KS - Graph on Commutative KS-Semigroup

R. Muthuraj¹, K. Nachammal²

¹(PG and Research Department of Mathematics, H.H.The Rajah's College, Pudukkottai, India) ²(PG and Research Department of Mathematics, H.H.The Rajah's College, Pudukkottai, India)

Abstract : In this paper, we introduce the concept of KS-graph of commutative KS-semigroup. We also introduce the notion of L-prime, zero divisors of commutative KS – semigroup and investigated its related properties. We also discuss the concept of KS-graph of commutative KS-semigroup and provide some examples and theorems.

Keywords: commutative KS-semigroup, connected graph, KS- graph, L- prime of commutative KS- semigroup *P*- ideal, zero divisors.

I. Introduction

In abstract algebra, mathematical system with one binary operation called group and two binary operations called rings were investigated. In 1966, Y.Imai and K.Iseki [2] defined a class of algebra called BCK-algebra [2]. A BCK – algebra is named after the combinators B,C and K by Carew Arthur Merideth, an Irish logician. At the same time, Iseki [3] introduced another class of algebra called BCI- algebra, which is a generalization of the class of BCK- algebra and investigated its properties. For the general development of BCI/BCK –algebras, the ideal theory and graph plays an important role. In 2006, Kyung Ho Kim [7] introduced a new class of algebraic structure called KS-semigroup "On Structure of KS-semigroup". Also define a new class algebras related to BCK-algebras, commutative properties and semigroup, called a commutative KS-semigroup. Then we introduced the concept of G(X) is KS-graph on commutative KS-semigroup. It is connected G(X) is complete graph. Finally, we discussed the relation between some operations on graph and commutative KS-semigroup.

II. Preliminaries

We need some definitions and properties that will be useful in our results BCK-algebra.

Definition: 2.1 [7]

A BCI-algebra is a triple (X,*,0) where X is a non empty set, "*" is a binary operation on X. $0 \in X$ is an element such that the following axioms are satisfied for every x,y,z $\in X$.

- I. $[(x*y)*(x*z)]*(z*y)=0; \forall x,y \in X.$
- II. $[x^*(x^*y)]^*y=0; \forall x,y\in X.$
- III. $x*x=0; \forall x,y\in X$.
- IV. x*y=0 and $y*x=0 \Rightarrow x=y; \forall x,y\in X$.

if a BCI- algebra X satisfies the following identity:

V. $0^*x=0 \forall x \in X$, then X is called a BCK-algebra.

If X is a BCK-algebra, then the relation $x \le y$ iff x * y = 0 is a partial order on X, which will called the natural ordering on X. Any BCK- algebra X satisfies the following conditions

I. x*0 = x for all $x \in X$.

- II. $(x^*y)^*z = (x^*z)^*y$ for all $x, y, z \in X$.
- III. $x \le y \Rightarrow x * z \le y^* z$ and $z * y \le z * x$; for all $x,y,z \in X$.
- IV. $(x^*z)^*(y^*z) \le x^*y$; for all $x,y,z \in X$.

Example: 2. 2 [6]

Let $X = \{0,a,b,c\}$ be a set with *-operation given by **Table**,

*	0	а	b	c
0	0	0	0	0
а	а	0	а	а
b	b	b	0	b
c	с	c	c	0

Then (X,*,0) is a BCK-algebra.

Definition: 2.3 [7]

A non- empty subset I of a BCK-algebra is called an ideal if it satisfies

 $1.0 \in X.$

2. $x * y \in X$ and $y \in X$ imply $x \in X$ for all $x, y \in X$.

Any ideal I has the property: $y \in I$ and $x \le y$ imply $x \in I$.

Example: 2.4 [6]

Let $X = \{0,a,b,c\}$ be a set with the *-operation given by **Table**,

*	0	а	b	с
0	0	0	0	0
а	а	0	а	0
b	b	b	0	0
c	с	c	c	0

Then (X,*,0) is a BCK-algebra. The set $I=\{0,b\}$ is an ideal of X.

Definition: 2.5 [6]

Let $\,X\,$ denote BCK-algebra, for any subset $\,A$ of $\,X\,$, we will use the notation $\,U(A)\,$ and L(A) to denote the sets,

 $\begin{array}{ll} U(A) &= \{ \ x \in X \ / \ a \ast x = 0 \ , \text{for all } a \in A \}, \\ L(A) &= \{ \ x \in X \ / \ x \ast a = 0 \ , \ \text{for all } a \in A \}, \end{array}$ i.e. $U(A) &= \{ \ x \in X \ / \ a \le x \ \forall \ a \in A \} \ \text{and} \ L(A) \ = \{ \ x \in X \ / \ x \le a \ \forall \ a \in A \}. \end{array}$

Example: 2.6 [6]

Let $X = \{0,a,b,c\}$ be set with the *-operation given by **Table**.

*	0	а	b	c
0	0	0	0	0
а	а	0	а	0
a b	a b	b	0	0
c	с	c	с	0

Then, X is a BCK- algebra. Then, $L(A) = L(\{0,a\}) = L(\{0,b\}) = L(\{0,c\}) = L(\{a,b\}) = L(\{a,c\}) = \{0\}$

Definition: 2.7 [6]

Let $x \in X$ we will use the notation Z_x to denote the set of all elements $y \in X$, such that $L(\{x,y\})=\{0\}$. That is, $Z_x = \{y \in X / L(\{x,y\})=\{0\}\}$.which is called the set of zero divisors of x.

Example : 2.8 [6]

Let $X = \{0,a,b,c\}$ be set with the *-operation given by **Table**.

*	0	а	b	с
0	0	0	0	0
а	а	0	а	0
b	b	b	0	0
с	с	с	c	0

Definition: 2.9 [6]

Let X is a BCK- algebra and $\Gamma(X)$ be a simple graph vertices are just the elements of X and for distinct, x, $y \in X$, there is an edge connecting x and y denoted by xy iff $L(\{x,y\})=\{0\}$ then, $\Gamma(X)$ is called a BCK- graph of X.

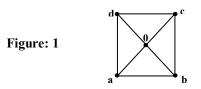
Example : 2.10 [6]

Let $X = \{0,a,b,c,d\}$ be set with the *-operation given by **Table**.

*	0	а	b	с	d
0	0	0	0	0	0
а	а	0	а	0	а
a b	b	b	0	b	0
с	с	а	с	0	с
d	d	d	d	d	0

$$\begin{split} L(A) &= \ L(\{0,a\}) = L(\{0,b\}) = L(\{0,c\}) = L(\{0,d\}) = L(\{a,b\}) = L(\{b,c\}) = L(\{c,d\}) = L(\{d,a\}) = \{0\} \\ & \text{And so } E \ (G(X) \). = \{0a, \ 0b, \ 0c, \ od, \ ab, \ bc, \ cd, \ da\}. \end{split}$$

Therefore, G(X) is a BCK – graph of X is given by the **Figure 1**.



III. Commutative KS- Semigroup

Definition: 3.1 [7]

A semigroup is an ordered pair (S,*), where S is a nonempty set and "*" is an associative binary operation on S.

Definition: 3.2 [7]

An commutative KS-semigroup is a non –empty set X with two binary operations "*" and "•" and constant 0 satisfying the axioms;

i) (X,*,0) is BCK-algebra.
ii) (X,•) is semigroup.
iii) x • (y*z) = (x • y)*(x • z) and (x*y) • z = (x • z)*(y • z) ∀ x,y,z∈X.
iv) x*(x*y) = y*(y*x) ∀ x,y ∈X.

Example: 3.3 [7]

Let $X = \{0,a,b,c\}$ be a set with the '*' and '•' operations given by **Table 1**.

Table: 1 "*" and "•" operations

*	0	а	b	c	•	0	а	b	с
0	0	0	0	0	0	0	0	0	0
а	а	0 b	а	0	а	0	а	0	а
b	b	b	0	0			0		
с	с	b	а	0			а		

Then $(X, *, \bullet, 0)$ is a commutative KS-semigroup.

Definition: 3.4 [7]

A non empty subset A of a semigroup (X, \bullet) is said to be left and right stable if $xa \in A$ and $ax \in A$ whenever $x \in X$ and $a \in A$. Both left and right stable is a two sided stable or simply stable.

Example: 3.5 [7]

Let $X = \{0,a,b,c\}$ be a commutative KS- semigroup be a set with the '*' and '•' operations from the **Table 1**. If $A=\{0,a,b\}$ then, A is an stable of commutative KS-semigroup of X.

Definition: 3.6 [7]

A non empty subset A of a commutative KS-semigroup X is called a left and right ideal of X if (i) A is left and right stable subset of (X, \cdot) . (ii) $\forall x, y \in X, x * y \in A$ and $y \in A \implies x \in A$. A subset which is both left and right ideal is called a two sided ideal or simply on ideal. Example: 3.7 [7]

Let $X = \{0,a,b,c\}$ be a commutative KS- semigroup be a set with the '*' and '.' operations given by **Table 2.**

*	0	а	b	с	•	0	а	b	c
0	0	0	0	0	 0	0	0	0	0
а	а	0	0	а		0			
b	b	а	0	b	b	0	0	0	b
с	с	c	с	0	c	0	0	0	c

Table: 2 "*" and "." Operations

If $A=\{0,a\}$. Then, A is an ideal of commutative KS-semigroup of X.

Definition: 3.8 [7]

A non-empty subset A of a commutative KS-semigroup X is called a left (respectively right) P-ideal of X if i) A is a left (respectively right \ stable subset of (x, .)).

ii) $\forall x,y,z \in X$, $(x^*y)^* z \in A$ and $(y^*z) \in A \implies x^*z \in A$.

A subset of X which is both left and right P-ideal is called P-ideal of commutative KS-semigroup X. A P-ideal is always an ideal.

Example: 3.9[7]

Let $X = \{0,a,b,c\}$. X is a commutative KS –semigroup be a set with the '*' and '•' operations given by **Table 3.**

Table: 3 "*" and "." operations

*	0	а	b	с		•	0	а	b	с
0	0	0	0	0		0	0	0	0	0
а	а	0	а	а		а	0	а	0	0
b	b	0 b	0	b		b	0	0	0 b	0
c	с	c	c	0		с	0	с	0	0
If $\Lambda = (0)$	a) The	n Airo	Didaal	of com	mutative	VS		of V		

If $A=\{0,a\}$. Then, A is a P-ideal of commutative KS-semigroup of X.

Definition: 3.10

Let X denote the commutative KS- semigroup , for any subset A of X , we will use the notation U(A) and L(A) to denote the sets

 $U(A) = \{ x \in X / a * x = 0 \text{ and } a. x = 0 \forall a \in A \}.$

L(A) = { $x \in X / x^* a = 0$ and $x a = 0 \forall a \in A$ }.

i.e. U(A) = { $x \in X / a \le x \forall a \in A$ } and L(A) { $x \in X / x \le a \forall a \in A$ }.

Example: 3.11

From the example 3.3, we have

 $L(A) = L(\{0,a\}) = L(\{0,b\}) = L(\{0,c\}) = L(\{a,b\}) = L(\{b,c\}) = L(\{a,c\}) = \{0\}.$

Definition: 3.12

A P-ideal A of commutative KS-semigroup X is said to be L-prime if it satisfies

(i) A is a proper (i.e) $A \neq X$.

(ii) $(\forall x, y \in X)$, $L(\{x, y\}) \subseteq A \implies x \in A \text{ or } y \in A$

Example : 3.13

From the example 3.3, $A = \{0\}$ is a L –prime.

Definition: 3.14

Let $x \in X$. X is a commutative KS - semigroup. We will use the notation Z_x to denote the set of all elements $y \in X$ such that $L(\{x,y\})=\{0\}$. That is $Z_x = \{y \in X / L(\{x,y\})=\{0\}\}$, which is called the set of zero divisors of x.

Example : 3.15

From the example 3.3, we define

$$\begin{split} &Z_0 = \{ y \in X / L(\{0,y\}) = \{0\}\}, Z_0 = \{0,a,b,c\} \\ &Z_a = \{ y \in X / L(\{a,y\}) = \{0\}\}, Z_a = \{0\} \\ &Z_b = \{ y \in X / L(\{b,y\}) = \{0\}\}, Z_b = \{0\} \end{split}$$

Theorem: 3.16

 Z_x is a P- ideal of commutative KS- semigroup X, for any $x \in X$ **Proof:**

Let $x \in X$. Suppose that Z_x is a P- ideal of commutative KS- semigroup X.

Let A is a $Z_x i$ $\forall x \in X$ and $a \in A$ such that $x a \in A$ and $a x \in A$

ii) $\forall x,y, z \in X$, $(x^*y)^* z \in A$ and $(y^*z) \in A \implies x^*z \in A$ therefore, Z_x is a P- ideal of commutative KS- semigroup X.

Example: 3.17

1 .

Let $X = \{0,a,b,c,d\}$ be a set with the '*' and '•' operations given by **Table 4**.

Table: 4 "*" and "•" operations

*	0	а	b	с	d							
0	0	0	0	0	0	•	0	а	b	c	d	_
а	а	0	а	а	0			0				
	b							0				
						b	0	0	0	0	b	
	с					с	0	0	0	b	c	
d	d	d	d	d	0	d	0	а	b	с	d	

 $Z_a = \{ y \in X / L(\{a,y\}) = \{0\} \}, Z_a = \{0,a\}$

 $Z_b = \{ y \in X / L(\{b,y\}) = \{0\}\}, Z_b = \{0,b\}$

 $Z_c = \{ y \in X / L(\{c,y\}) = \{0\} \}, Z_c = \{0,b\}$

Therefore, Z_x is a P- ideal of commutative KS- semigroup of X.

Theorem: 3.18

Let X is a commutative KS-semigroup, then $L({x,0})={0}$ for all $x \in X$.

Proof:

Suppose let $a \in L(\{x,0\})$ $a^*x=0 \& a^*0=0$ $a^*x=0 \& a^*0=0$ which is contradiction to $a^*0=a$. Therefore, $L(\{x,0\})=\{0\}$

Theorem: 3.19

For any elements a & b of a commutative KS-semigroup X, if a*b = 0, a•b = 0, then $L(\{a\}) \subseteq L(\{b\})$ and $Z_b \subseteq Z_a$

Proof:

Assume that $a^{*}b^{=}0$, $a \cdot b^{=}0$. Let $x \in L(\{a\})$, then $x^{*}a^{=}0 \& x \cdot a^{=}0$. And so, $(x^{*}b)^{*}(x^{*}a) = 0$ by $(a^{2})[4]$ $(x^{*}b)^{*}(x^{*}a) = 0$ and $(x \cdot b) \cdot (x \cdot a) = 0$ $(x^{*}b)^{*}0 = 0$ and $(x \cdot b) \cdot 0 = 0$ $(x^{*}b) = 0$ and $(x \cdot b) = 0$ Thus, $x \in L(\{b\})$, which shows that $L(\{a\}) \subseteq L(\{b\})$ Obviously, $Z_{b} \subseteq Z_{a}$

Theorem: 3.20

For any element X of a commutative KS – Semigroup, the set of zero divisors of x is a P-ideal of X containing the zero element 0. Moreover, if Z_x is maximal in $\{Z_a / a \in X, Z_a \neq X\}$, then Z_x is L – prime. **Proof:**

We have $0 \in Z_x$ Let $a \in X$ and $b \in Z_x$ be such that a * b = 0, $a \cdot b = 0$ We have $L(\{x,a\}) = L(\{x\}) \cap L(\{a\}) \subseteq L(\{x\}) \cap L(\{b\}) = L(\{x,b\}) = \{0\}$ Therefore $L(\{x,a\}) = \{0\}$ Hence $a \in Z_x$. Therefore Z_x is P-ideal of X.

Let $a, b \in X$ be such that $L(\{a, b\}) \subseteq Z_x$ and $a \notin Z_x$

Then L ($\{a,b,x\}$) = $\{0\}$. Let $0 \neq y \in L(\{a,x\})$ be an arbitrarily element.

 $L(\{b,y\}) \subseteq L(\{a,b,x\}) = \{0\}$, and so $L(\{b,y\}) = \{0\}$

ie., $b \in Z_y$. Since $y \in L(\{a,x\})$, we have y*x=0, $y \cdot x = 0$, it follows from Theorem 3.19,

 $Z_x \subseteq Z_y \neq X$, so from the maximality of $Z_x = Z_y$.

Hence, $b \in Z_x$ shows that Z_x is L- prime.

Definition 3.21

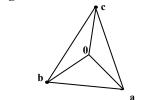
By the KS-graph of a commutative KS-semigroup X, denoted G(X), we mean the graph whose vertices are just the elements of X and for distinct $x,y \in G(X)$, there is an edge connecting x and y, iff $L(\{x,y\})=\{0\}$.

Example : 3.22

Let $X = \{0,a,b,c\}$ be a set with "*" and "•" operations from the example 3.3. Then, X is a commutative KS-semigroup.

 $L(A) = L(\{0,a\}) = L(\{0,b\}) = L(\{0,c\}) = L(\{a,b\}) = L(\{b,c\}) = L(\{a,c\}) = \{0\}$ And so E(G(X)) = { 0a,0b,0c,ab,ac,bc}.

Therefore, G(X) is a KS- graph in Figure 1.



Example: 3.23

Let $X = \{0,1,2\}$. Then, X is a commutative KS – semigroup. Define the operations "*" and "•" by the **Table 5**. $L(\{0,1\} = L(\{0,2\}) = L(\{1,2\}) = \{0\}$.

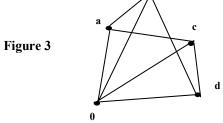
Table: 5 "*" and "•" operations											
*	0	1	2	•	0	1	2				
0	0	0	0	0	0	0	0				
1	1	0	1	1	0	0	1				
2	2	1	0	2	0	1	2				

The G(X) is a complete KS- graph in Figure 2.

Figure 2

Example : 3.24

Let $X = \{0,a,b,c,d\}$. X is a commutative KS – semigroup. Define the operations "*" and "•" from the example 3.17. The G(X) is KS –graph in **Figure 3.**



Theorem: 3.25

G(X) is a connected graph, for any $x \in X$.

Proof:

Let $0 \in X$ and $x, y \in X$. x0, y0 $\in E(G(X))$ and so there is a path from x to y in G(X).

Theorem: 3.26

The KS-graph of a commutative KS-semigroup is connected in which every non-zero vertex is adjacent to 0.

It is follows by theorem 3.18.

Theorem: 3.27

Let G(X) be the KS-graph of commutative KS – semigroup X. For any $x, y \in G(X)$, if Z_x and Z_y are distinct L – prime P-ideals of X, then there is an edge connecting x and y. **Proof:**

It is sufficient to show that $L(\{x,y\}) = \{0\}$. If $L(\{x,y\}) \neq \{0\}$, then $x \notin Z_y$ and $y \notin Z_x$. For any $a \in Z_x$, we have $L(\{x,a\}) = \{0\} \subseteq Z_y$.since Z_y is L – prime, it follows that $a \in Z_y$ so that $Z_x \subseteq Z_y$.similarly, $Z_y \subseteq Z_x$. Hence $Z_x = Z_y$. which is a contradiction. Therefore, x is adjacent to y.

Theorem: 3.28

Let X be a finite length of commutative KS-semigroup and $0 \in X$, then G(X) is a cycle iff $X = \{0\}$

Proof :

X is a commutative KS - semigroup.

G(X) is a connected graph. If $X = \{0\}$, then clearly, G(X) is a tree.

Let $X \neq \{0\}, x, y \in X - \{0\}$ and so $L(\{x,y\}) = \{0\}$.

Hence $E(G(X)) = \{x \ 0 | x \in X - \{0\}\}\$ does not have tree. Therefore, G(X) is a cycle.

Example: 3.29

Let $X = \{0,a,b,c\}$ be a commutative KS- semigroup. Define the operation "*" and "•" by the example 3.3. $X = \{0,a,b,c\}$.

 $E(G(X)) = \{ x \ 0/x \in X - \{0\} \}$

 $L({a,b}) = {0}, L({b,c}) = {0}, L({c,a}) = {0}$

 $E(G(X)) = \{a0, b0, c0, ab, bc, ca\},\$

Therefore, G(X) is a cycle.

Reference

- [1] J. Mong and Y.B.Jun, BCK-Algebras, kyung moon sa ca., Seoul Korea, 1994.
- [2] Y.Imai, K. Iseki, on axiom system of propositional calculi, XIV, japan Acad. 42 (1996), 19-22
- [3] K. Iseki, An algebra related with a propositional calculus, Japan Acad. 42 (1996), 26–29
- [4] Y.B. Jun, K. J. Lee, Graph based on BCK / BCI algebras, IJMMS (2011)
- [5] J. Meng, Y. B. Jun, BCK algebras, Kyung Moonsa. Seoul, Korea (1994)C
- [6] O.Zahari, R. A. Borzooei, graph of BCI algebras, International Journal of Mathematics and Mathematical Sciences, Volume 2012 Article ID 126835, 16 pages.
- [7] Kim, Kyung Ho, "On structure of KS-semigroup". International Mathematical forum, 1 (2006),6776.
- [8] On KS-Semigroup Homomorphism Jocelyn S. Paradero Vilela and Mila Cawi, International Mathematical forum,
- 4 (2009), no. 23, 1129 1138.
- [9] J. A. Bondy. U.S.R. Murthy, graph theory Springer, (2005).
- [10] J.P. Tremblay R.Manohar. Discrete mathematical structures with application to computer science, Tata McGRAW- HILL, pup co.
- Ltd. 2003.[11] R.Diestel, Graph theory, springer Verlag Heidelberg. (1997).