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A study that shows the existence of a simple relationship among 

square, circle, Golden Ratio and arbelos of Archimedes and from 

which to identify the real Pi value (Mother Goddess Kaali Maata 

Unified method) 
 

R. D. Sarva Jagannadha Reddy 
 

Abstract: This study unifies square, circle, Golden Ratio, arbelos of Archimedes and  value.  The final result, 

in this unification process, the real  value is identified, and is, 
14 2

4


 = 3.14644660942…  
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I. Introduction 

The geometrical entitles and concepts such as circle, square, triangle, Golden Ratio have been studied 

extensively.  “The Golden Ratio is the ratio of two line segments „a‟ and „b‟ (when a < b) such that 
a b

b a b



.  

The ratio 
a 5 1

b 2


    0.6180339887498948482045868343656, while the reciprocal 

b 5 1

a 2


  = 

1.6180339887498948482045868343656.  Notice the relationship between the decimals.  It suggests that 

1
1 


”.  (A.S. Posamentier and I. Lehmann, 2004,            : A Biography of the World‟s Most 

Mysterious Number, Page 146). 

Archimedes (240 BC) of Syracuse, Greece, called the area arbelos that is inside the larger semi circle, 

but outside the two smaller semi circles of different diameters.  By its shape it is also called as “a shoemaker‟s 

knife”. 
The Golden Ratio and the arbelos of Archimedes are different concepts.  But in this paper by the grace 

of God, it has become possible to see that these two concepts too have an interesting and unexpected inter 

relationship between each other (one).  Further, this relationship has an extended relationship also with the circle 

(two).  It is a well known fact that there exists simple and understable relationship between circle and square 

(three).  As circle, square are related, their combined interrelationship has been extended to  value also (four). 
There is, thus, a divine chain of bond (of four interconnecting relations) exists, among square, 

circle, Golden Ratio, arbelos and  value.  (Here  value means a true/ real/ exact/ line-segment based value.  

The stress here, on the adjectives to , has become necessary, because 3.14159265358… of Polygon is 
attributed or thrust on circle.  In other words, this number to circle is a borrowed number from polygon and its 

existence thus can not be seen in the radius of the circle, naturally.  However, the new value 
14 2

4


 = 

3.14644660942… (unlike with official  value 3.14159265358…) is inseparable with radius and is, here, 
humbly submitted to the World of Mathematics: 

Area of the circle    = 
27r 2r

r r
2 4

 
    

 
 

Circumference of the circle  = 
2r 2r

6r
2


  = 2r 

In support of the above formulae, this paper also chooses and confirms that the real  value is 
14 2

4


= 

3.14644660942… 
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II.  Procedure 

1. Draw a square ABCD.  Draw two diagonals.  Inscribe a circle with centre „O‟ and with radius 
1

2
, 

equal to half of the side AB of the square, whose length is 1. 

AB = Side = EN = diameter = 1 

AC = BD = Diagonal = 2  

2. E is the mid point of AD 

AE = 
1

2
, AB = 1 

Triangle EAB, EB = hypotenuse = 
5

4
 

EH = 
1

2
;  HB = EB – EH = 

5 1 5 1

4 2 2


   

Golden Ratio = HB = 
5 1

2



 

 
3. EN = Diameter = 1 

EJ = HB = 
5 1

2


 = 0.61803398874… 

JN = EN – EJ = 
5 1

1
2

 
   
 

  = 
3 5

2


  = 0.38196601126… 

4. Draw two semicircles on EN.  And one semicircle with EJ as its diameter, and second semicircle with 

JN as its diameter. 

5. So, the diameter of the EJ semicircle = Golden Ratio = 
5 1

2



 

and  

the diameter of the JN semicircle = 
3 5

2


 

6. The area present (which is shaded) outside the two semicircles (of EJ and JN) and within the larger EN 

semi circle, is called arbelos of Archimedes. 

7. Draw a perpendicular line on EN at J which meets circumference at K. 

KJ = EJ JN  (this is Altitude Theorem) 

= 
5 1 3 5

2 2

 
  = 5 2  = 0.48586827174 
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8. Draw a full circle with diameter KJ.  It has already been established that this area of the full circle is 

equal to the area of the shaded region called arbelos. 

9. To calculate the area of the arbelos we have the following formulas. 

 q d q

4

 
 and 

2
h

2

 
  
 

 

where h = perpendicular line KJ = 5 2  = diameter of the circle LKM 

h

2
 = radius of LKM circle. 

10. Now, let us see the first formula 

 q d q

4

 
 

q = JN = 
3 5

2


 

d = EN = diameter = 1 

= 

3 5 3 5
1

2 2

4

      
     

     
  =  5 2

4

 
 

 
 

= 
4

 
 

 
0.23606797749 

11. The conventional formula is r2. 

KJ = diameter = h = 5 2  

Radius = 
diameter h

2 2
  = 

5 2

2


 = 0.24293413587 

 x 0.24293413587 x 0.24293413587 =  x 0.05901699437 

 

Part-II 

12.  value is known and hence, it is possible to find out the area of the arbelos either from 
 q d q

4

 
 or 

2
h

2

 
 
 

 

13. As there are two  values now 3.14159265358… and 3.14644660942 =
14 2

4


, the time has come, 

to find a way to decide which number actually represents  value. 

14. The following formula helps in deciding the real  value.  The formula is  
Side = a = diameter = d = 1 

Diagonal = 2 a = 2  

Perimeter of thesquare

1
Half of 7 timesof sideof square th of diagonal

4


 

= 
4a

7a 2a

2 4


  =  
4

7 2

2 4


  =  
4

14 2

4


  = 

16

14 2
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(when a circle is inscribed in a square, or when a square is created from the four equidistant tangents on a 

circle, the length of the circumference of the inscribed circle can be demarcated in the perimeter of the 

superscribed square.  It is called rectification of the circumference of the circle). 

Part III (Area of the arbelos) 

Let us calculate now the area of the arbelos with the known two  values, official  value and new one called 

Gayatri  value.  

15. With official  value 

0.23606797749
4


  = 

3.14159265358
0.23606797749

4
  = 0.18540735595 

        (S. No. 10) 

 x 0.05901699437 = 3.14159265358 x 0.05901699437 = 0.18540735594 

     (S. No. 11) 

16. With Gayatri  value 

0.23606797749
4


  = 

3.14644660942
0.23606797749

4
  = 0.18569382184 

     (S.No. 10) 

0.05901699437  = 3.14644660942 x 0.05901699437 = 0.18569382183 

   (S.No. 11) 

17. Finally, we obtain two different values representing same area of the arbelos of Archimedes. 

Official  value gives: 0.18540735595 and  

Gayatri  value gives: 0.18569382184 
Which one is the actual value for the area of the arbelos ? The answer can be found in Part IV. 

Part IV 

18. In the Figure 1 we have Golden Ratio, HB equal to 
5 1

2


 = 0.61803398874 

19. Let us divide area of the arbelos of S.No. 17 with the Cube of Golden Ratio = 

3

5 1

2

 
  
 

 and 

multiply it with 
16

14 2
 of the formula, derived in the S.No.14, which finally gives the area of the square 

ABCD, equal to 1. 

The  value that gives the exact area of the square equal to 1 is confirmed as the real  value.  Here, the 

Golden Ratio decides, the real  value, by choosing the correct area of the arbelos of Archimedes of S.No. 17 

20. Area of the arbelos obtained with official  value (S.No. 17)  

3

0.18540735595 16

14 25 1

2


 

 
 

 

Let us use simple calculator for the value of cube of Golden Ratio, which gives 0.23606797748 

= 
0.18540735595 16

0.23606797748 14 2



  

= 
0.18540735595

1.27127534534
0.23606797748

   = 0.99845732139 

21. Area of the arbelos obtained with Gayatri  value (S.No. 17).  Let us repeat steps of S.No. 20 here: 

3

0.18569382184 16

14 25 1

2


 

 
 

 = 
0.18569382184

1.27127534534
0.23606797748

  = 1 
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As the exact area of the superscirbed square is obtained, it is clear, therefore, that, the real  value is 
14 2

4


 

= 3.14644660942… 

 

III. Conclusion 

It is well known that there exists a simple relationship between circle and square.  In the present study, 

it is clear such simple relation also exists between Golden Ratio and arbelos of Archimedes.  This paper 

combines above two kinds of relations and decides the real  value, as 
14 2

4


 = 3.14644660942… 
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