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Abstract: In this paper, we establish exact solutions for some nonlinear partial differential equations. The 

hyperbolic-sine method [16] is used to construct periodic and solitary wave solutions for some soliton equations 

and systems such as the generalized Klien-Gordon, the general improved Kadomtsev-Petviashvili (KP), and the 

Zakharov-Kuznetsov (ZK) with power law nonlinearity equations, the generalized coupled Drinfeld –sokolov –

wilso, and the generalized coupled Hirota-Satsuma Kdv systems.  
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I. Introduction 
The study of numerical methods for the solution of nonlinear partial differential equations has enjoyed 

an intense period of activity over the last 40 years from both theoretical and practical points of view. 

Improvements in numerical techniques, together with the rapid advances in computer  technology, have meant 

that many of the partial differential equations arising from engineering and scientific applications, which were 

previously intractable, can now, be mroutinely solved. Recently there are many new methods to obtain exact 

solutions of  nonlinear PDEs such as sine-cosine function method [1-5], tanh function method [6-8], (G
/

G )-

expansion method [9-13 ], extended Jacobi elliptic function method [14, 15]. The aim of the present paper is to 

extend the hyperbolic-sine function method introduced to find new solitary solutions of the some nonlinear 

partial differential equations such as the generalized Klien-Gordon, the general improved Kadomtsev-

Petviashvili (KP), and the Zakharov-Kuznetsov (ZK) with power law nonlinearity equations, the generalized 

coupled Drinfeld –sokolov –wilso, and the generalized coupled Hirota-Satsuma Kdv systems. 

 

II. Hyperbolic-sine function method [16]. 

Consider the nonlinear partial differential equation in the form  
 

F(ut , ux , un ux , uxxx , uxxt , … )                                                                                                                         (1),     

 

where 𝑢(𝑥,𝑡) is the solution of (1);  and ut , ux  etc, are the partial derivatives of 𝑢 with respect to 𝑡 and 

𝑥, respectively. We assume that equation (1) admits travelling wave solution. We use the traveling wave 

variable:  

 

u(x, t) = f ξ ,     ξ = x − ct                                                                                                                          (2),                                                                                                   
 

where c is the speed of the travelling wave. This enables us to use the following: 

  
∂

∂t
(·)=−c

d

dξ
(·),

∂

∂x
(·)=

d

dξ
(·), 

∂2

∂x2(·)=
d2

dξ2(·),…                                                                                                     (3)  

 

Using the above transformation the nonlinear partial differential equation (1) is transformed to nonlinear 
ordinary differential equation: 

 

G 
df

dξ
, f n df

dξ
,

d3f

dξ3 , …  = 0                                                                                                                              (4)                                                                                                                         

 

By integrating equation (4) with respect to ξ, we obtain: 
 

H f, f n+1 ,
d2f

dξ2 , …  = 0                                                                                                                                  (5)                                                                                   

The solution of equation (2) can be expressed as:  
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u x, t = f(ξ)=λsinhβ(μξ)                                                                                                                           (6),                                                                                                                                                       
 

where λ, β and μ are unknown parameters which will be determined. Then we have: 

  
df

dξ
 = λ β μsinhβ−1(μξ) csch(μξ)                                   

 
d2f

dξ2 = λ μ2β β − 1 sinhβ−2 μξ + λ μ2β β − 1 sinhβ μξ  

                +λ μ2β sinhβ(μξ)                                                                                                                           (7)  
 

We substitute (6) and (7) in (4) to obtain an equation in different powers of sine-hyperbolic functions. 

Now equating the coefficients of the same powers of sine-hyperbolic functions we obtain a system of algebraic 

equations in the parameters λ, β and μ. This system can be solved to obtain the values of λ, β and μ. The exact 

analytical solution of nonlinear partial differential equation (2) is then obtained by substituting the values of the 

parameters in equation (6).          

                                                                                                 

III. Applications 
In order to illustrate the effectiveness of the proposed method examples of mathematical interest are chosen as 

follows: 

 

3.1. The generalized Klien-Gordon equation 

In this section we introduce solitary exact solution for a generalized Klien-Gordon equation which is as 

follows:  

 

utt -uxx  −u + up =0                                                                                                                                         (8),  

 

where p is a positive integer. From equations (3), we have: 
 

c2 d2f(ξ)

dξ2 −
d2f(ξ)

dξ2 − f ξ − (f(ξ))p = 0                                                                                                         (9) 

 

From equations (6) and (7) we have: 

 

(c2 − 1)  λ μ2β β − 1 sinhβ−2 μξ + λ μ2β β − 1 sinhβ μξ + λ μ2βsinhβ μξ  − λ sinhβ μξ   

−λ psinhpβ μξ = 0                                                                                                                                     (10) 
 

By balancing the exponents of each pair of sinsh we have: 

 

(c2 − 1)λ μ2β β − 1 + (c2 − 1)λ μ2β − λ = 0,     β −
2

1−p
= 0 

 (c2 − 1)λ μ2β β − 1 − λ p=0                                                                                                                    (11) 
 

Using MATHEMATICA package software for solving the system equation (11) we obtain: 

 

β =
2

1−p
,        μ =

 1−2p+p2

2 c2−1
 ,         λ = 2

1

1−p (
1

1+p
)

1

1−p                                                                                     (12) 

 

Thus we obtain a new exact solution of the general Klien-Gordon equation in the form: 

 

u x, t = 2
1

1−p  
1

1+p
 

1

1−p
sinsh

2

1−p ( 
1−p

2 c2−1
   x − ct )                                                                                 (13) 

 

As special case if p=3 we get the Klien-Gordon equation [17] in the following form:  

 

utt -uxx  −u + u3= 0                                                                                                                                      (14), 
 

and thus its exact soliton solution is 
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u x, t = 8 sinh−1  
− x−ct 

 c2−1
 ,  c > 1                                                                                                           (15) 

 

 
𝐅𝐢𝐠𝐮𝐫𝐞 𝟏.  𝐓𝐫𝐚𝐯𝐞𝐥𝐢𝐧𝐠 𝐰𝐚𝐯𝐞 𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧 𝐨𝐟 𝐄𝐪.  𝟖 𝐟𝐨𝐫 𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧  𝟏𝟓 , 𝐜 = 𝟐, 𝐏 = 𝟑. 

 

3.2. The general improved Kadomtsev-Petviashvili (KP) equation 
Consider the following nonlinear partial differential equation (known as the general improved Kadomtsev-

Petviashvili (KP) equation) [18-22] 

 

(ut + εupux + uxxx )x + αuyy = 0                                                                                                                           (16), 

where ε, α are arbitrary nonzero constants. In this case we use the following transformation: 

ξ = x + y − ct,                                u = u(ξ),  

Thus 

d

dξ
 −c

df ξ 

dξ
+ εf ξ p

df ξ 

dξ
+

d3f ξ 

dξ3
 + α

d2f ξ 

dξ2
= 0                                                                                      (17) 

 

By integration twice we have: 

 

 α − c f ξ +
ε

p+1
  f ξ  

p+1
+

d2f ξ 

dξ2 = 0                                                                                                 (18) 

From equations (6) and (7) we have: 

 

 α − c λ sinhβ μξ +
ε

p + 1
λ p+1  sinh p+1 β μξ +  λ μ2β β − 1 sinhsβ−2 μξ + 

λ μ2β β − 1 sinhβ μξ +  λ μ2βsinhβ μξ = 0                                                                                                    (19) 
By balancing the exponents of each pair of sinsh we have: 

 

β +
2

p
= 0,           

ε

p+1
λ p+1 +  λ μ2β β − 1 = 0,  

 

 α − c λ + λ μ2β β − 1 + λ μ2β = 0                                                                                                              (20) 
 

Using MATHEMATICA package software for solving the system of equations (20) we obtain: 

β = −
2

p
,   μ =

p

2
 c − α, λ = 2

−1

p (
 α−c  p2+3p+2 

ε
)

1

p                                                                                       (21)      

Thus we now have new  exact solution of the general improved Kadomtsev-petviashvili equation is given by: 

u x, y, t = 2
−1

p  
 α−c  p2+3p+2 

ε
 

1

p
sinh

−
2

p  
p

2
 c − α x + y − ct   , c > α , p ≠ −1, p ≠ −2                    (22)    
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𝐅𝐢𝐠𝐮𝐫𝐞 𝟐.  𝐓𝐫𝐚𝐯𝐞𝐥𝐢𝐧𝐠 𝐰𝐚𝐯𝐞 𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧 𝐨𝐟 𝐄𝐪.  𝟏𝟔  𝐟𝐨𝐫 𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧  𝟐𝟐 , 𝛂 = 𝟏, 𝐏 = 𝟏, 𝐜 = 𝟐, 𝐲 = 𝟏𝟎, 𝛆 = 𝟏. 

 

3.3. The Zakharov-Kuznetsov (ZK) equation with power law nonlinearity 
This ZK appears in many areas of physics, applied Mathematics, and Engineering. In particular, it 

shows up in the areas of Plasma Physics. The ZK govern the behaviour of weakly nonlinear ion-acoustics waves 

in a plasma comprising of cold ion and hot isothermal electron in the presence of a uniform magnetic field. 

The ZK equation [23-28] is given by  

ut + aunux + b uxx + uyy  x
= 0                                                                                                                              23 , 

In equation (23), a and b are nonzero real valued constants. The first term represents the evolution term 

while the second term is the nonlinear term and finally the third and fourth terms together, in parentheses , are 

the dispersion terms. The solitons are a result of a delicate balance between dispersion and nonlinearity. The 

exponent n, which indicates the power law , is a positive real number. The special case where n =
1

2
 gives the 

modified ZK equation. 

 

We use the traveling wave variable:  

 

u x, y, t = f ξ ,                               ξ = x + y − ct                                                                                       (24) 
Then from equations (3), we have: 

 

−c
df ξ 

dξ
+ a(f ξ )n

df ξ 

dξ
+ b

d

dξ
 2

d2f ξ 

dξ2
  

= 0                                                                                                                (25) 

By integration we have: 

−c f ξ +
a

n + 1
 f ξ  

n+1
+ 2b

d2f ξ 

dξ2

= 0                                                                                                                              (26) 

From equations (6) and (7) we have: 

−cλsinhβ μξ +
a

n + 1
 λ n+1sinh n+1 β μξ +  2bλ μ2β β − 1 sinhβ−2 μξ +  

2bλ μ2β β − 1 sinhβ μξ +  2bλ μ2βsinhβ μξ = 0                                                                                          (27) 
By balancing the exponents of each pair of sinsh we have: 

 

−cλ +  2bλ μ2β β − 1 +  2bλ μ2β = 0,    β +
2

n
= 0,

a

n + 1
 λ n+1 +  2bλ μ2β β − 1 = 0           28    

Using MATHEMATICA package software for solving the system (28) we obtain: 

 

λ = 2
−1

n (
−2c−2cn−cn2

a
)

1

n ,   β =
−2

n
,    μ =

 cn

2 2b
                                                                                               (29) 

Thus we obtain new exact solution of the ZK equation in the form: 

 u x, y, t = 2
−1

n (
−2c−2cn−cn2

a
)

1

n sinsh
−2

n  
 cn

2 2b
  x + y − ct  , c > 2b, b > 0, a > 0      (30)  
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𝐅𝐢𝐠𝐮𝐫𝐞 𝟑.  𝐓𝐫𝐚𝐯𝐞𝐥𝐢𝐧𝐠 𝐰𝐚𝐯𝐞 𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧 𝐨𝐟 𝐄𝐪.  𝟐𝟑 𝐟𝐨𝐫 𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧  𝟑𝟎 , 𝐧 = 𝟏, 𝐚 = −𝟏𝟎,𝐛 = 𝟏, 𝐜 = 𝟑, 𝐲 = 𝟏. 

 

3.4. The generalized coupled Drinfeld –sokolov –wilso system 

This system [29-32] is given by 

ut − 3vvx = 0,                 vt − 3vxxx − a uv x = 0                                                                                               (31) 

We assume the solution of the system (30) in the form: 

u x, t = f ξ ,            v x, t = g ξ ,        ξ = x − ct                                                                                   (32) 

From equations (2) and (3), we have: 

 

−c
df  ξ 

dξ
− 3g

dg  ξ 

dξ
= 0, −c

dg ξ 

dξ
− 3

d3g ξ 

dξ3 − a
d

dξ
 f ξ g ξ  = 0                                                                   (33) 

 

By integration we have: 

                                                                  

f ξ = −
3

2c
(g ξ )2 ,              −cg ξ − 3

d2g ξ 

dξ2 − a f ξ g ξ  = 0                                                               (34) 

Thus from (33) and (34) we have: 

−cg ξ − 3
d2 g ξ 

dξ2 −
3a

2c
(g ξ )3 = 0                                                                                                            (35), 

We assume via hyperbolic sine method that  

g ξ =  λ sinhβ μξ                                                                                                                                       (36) 
Thus we have: 

−cλ sinhβ μξ − 3 λμ2β β − 1 sinhβ−2 μξ + λ μ2β β − 1 sinhβ μξ + λ μ2βsinhβ μξ  +
3a

2c
λ3βsinh3β μξ = 0.                                                                                                                                  (37) 

By balancing the exponents of each pair of sinsh we have: 

−cλ − 3λμ2  β β − 1 − 3λμ2  β = 0,   β + 1 = 0,   −3λμ2  β β − 1 +
3a

2c
λ 3 = 0                                      (38) 

Using MATHEMATICA package software for solving the system equation (38) we obtain: 

μ =  
c

3 
,                           λ =

2c

 3a
,              β = −1                                                                                     (39) 

Thus the exact solution of the generalized coupled Drinfeld –sokolov –wilso system  is given as follows: 

 v x, t =
2c

 3a
sinh−1   

c

3
  x − ct  , a > 0, c > 0                                                                       (40)(a), 

and 

u x, t =
2c

a
sinh−2   

c

3
  x − ct  , a > 0, c > 0                                                                                           40  b . 
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𝐅𝐢𝐠𝐮𝐫𝐞 𝟒.  𝐓𝐫𝐚𝐯𝐞𝐥𝐢𝐧𝐠 𝐰𝐚𝐯𝐞 𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧 𝐨𝐟 𝐄𝐪.  𝟑𝟏 𝐟𝐨𝐫 𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧  𝟒𝟎  𝐚 , 𝐜 = 𝐚 = 𝟏 

 

 
𝐅𝐢𝐠𝐮𝐫𝐞 𝟒.  𝐓𝐫𝐚𝐯𝐞𝐥𝐢𝐧𝐠 𝐰𝐚𝐯𝐞 𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧 𝐨𝐟 𝐄𝐪.  𝟑𝟏 𝐟𝐨𝐫 𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧  𝟒𝟎  𝐛 , 𝐜 = 𝐚 = 𝟏 

 

3.5. The generalized coupled Hirota-Satsuma Kdv system 
The generalized coupled Hirota-Satsuma Kdv system [33, 34] is given as follows: 

ut − auxxx − 3uux + 6vvx = 0,      vt + bvxxx + 3 uv x = 0                                                                         (41),  

where a, b are nonzero constants. 

To obtain the travelling wave solutions we use the following transformations: 

u x, t = f ξ ,                  v x, t = g ξ ,       ξ = x − ct                                                                                      (42) 

From equations (2) and (3), we have: 

 

−c
df ξ 

dξ
− a

d3f ξ 

dξ
3 − 3f ξ 

df ξ 

dξ
+ 6g ξ 

dg ξ 

dξ
= 0, 

−c
dg ξ 

dξ
+ b

d3g ξ 

dξ
3 + 3

d

dξ
 f ξ g ξ  = 0                                                                                                      (43)   

By integration we have 

−c f ξ − a
d2 f ξ 

dξ2 −
3

2
 f ξ  

2
+ 3 g ξ  

2
= 0, −c g ξ + a

d2g ξ 

dξ2 + 3fg = 0                                           44  

We assume via the hyperbolic-sine method that: 

f ξ = λ1sinhβ1 μξ ,          g ξ = λ2sinhβ2 μξ                                                                                                     (45) 
 from equation (45), equation (44) becomes in the following form: 

−cλ1sinhβ1 μξ − a[λ1μ2β
1
 β

1
− 1 sinhβ1−2 μξ + λ1μ2β

1
 β

1
− 1 sinhβ1 μξ + λ1μ2β

1
sinhβ1 μξ 

−
3

2
λ1

2sinh2β1 μξ +3λ2
2sinh2β2 μξ = 0, 

−cλ2sinhβ2 μξ + b[λ2μ2β
2
 β

2
− 1 sinhβ2−2 μξ + λ2μ2β

2
 β

2
− 1 sinhβ2 μξ + λ2μ2β

2
sinhβ2 μξ 

+ 3λ1λ
2

sinhβ1+β
2 μξ = 0                                                                                                       (46)    

By balancing the exponents of each pair of sinh we have: 

−cλ1 − aλ1μ2β
1
 β

1
− 1 − aλ1μ2β

1
= 0,  2β

1
= 2β

2
= β

1
− 2, −aλ1μ2β

1
 β

1
− 1 −

3

2
λ1

2+3λ2
2 = 0, 

−cλ2 + bλ2μ2β
2
 β

2
− 1 + bλ2μ2β

2
= 0,  β

2
− 2 = β

1
+ β

2
, bλ2μ2β

2
 β

2
− 1 + 3λ1λ2 =  0              (47)  

Using MATHEMATICA package software for solving the system equation we have: 

β
1

= β
2

= −2,   b = −a,      λ1 =
c

2
, λ2 =

c

2
 

3

2
,  μ =

1

2
 

c

a
                                                                          (48). 
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Thus the exact solution of the generalized coupled Hirota-Satsuma Kdv system (41) is given as: 

u x, t =
c

2
sinh−2  

1

2
 

c

a
 x − ct  ,   a > 0, 𝑐 > 𝑎                                                                                      49  a ,    

and 

v x, t =
c

2
 

3

2
 sinh−2  

1

2
 

c

a
  x − ct  ,   a > 0, 𝑐 > 𝑎                                                                                  (49)(b), 

 
𝐅𝐢𝐠𝐮𝐫𝐞 𝟓.  𝐓𝐫𝐚𝐯𝐞𝐥𝐢𝐧𝐠 𝐰𝐚𝐯𝐞 𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧 𝐨𝐟 𝐄𝐪.  𝟒𝟏 𝐟𝐨𝐫 𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧  𝟒𝟗  𝐚 , 𝐜 = 𝟐, 𝐚 = 𝟏. 

 

 
𝐅𝐢𝐠𝐮𝐫𝐞 𝟔.  𝐓𝐫𝐚𝐯𝐞𝐥𝐢𝐧𝐠 𝐰𝐚𝐯𝐞 𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧 𝐨𝐟 𝐄𝐪.  𝟒𝟏 𝐟𝐨𝐫 𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧  𝟒𝟗  𝐛 , 𝐜 = 𝟐, 𝐚 = 𝟏. 

 

IV. Conculsion 
In this paper, the hyperbolic-sine function method has been successfully applied to obtain new 

solutions of some nonlinear partial differential equations. Thus,the hyperbolic-sine function method can be 

extended to solve the problems of nonlinear partial differential equations which arising in the theory of solitons 

and other areas. 
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