An Internal Construction for Congruence Relations in Lattices

S G. Karpagavalli^{a;} and C. Ganesa Moorthy^b

^a Department of Mathematics, Dr. Umayal Ramanathan college for women, Karaikudi-630 004, Tamil Nadu,

India.

^b Department of Mathematics, Alagappa University, Karaikudi-630 004, Tamil Nadu, India.

Abstract: A method of constructing a smallest congruence relation that is larger than a given equivalence relation on a lattice is explained. A method of constructing a congruence relation in which equivalence classes contain all least upper bounds and all greatest lower bounds for subsets of equivalence classes is explained; and this method constructs a smallest congruence relation with this property which is also larger than a given congruence relation in a lattice.

Keywords: Cardinal number, Transfinite induction principle, Congruence relation.

I. Introduction

Let (L, \leq) or (L, \lor, \land) be a lattice. Let \aleph be an infinite cardinal number. A subset A of L is \aleph -closed in L, if for any subset B of A for which $|B| < \aleph$, the least upper bound of B is in A, whenever it exists in L, and the greatest lower bound of B in A, whenever it exists in L . A subset A of L is said to be closed in L, if it \aleph closed in L, for every \aleph . An equivalence relation θ on L is said to be \aleph -closed, if every equivalence class induced by θ is \aleph -closed in L. The equivalence relation θ on L is said to be closed, if every equivalence class induced by θ is closed. To an equivalence relation on L, let us use an usual notation $x \equiv y \pmod{\theta}$, when x and y are related by θ . Two equivalence relations θ and θ ' are ordered by the usual 'refinement' order relation: $\theta \le \theta'$ if $x \equiv y \pmod{\theta}$ implies $x \equiv y \pmod{\theta'}$. An equivalence relation on L is said to be a congruence relation, if it has the following substitution properties: $x \lor z \equiv y \lor z \pmod{\theta}$ and $x \land z \equiv y \land z \pmod{\theta}$, whenever $x \equiv y \pmod{\theta}$ and $x, y, z \in L$.

If $(\theta_i)_{i \in I}$ is a collection of \aleph -closed (or, simply, closed) congruence relations on L, then the relation θ on L defined by $x \equiv y \pmod{\theta}$ if and only if $x \equiv y \pmod{\theta_i}$, $\forall i \in I$, is also an \aleph -closed (or, simply, a closed) congruence relation on L. Thus $\theta = \wedge_{i \in I} \theta_i \in \aleph C$ - ConL, the collection of all \aleph - closed congruence relations on L, when $\theta_i \in \aleph C$ - ConL, $\forall i \in I$. Similarly $\vee_{i \in I} \theta_i$ is in $\aleph C$ -ConL, when $\vee_{i \in I} \theta_i$ is considered as $\land \{\varphi : \varphi \in A\}$, when $A = \{\varphi \in \aleph C$ -Con L: $\theta_i \leq \varphi, \forall i \in I\}$. If ConL denotes the collection of all congruence relations on L, it is known that ConL is a lattice, and an internal construction for least upper bound of a given sub collection is also known (see the proof of theorem 3.9 in [2]). So, an internal construction of $\vee_{i \in I} \theta_i$ in $\aleph C$ - ConL, when ($\theta_i)_{i \in I} \subseteq \aleph C$ -ConL, depends on construction of a smallest θ '' in $\aleph C$ -ConL such that θ '' $\geq \theta$, for given $\theta \in ConL$. For this construction, another internal construction of a smallest congruence relation θ on L such that $\theta \geq \phi$ for a given equivalence relation φ on L is developed in this article. It is expected that all types of constructions may be helpful to understand congruence lattices(see: [3]).

II. Construction of equivalence classes through transfinite induction

At every phase, an equivalence relation is to be found from a given equivalence relation, by means of a construction. A finite set of constructions have to be repeated to reach a desirable equivalence relation. So, a common construction procedure is to be defined in this section.

is fixed. Let us say that the equivalence relation θ_{β} is the stationary equivalence relation obtained by following the procedures $P_1, P_2, ..., P_n$ on θ_0 .

III. Equivalence relation to congruence relation

This section provides a construction to obtain a smallest congruence relation θ ' from a given equivalence relation θ such that $\theta \le \theta$ ' on a lattice L. This construction is based on the following significant observation.

Lemma 3.1 Let θ be a given equivalence relation on a lattice (L, \lor, \land) . To each $x \in L$, let [x] denote the equivalence class of θ containing x. Then θ is a congruence relation if and only if the following hold for every $x \in L$: (i) $a \lor b \in [x]$ and $a \land b \in [x]$, whenever $a, b \in [x]$; (ii) $(z \lor a) \land b \in [x]$ and $(z \land a) \lor b \in [x]$, whenever $a, b \in [x]$, and $z \in L$; (iii) $a_1 \lor b_1 \in [x]$, whenever $a \lor b \in [x]$, $a_1 \in [a]$ and $b_1 \in [b]$; (iv) $a_1 \land b_1 \in [x]$, whenever $a \land b \in [x]$, $a_1 \in [a]$ and $b_1 \in [b]$.

Proof: The proof follows from two facts:

(1) θ is a congruence relation if and only if L/ θ is a lattice.

(2) A set with two binary operations is a lattice if and only if the binary operations satisfy idempotent law, commutativity law, associativity law, and absorption law (see: Theorem 1 in p.18 in [1]).

Suppose (i),(ii),(iii) and (iv) are true. To each $a,b \in L$, let us define $[a] \lor [b] = [a \lor b]$

and $[a] \land [b] = [a \land b]$. They are well defined in view of (iii) and (iv). The commutavity and

associativity of these operations follow from the corresponding properties of \lor and \land in L.

These operations satisfy idempotent law and absorption law, because of (i) and (ii). So L/θ is a lattice so that θ is a congruence relation.

On the other hand, if θ is a congruence relation, then L/ θ is a lattice so that (i), (ii),(iii) and (iv) are true.

Construction procedure P₂: Replace \sim_1 , P₁, \wedge in the previous discussion by \sim_2 , P₂, \vee , respectively, so that if $x_1 \equiv x_2 \pmod{\theta}$ and $y_1 \equiv y_2 \pmod{\theta}$, then $x_1 \wedge y_1 \sim_2 x_2 \vee y_2$. Note that $\theta \leq \sim_2$.

Construction procedure P3: To each $x \in L$, let [x] denote the equivalence class of a given equivalence relation θ on a given lattice (L, \lor, \land) . Let us define a relation \sim_3 on L by $a\sim_3 b$ if there is a finite sequence $a_0, a_1, a_2, ..., a_n$ in L such that : (i) $a \equiv a_0 \pmod{\theta}$; (ii) $b \equiv a_n \pmod{\theta}$; and (iii) to each i=0,1,2,...,n-1, there are $b_i,c_i \in [a_i]$ such that $b_i \lor c_i \in [a_{i+1}]$ or $b_i \land c_i \in [a_{i+1}]$; or there are $b_{i+1}, c_{i+1} \in [a_{i+1}]$ such that $b_{i+1} \lor c_{i+1} \in [a_i]$ or $b_{i+1} \land c_{i+1} \in [a_i]$. Then \sim_3 is an equivalence relation. Let us say that ' \sim_3 ' is obtained from θ by following procedure P₃. Observe that if $b_0, c_0 \in [a_0]$, then $a_0 \sim_3 b_0 \lor c_0$ and $a_0 \sim_3 b_0 \land c_0$. Note that $\theta \le \sim_3$.

Construction procedure P_4 : Let us fix L and θ , and let us fix the notation [x] as in the previous procedure. Let us define a relation \sim_4 on L by $a\sim_4 b$ if there is a finite sequence a_0, a_1, \dots, a_n in L such that: (i) $a\equiv a_0 \pmod{\theta}$; (ii) $b\equiv a_n \pmod{\theta}$; and (iii) to each $i=1,2,\dots,n-1$ there are $b_i,c_i \in [a_i]$ and $di\in L$ such that $(d_i\wedge b_i)\vee ci\in [a_{i+1}]$ or $(d_i\vee b_i)\wedge c_i\in [a_{i+1}]$; or there are $b_{i+1},c_{i+1}\in [a_{i+1}]$ and $d_{i+1}\in L$ such that $(d_{i+1}\wedge b_{i+1})\vee c_{i+1}\in [a_i]$ or $(d_{i+1}\vee b_{i+1})\wedge c_{i+1}\in [a_i]$. Then ' \sim_4 ' is an equivalence relation. Let us say that ' \sim_4 ' is obtained from θ by following procedure P_4 . Observe that if $b_0,c_0\in [a_0]$ and $d_0\in L$, then $a_0\sim_4(d_0\vee b_0)\wedge c_0$ and $a_0\sim_4(d_0\wedge b_0)\vee c_0$. Note that $\theta\leq_{\sim_4}$.

Theorem 3.2 Let θ_0 be a given equivalence relation on a lattice (L, \lor, \land) . Let θ_β be the stationary equivalence relation obtained by following the procedures P_1 , P_2 , P_3 , P_4 on θ_0 . Then θ_β is the smallest congruence relation on L such that $\theta_0 \le \theta_\beta$. **Proof:** To each $x \in L$, let [x] denote the equivalence class of θ_β containing x. The procedure P_1, P_2, P_3 , and P_4 reveal that the conditions (i),(ii),(iii) and (iv) of the previous lemma 3.1 are satisfied for the equivalence relation θ_β on L. So, θ_β is a congruence relation on L such that $\theta_{0\le} \theta_\beta$.

IV. Equivalence relation to closed congruence relation

This section provides a construction to obtain a smallest closed equivalence relation θ ' from a given equivalence relation θ such that $\theta \leq \theta$ ' on a lattice. This construction may be combined with the construction of the previous section to obtain a smallest closed congruence relation. Let us introduce some notations for the next construction. Let θ be an equivalence relation in a given lattice L. If K_1 , K_2 are subsets of two equivalence classes of θ , then let us write $K_1 \equiv K_2 \pmod{\theta}$ if K_1 , K_2 are subsets of the same equivalence class of θ , then let us

write $x=K(\mod \theta)$ if $x=y(\mod \theta)$, $\forall y \in K$. If K is a subset of L and if a least upper bound of K exists in L, then it will be denoted by $\vee K$. The notation $\wedge K$ refer to a greatest lower bound on K, when it exists.

Construction procedure P₅: Let θ be a given equivalence relation on a lattice (L, \lor, \land) . Let \aleph be a fixed infinite cardinal number. Let us write H~K for two non empty subsets H,K of equivalence classes of θ , when there is a finite sequence $G_0, G_1, ..., G_n$ (n ≥ 1) of subsets of equivalence classes of θ such that:

(i) $H \equiv G_0 \pmod{\theta}$,

(ii) $K \equiv G_n \pmod{\theta}$,

(iii) $|G_i| < \aleph, \forall i=1,2,...,n$.

(iv) $\lor G_i$ exists and $\lor G_i \equiv G_{i+1} \pmod{\theta}$ or

 $\wedge G_i$ exists and $\wedge G_i \equiv G_{i+1} \pmod{\theta}$ or

 $\vee G_{i+1}$ exists and $\vee G_{i+1} \equiv G_i \pmod{\theta}$ or

 $\wedge G_{i+1}$ exists and $\wedge G_{i+1} \equiv G_i \pmod{\theta}$, for i=1,2,...,n-1.

The following can be verified.

(i) If $x \equiv y \pmod{\theta}$, then $[x] \sim [y]$. For take n=1, $G_0 = H = \{x\}$ and $G_1 = K = \{y\}$ in the previous description.

(ii) Let H be a subset of an equivalence class of θ such that $|H| < \aleph$.

If \vee H exists, then H~{ \vee H}. For, take n=1, G₀=H, and G₁=K={ \vee H}in the previous description. Similarly, if \wedge H exists, then H~{ \wedge H}.

Let us now define ' \sim_5 ' on L by $x \sim_5 y$ if $[x] \sim [y]$, when $x, y \in L$. This defines an equivalence relation on L such that $\theta \le \sim_5$. Let us say that \sim_5 ' is obtained from θ by following the procedure P₅. The properties (i) and (ii) of ' \sim_5 ' imply the next theorem 4.1.

Theorem 4.1 Let θ_0 be a given equivalence relation on a lattice (L, \lor, \land) . Let \aleph be a given infinite cardinal number. Let θ_{β} be the stationary equivalence relation obtained by following the procedure P_5 on θ_0 . Then θ_{β} is the smallest \aleph -closed equivalence relation on L such that $\theta_0 \leq \theta_{\beta}$.

The next theorem 4.2 is a combination of Theorem 3.2 and Theorem 4.1.

Theorem 4.2 Let θ_0 , (L, \lor, \land) and \aleph be as in the previous theorem 4.1. Let θ_β be the stationary equivalence relation obtained by following the procedures P₁, P₂, P₃, P₄, P₅ on θ_0 . Then θ_β is the smallest N-closed congruence relation on L such that $\theta_0 \leq \theta_{\beta}$.

Remark 4.3 If $(\theta_i)_{i \in I}$ is a collection of equivalence relations on a lattice (L, \vee, \wedge) , then one can follow an usual procedure (see theorem 4.3 in p.23 in [1]) to construct a smallest equivalence relation θ_0 such that $\theta_i \leq \theta_0$, $\forall i \in I$ If θ_{β} is the congruence relation constructed in the theorem 4.2, then θ_{β} is the smallest \aleph -closed congruence relation such that $\theta_i \leq \theta_{\beta}$, $i \in I$.

Remark 4.4 The word '\S-closed' may be replaced by the word 'closed' in the discussion of this section.

References

- G.Birkoff, Lattice Theory, Amer. Math. Soc., New York, 1948. [1]
- [2] [3] T.S.Blyth, Lattices and ordered structures, Springer, London, 2005.
- F.Wehrung, A solution to Dilworth's congruence lattice problem, Advances in Mathematics, 216(2007)610-625.