Counting subgroups of finite nonmetacyclic 2-groups having no elementary abelian subgroup of order 8

EniOluwafe, Michael
(Department of Mathematics/Faculty of Science/University of Ibadan, Nigeria)

Abstract:The aim of this note is to give an explicit formula for the number of subgroups of finite nonmetacyclic 2-groups having no elementary abelian subgroup of order 8.

Keywords:Centralproducts, cyclic subgroups, dihedral groups, finite nonmetacyclic 2-groups, number of subgroups.

I. Introduction

Counting subgroups of finite groups solves one of the most important problems of combinatorial finite group theory. For example, in [1] are determined an explicit expression for the number of subgroups of finite nonabelianp-groups having a cyclic subgroup.

Recall that the problem was completely solved in the abelian case, by establishing an explicit expression of the number of subgroups of a finite abelian group [2]. Unfortunately, in the nonabeliannonmetacyclic casea such expression can be given only for certain finite groups [3]. In this note we prove a counting theorem for a class of finite nonmetacyclic 2-groups having no elementary abelian subgroup of order 8 .

A group G is said to be metacyclic if it contains a normal cyclic subgroupC such that G / C is cyclic, otherwise it is said to be nonmetacyclic. Let A and B be groups, a central product of groups A and B is denoted by $A * B$, that is, $A * B=A B$ with $[A, B]=\{1\}$, where $[A, B]$ is a commutator subgroup generated by groups A and B.

For basic definitions and results on groups we refer the reader to [4], [5] and [6]. More precisely, we prove the following result in the next section.

Theorem 2.1. Let $\mathrm{G}=\mathrm{D} * \mathrm{Z}$, where $*$ is a central product, $\mathrm{D} \cong \mathrm{D}_{2^{\mathrm{n}}}$, a dihedral group of order $2^{\mathrm{n}}, \mathrm{n} \geq$ $3, Z \cong C_{4}$, a cyclic group of order 4 and $D \cap Z=Z(D), Z(D)$ is the center of D. Then the number of subgroups of the group G is given by the following equality:

$$
|L(G)|= \begin{cases}23 & ; \text { ifn }=3 \\ 3\left(2+n+\sum_{k=2}^{n-2} 2^{n-k}\right)+2^{n} & ; \text { ifn } \geq 4\end{cases}
$$

where $\mathrm{L}(\mathrm{G})$, the set consisting of all subgroups of G forms a complete lattice with respect to set inclusion, called the subgroup lattice of G.

II. Proof of Theorem 2.1

Proof. Let $\mathrm{D} \cong \mathrm{D}_{2^{\mathrm{n}}}=\langle\mathrm{x}, \mathrm{y}| \mathrm{x}^{2^{\mathrm{n}-1}}=\mathrm{y}^{2}=1$, $\left.\mathrm{yxy}^{-1}=\mathrm{x}^{2^{\mathrm{n}-1}-1}\right\rangle, \mathrm{n} \geq 3$, a dihedral group of order $2^{\mathrm{n}}, \mathrm{Z} \cong \mathrm{C}_{4}=\langle\mathrm{a}\rangle$, a cyclic group of order 4 and $\mathrm{D} \cap \mathrm{Z}=\mathrm{Z}(\mathrm{D})$. Then $\mathrm{G}=\mathrm{D} * \mathrm{Z}:=\frac{\mathrm{D} \times \mathrm{Z}}{\mathrm{H}}$, where $\mathrm{H}=$ $\left\langle\left(\mathrm{x}^{\mathrm{n}^{\mathrm{n}-2}}, \mathrm{a}^{2}\right)\right\rangle, \mathrm{n} \geq 3$. That is:

$$
G:=\langle(x, 1) H,(y, 1) H,(1, a) H\rangle
$$

such that:

$$
\left(x^{2^{n-1}}, 1\right) H=\left(y^{2}, 1\right) H=\left(1, a^{4}\right) H=H,\left(y x y^{-1}, 1\right) H=\left(x^{2^{n-1}-1}, 1\right) H
$$

An important property of this group is that its characteristic subgroup defined by: $\mho_{n-2}(G):=$ $\left\langle\left(\mathrm{x}^{\mathrm{q}}, 1\right) \mathrm{H}\right\rangle$, where $\mathrm{q}=2^{\mathrm{n}-2}$, for all $\mathrm{n} \geq 3$, is of order 2. Also, for $\mathrm{n} \geq 3$, we obtain an epimorphism : $\mathrm{G} \rightarrow$ $\mathrm{D}_{2^{\mathrm{n}-1} \times} \mathrm{C}_{2}$ defined by:
$\delta(k H):=(k H)\left\langle\left(\mathrm{x}^{2^{n-2}}, 1\right) H\right\rangle, \mathrm{n} \geq 3$, where $\mathrm{kH} \in \mathrm{G}, \mathrm{k} \in \mathrm{D} \times \operatorname{Zand}(\mathrm{kH})\left\langle\left(\mathrm{x}^{\mathrm{2}^{\mathrm{n}-2}}, 1\right) H\right\rangle \in \mathrm{D}_{2^{\mathrm{n}-1} \times \mathrm{C}_{2}}, \mathrm{n} \geq 3$. Clearly, the kernel of δ is
$\mho_{\mathrm{n}-2}(\mathrm{G}):=\left\langle\left(\mathrm{x}^{2^{\mathrm{n}-2}}, 1\right) \mathrm{H}\right\rangle$ and by the first isomorphism theorem for groups, we obtain that:

$$
\begin{equation*}
\frac{\mathrm{G}}{\mho_{\mathrm{n}-2}(\mathrm{G})} \cong \mathrm{D}_{2^{\mathrm{n}-1} \times \mathrm{C}_{2} \text { for alln } \geq 3} \tag{1}
\end{equation*}
$$

Being isomorphic, the groups $\frac{G}{V_{n-2}(G)}$ andD $_{2^{n}-1} \times C_{2}$ have isomorphic lattices of subgroups.
Moreover, since the number of subgroups G which not contain $\mho_{n-2}(G)$ are the trivial subgroup as well as all minimal subgroups of G excepting $\mho_{n-2}(G)$ and since the distinct subgroups generated by the join of any two distinct such subgroups includes $\mho_{n-2}(\mathrm{G})$.
One obtains:

$$
\begin{equation*}
|\mathrm{L}(\mathrm{G})|=\left|\mathrm{L}\left(\frac{\mathrm{G}}{\mho_{\mathrm{n}-2}(\mathrm{G})}\right)\right|+2^{\mathrm{n}-1}+3, \text { for alln} \geq 3 \tag{2}
\end{equation*}
$$

Thus, we need to determine the number of subgroups of $\mathrm{D}_{2^{n-1} \times} \mathrm{C}_{2}$ using the following auxiliary result established in [3].
Lemma 2.2: For all $n \geq 3$, the number of all subgroups of order 2^{n} in the finite 2-group $D_{2^{n-1} \times} C_{2}$ is:

$$
\begin{cases}16 & ; \text { ifn }=3 \tag{3}\\ 2^{n-1}+3\left(n+1+\sum_{i=1}^{n-2} 2^{n-i}\right) & ; \text { ifn } \geq 4\end{cases}
$$

Hence, the relations (1), (2) and (3) give the explicit expression of

$$
|L(G)|= \begin{cases}23 & ; \text { ifn }=3 \\ 2^{n}+3\left(2+n+\sum_{k=2}^{n-2} 2^{n-k}\right) & ; \text { ifn } \geq 4\end{cases}
$$

III. Conclusion

In this short note we had worked on minimal subgroups and used a previous result (Lemma 2.2) to obtain a counting theorem for a class of finite nonmetacyclic 2 -groups having no elementary abelian subgroup of order 8 . It is desirable to consider arbitrary nonabeliannonmetacyclic 2 -groups.

References

[1]. M. Tarnauceanu, Counting subgroups for a class of finite nonabelian p-groups. AnaleleUniversitaatii de Vest, TimisoaraSeriaMatematica - Informatica XLVI, 1, (2008), 147-152.
[2]. G. Bhowmik, Evaluation of the divisor function of matrices, ActaArithmetica 74(1996), $155-159$.
[3]. M. EniOluwafe, Counting subgroups of nonmetacyclic groups of type $D_{2^{n-1} \times} C_{2}, n \geq 3$, submitted.
[4]. B. Huppert, Endlichegruppen I, II (Springer-Verlag, Berlin, 1967).
[5]. M. Suzuki, Group theory I, II (Springer-Verlag, Berlin, 1982, 1986).
[6]. H. Zassenhaus, Theory of groups (Chelsea, New York, 1949).

