mu(z)$ } $\geq \mu(x\alpha y\beta z)$
 $\therefore \mu(x) \geq \mu(x\alpha y\beta z)$ or $\mu(y) \geq \mu(x\alpha y\beta z)$ or $\mu(z) \geq \mu(x\alpha y\beta z)$
Hence μ is a fuzzy weakly completely prime Γ -ideal of S .
Conversely, assume that μ is a fuzzy weakly completely prime Γ -ideal of S . Then we have
 $\mu(x) \geq \mu(x\alpha y\beta z)$ or $\mu(y) \geq \mu(x\alpha y\beta z)$ or $\mu(z) \geq \mu(x\alpha y\beta z)$.
consider max{ $\mu(x), \mu(y), \mu(z)$ } $\geq \mu(x\alpha y\beta z)$

 $1 - \max\{\mu(x), \mu(y), \mu(z)\} \le 1 - \mu(x\alpha y\beta z)$ $\min\{1 - \mu(x), 1 - \mu(y), 1 - \mu(z)\} \le 1 - \mu(x\alpha y\beta z)$ $\mu'(x\alpha y\beta z \ge \min\{\mu'(x), \mu'(y), \mu'(z)\}$ $\therefore \qquad \mu' = 1 - \mu \text{ is a fuzzy ternary sub-}\Gamma \text{ - semi group of } S.$

1.2.2. Theorem: Let $\{\mu_i : i \in I\}$ be a family of fuzzy weakly completely prime Γ -ideal of a ternary Γ - semi group S. Then $\bigcap \mu_i$ is a fuzzy weakly completely prime Γ -ideal of S.

Proof: Let $\{\mu_i : i \in I\}$ be a family of fuzzy weakly completely prime Γ -ideal of a ternary Γ - semi group S. Then we have $\mu_i(x) \ge \mu_i(x \alpha y \beta z)$ or $\mu_i(y) \ge \mu_i(x \alpha y \beta z)$ or $\mu_i(z) \ge \mu_i(x \alpha y \beta z)$ for $x, y, z \in S$ and $\alpha, \beta \in \Gamma, i \in I$,

Then
$$\bigcap_{i \in I} \mu_i(x \alpha y \beta z) = \inf\{\mu_i(x \alpha y \beta z) : i \in I\}$$

$$\therefore \bigcap_{i \in I} \mu_i(x \alpha y \beta z) \le \inf\{\mu_i(x) : i \in I\}$$

Or
$$\bigcap_{i \in I} \mu_i(x \alpha y \beta z) \le \inf\{\mu_i(y) : i \in I\}$$

Or $\bigcap_{i \in I} \mu_i(x \alpha y \beta z) \le \inf{\{\mu_i(z) : i \in I\}}$

Hence $\bigcap_{i\in I}\mu_i$ is fuzzy weakly ternary completely prime Γ -ideal of S .

1.2.3. Theorem: Let S be a ternary Γ -semi group and μ be a non-empty fuzzy subset of S. Then the following are equivalent:

(1) μ is a fuzzy weakly completely prime Γ -ideal of S

(2) For any $t \in [0,1]$, μ_t (if it is non-empty) is a prime Γ -ideal of S

Proof: Let μ be a fuzzy weakly completely prime Γ -ideal of a ternary Γ - semi group S. Then we have $\mu(x) \ge \mu(x \alpha y \beta z)$ or $\mu(y) \ge \mu(x \alpha y \beta z)$ or $\mu(z) \ge \mu(x \alpha y \beta z)$ for all $x, y, z \in S$ and $\alpha, \beta \in \Gamma$. Let $t \in [0,1]$ be such that μ_t is non-empty. Let $x, y, z \in S$, $x\Gamma y\Gamma z \subseteq \mu_i$. Then $\mu(x \alpha y \beta z) \ge t$ for all $\alpha, \beta \in \Gamma$. Since μ is a fuzzy weakly completely prime Γ -ideal of a ternary Γ - semi group S, so, we have $\mu(x) \ge \mu(x \alpha y \beta z)$ or $\mu(y) \ge \mu(x \alpha y \beta z)$ or $\mu(z) \ge \mu(x \alpha y \beta z)$ for all $x, y, z \in S$ and $\alpha, \beta \in \Gamma$. Then $\mu(x) \ge t$ or $\mu(y) \ge t$ or $\mu(z) \ge t$ which implies that $x \in \mu_t$ or $y \in \mu_t$ or $z \in \mu_t$. Hence μ_t is a prime Γ -ideal of S.

Conversely, let us suppose that μ_t is a prime Γ -ideal of a ternary Γ - semi group S. Let $\mu(x\alpha y\beta z) = t$. Then $\mu(x\alpha y\beta z) \ge t$ for all $\alpha, \beta \in \Gamma$. Hence μ_t is non-empty and $x\Gamma y\Gamma z \subseteq \mu_t$. Since μ_t is a prime Γ -ideal of S, we have $x \in \mu_t$ or $y \in \mu_t$ or $z \in \mu_t$. Then $\mu(x) \ge t$ or $\mu(y) \ge t$ or $\mu(z) \ge t$ which implies that $\mu(x) \ge \mu(x\alpha y\beta z)$ or $\mu(y) \ge \mu(x\alpha y\beta z)$ or $\mu(z) \ge \mu(x\alpha y\beta z)$. Hence μ is a fuzzy weakly completely prime Γ -ideal of a ternary Γ - semi group S.

1.2.4. Theorem: Let A be a non-empty subset of a ternary Γ - semi group S and C_A be the characteristic function of A. Then A is a left Γ -ideal of S if and only if C_A is a fuzzy left Γ -ideal of S.

Proof: Assume that A is a left Γ -ideal of S. Let $x, y, z \in S$. If $z \in A$, then

 $C_A(x) = C_A(y) = C_A(z) = 1$ and since $x \alpha y \beta z \in S \Gamma S \Gamma A \subseteq A$

: We have $C_A(x \alpha y \beta z) = 1 = C_A(x) \wedge C_A(y) \wedge C_A(z)$

If $x \notin A$ or $y \notin A$ or $z \notin A$, then $C_A(x) = 0$ or $C_A(y) = 0$ or $C_A(z) = 0$

And we have $C_A(x \alpha y \beta z) = 0 = C_A(x) \wedge C_A(y) \wedge C_A(z)$

 $\therefore C_A(x\alpha y\beta z) \ge C_A(x) \wedge C_A(y) \wedge C_A(z)$

 $\therefore C_A$ is a ternary sub Γ - semi group of S .

And let $x, y, z \in S$. If $z \in A$ then $C_A(x) = C_A(y) = C_A(z) = 1$ and since $x \alpha y \beta z \in S \Gamma S \Gamma A \subseteq A$, we have $C_A(x \alpha y \beta z) = 1 = C_A(z)$. If $x \notin A$ or $y \notin A$ or $z \notin A$, then $C_A(x) = 0$ or $C_A(y) = 0$ or $C_A(z) = 0$ and we have $C_A(x \alpha y \beta z) \ge 0 = C_A(z) \Longrightarrow C_A(x \alpha y \beta z) \ge C_A(z)$. $\therefore C_A$ is a fuzzy left Γ -ideal of S.

1.2.5. Theorem: Let A be a non-empty subset of a ternary Γ - semi group S and C_A be the characteristic function of A. Then A is a right Γ -ideal (lateral Γ -ideal, Γ -ideal) of S if and only if C_A is a fuzzy right Γ -ideal (fuzzy lateral Γ -ideal, fuzzy Γ -ideal) of S.

Proof: Similar to the proof of Theorem 1.2.4..

1.2.6. Theorem: Let S be a ternary Γ - semi group and A be a non-empty subset of S. Then the following are equivalent:

(1) A is prime Γ -ideal of a ternary Γ - semi group S

(2) The characteristic function C_A of A is a fuzzy weakly completely prime Γ -ideal of S .

Proof: Let A be a prime Γ -ideal of a ternary Γ - semi group S and C_A be the characteristic function of A. Since $A \neq \phi$, so, C_A is non-empty. Let $x, y, z \in S$. Suppose $x \Gamma y \Gamma z \subseteq A$. Then $C_A(x \alpha y \beta z) = 1$ for $\alpha, \beta \in \Gamma$. Since A is a prime Γ -ideal of S, $x \in A$ or $y \in A$ or $z \in A$ which implies that $C_A(x) = 1$ $C_{A}(y) = 1 \text{ or } C_{A}(z) = 1.$ Hence $C_{A}(x) \ge C_{A}(x\alpha y\beta z)$ or or $C_A(y) \ge C_A(x \alpha y \beta z)$ or $C_A(z) \ge C_A(x \alpha y \beta z)$. Suppose $x \Gamma y \Gamma z \not\subset A$. Then $C_A(x \alpha y \beta z) = 0$ for $\alpha, \beta \in \Gamma$. Since A be a prime Γ -ideal of S, $x \notin A$ or $y \notin A$ or $z \notin A$ which implies that $C_A(x) = 0$ or $C_A(y) = 0$ or $C_A(z) = 0$. Hence $C_A(x) \ge C_A(x\alpha y\beta z)$ or $C_A(y) \ge C_A(x\alpha y\beta z)$ or $C_A(z) \ge C_A(x \alpha y \beta z)$. Consequently C_A is a fuzzy weakly completely prime Γ -ideal of S. Conversely, let the characteristic function C_A of A is a fuzzy weakly completely prime Γ -ideal of S. Then C_A is a fuzzy Γ -ideal of S. By the theorem 2.1.4, A is an Γ -ideal of S. Let $x, y, z \in S$ be such that $x \Gamma y \Gamma z \subseteq A$. Then $C_A(x \alpha y \beta z) = 1$. Let if possible $x \notin S$ and $y \notin S$ and $z \notin S$. Then $C_A(x) = C_A(y) = C_A(z) = 0$ which implies $C_A(x) < C_A(x\alpha y\beta z)$ and $C_A(y) < C_A(x\alpha y\beta z)$ and $C_A(z) < C_A(x \alpha y \beta z)$. This contradicts our assumption that C_A is a fuzzy weakly completely prime Γ ideal of S.

Hence A is prime Γ -ideal of S.

References:

- F. M. Sioson, "Ideal theory in ternary semi groups", Math.Japon. 10 (1965) 63-84. [1].
- J. Los, "On extending of models I", Fund.Math. V. 42 (1955) pp. 512-517. [2].
- Kim. J., "Some fuzzy semi prime ideals in semi groups", Journal of Chungcheong Mathematical Society, 3(22),(2009); 277-288. Lehmer.D.H. "A Ternary Analogue of Abelian Groups", Amer. Jr. of Maths. 59 (1932), 329-338. [3].
- [4].
- [5]. Lyapin.E.S. "Realization of ternary semi groups", (Russian) Modern Algebra pp.43-48(Leningrad Univ.), Leningrad (1981).
- M. K. Sen, "On Γ -semi group", Proc. of InternationalConference on Algebra and its Applications.Decker Publication, 1981, [6]. New York 301.