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Abstract: In sample surveys, stratified sampling is useful if the strata weights are known for each stratum. If 

they are not known double sampling may be used by selecting a large preliminary sample to estimate the strata 
weights.  Then a stratified sample may be selected independently or from the initial sample. If the problem of 

non-response is also present then the strata are to be virtually divided into two disjoint and exhaustive groups of 

respondents and non-respondents. A subsamples from non-respondents is then selected and second more 

extensive attempt is to be group is to be made for obtaining the required information. The problem of obtaining 

a compromise allocation for first and second phase of sampling is the formulated as a multi-objective non-

linear programming problem that minimizes the sum of variances of the stratified sample mean subject to the 

non-linear cost constraint. The formulated problem is solved using fuzzy programming and fuzzy goal 

programming based on piecewise linear approximation. A numerical example is presented to illustrate the 

computational details. 

Keywords: Non-response, Multivariate Stratified Sampling, Multiobjective Integer non-linear programming 

problem, Fuzzy Programming, Travel cost 
 

I. Introduction 

Our society needs a prompt and accurate flow of information on preferences, need and behavior. It 

returns a good response on the part of government, business and social institutions. The need of statistical 

information is rapidly growing in our society. Huge amount of data are being collected and used by the states to 

plan their economic and social activities, e.g. the effect of sales and production in the business and industrial 

sectors and the development of research and social projects in scientific institution. A sample survey technique 

may be used where a part (sample) of the population is evaluated, and inference are drawn about the population 

as a whole on the basis of this sample. 

The ‘optimum allocation’ in stratified random sampling is well known for a univariate population ( See 
Cochran (1977) and Sukhatme et al. (1984)) more than one characteristics are defined on each and every unit of 

the population, it is not feasible to use the individual optimum allocations to the strata unless there is a strong 

positive correlation between the characteristics under study. Thus, usually, one has to use an allocation that is 

optimum in ‘some sense’ for all the characteristics. Such an allocation is known as a compromise allocation in 

sampling literature. Various compromise criteria to work out a compromise allocation are available. Geary 

(1949), Dalenius (1957), Ghosh (1958), Yates (1960), Aoyama (1963), Folks and Antle(1965), Chatterjee 

(1967, 1968), Kokan and Khan (1967), Ahsan (1975-1967, 1978), Ahsan and Khan(1977), Jahan, Khan and 

Ahsan (1994,2001), Khan, Khan and Ahsan (2003, 2008), Singh (2003), Díaz-García and Cortez (2006, 2008), 

Kozak (2006a, 2006b), and many others either suggested new compromise criterion or explored further the 

existing criteria under various situations. 

In surveys of human population the problem of non-response is very common. Hansen and Hurwitz 
(1946) first considered the problem of non-response in sample surveys. 

The method of post stratification is useful only if the relative proportion of each stratum in the 

population 𝑊𝑕  =
𝑁𝑕

𝑁   is known for each stratum 𝑕. If these proportions are not known, double sampling 

techniques may be used, with an initial (large) sample used to estimate the unknown population parameter 𝑊𝑕 . 

Most of the statistician has worked on double sampling problem for stratification where non response is 
present. Okafor (1994) studied the above problem using a double sampling strategy (DSS) for a univariate 

stratified population. Najmussehar and Bari (2002) formulated the same problem as a mathematical 

programming problem and used dynamic programming technique to obtain a solution. Varshney et al (2011) 

determined a compromise allocation in multivariate stratified random sampling, when strata weights are 

unknown and non-response is also present.  The problem of obtaining a compromise allocation has been 

formulated as a Multiobjective Integer Nonlinear Programming Problem. The solution is obtained by goal 

programming technique. Haseen et al. (2012) obtained the solution of this problem by using fuzzy programming 

techniques. 

Generally the real-world decision problems are multiobjective in nature and they conflict with each 

other regarding optimization of objectives. To resolve the conflict, the goal programming (GP) approach has 
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been introduced by Charnes and Cooper (1961). The main problem in using GP is that a precise aspiration level 

needs to be assigned for each of the objectives. But, in a real-life decision situation, it is difficult to set precise 

target values to objectives due to imprecise nature of human judgments. To overcome such a situation, fuzzy 
programming (FP) approach has been introduced by Bellman and Zadeh (1970). Zimmermann first proposed the 

fuzzy linear programming (1978). In FP, membership functions are defined on the basis of assigned aspiration 

levels and tolerance ranges defined for the fuzzy goals. But, it is difficult to define tolerance ranges in a highly 

sensitive decision situation. To overcome such difficulties, goal programming approach in fuzzy environment 

has been first introduced by Narashimann (1980). Thereafter, Fuzzy Goal Programming (FGP) has been studied 

by many researchers and has been applied in many real life problems. (See Pal B.B. et al (2003), Biswas et al 

(2005), Parra et al (2001) etc.). 

There are many real-world decision problems in different structural optimization areas. It is found that 

objectives of most of the industrial problems are nonlinear in nature. To solve such problems, different classical 

approaches were developed and widely circulated in the literature. One of most widely used approaches is the 

approximation of a nonlinear function by piecewise linear approximation method. 
Separable programming is important because it allows a convex nonlinear program to be approximated 

with arbitrary accuracy with a linear programming model. Separable programming was first introduced by 

Miller (1963). Thereafter, it has been developed by Cox (1971), Lin and Chen (2002), Chang (2000),  and other 

researchers. But, separable programming approach in the area of FGP is not widely circulated in literature. 

Generally, separable programming problems are transformed into linear form by using piecewise linear 

approximation method. 

In sample surveys problem when cost of travelling between the selected units of a stratum is also 

significant, a cost function quadratic in  𝑛𝑕  may be used (See Cochran (1977)). Non linear cost constraint has 

been studied by many researchers. Shazia Ghufran et al. (2012) worked out the compromise allocation in a 
multivariate stratified survey using the compromise criterion to minimize the sum of squared coefficients of 

variation of the estimators subject to the non linear cost. Saman et al. (2013) obtained the compromise solution 

in presence of non response using travel cost. 

In the present manuscript the authors have discussed the problem of Two-Phase sampling (or double 

sampling) design in presence of non response. The compromise solution of this problem has been obtained by 

minimizing the variance of double sampling for stratification in presence of non response for fixed travelling 

cost. The solution obtained using fuzzy programming and fuzzy goal programming technique based on 

piecewise linear approximation. A numerical example is also given.  

 

II. Non-response in double sampling for stratification 

A population of size 𝑁, divided into 𝐿 strata which are homogenous within themselves. The strata 

sizes are 𝑁1,  𝑁2 ,… ,𝑁𝐿 , where  𝑁𝑕
𝐿
𝑕=1 = 𝑁.The strata weights 𝑊𝑕  =

𝑁𝑕
𝑁   are used in estimating 

unbiasedly the mean or the total of the characteristics  under study .If these strata weights are not known the 
technique of double sampling may be used to estimate them that is,  a preliminary simple random sample of size 

𝑛′ is selected without replacement, to estimate the strata weights, treating the population as unstratified. Each 

unit of the sample falling in which stratum is recorded. An unbiased estimate 𝑤𝑕  is then given by 𝑤𝑕 =
𝑛𝑕

′

𝑛′ 
 . 

Subsample of sizes 𝑛𝑕 = 𝑣𝑕𝑛𝑕 
′ ;𝑕 = 1, 2,… ,𝐿 ; 0 < 𝑣𝑕 ≤ 1 is then drawn out of  𝑛𝑕

′

 
units using srswor from 

each stratum for fixed 𝑣𝑕 , to collect information on the characteristics under study, such that  𝑛𝑕
𝐿
𝑕=1 = 𝑛. Let 

𝑊𝑕  =
𝑁𝑕

𝑛   be proportion of units falling in the 𝑕𝑡𝑕 strata and 𝑤𝑕  =
𝑛𝑕

′

𝑛′
  

 
be proportion of first sampling 

units falling in the 𝑕𝑡𝑕stratum. The double sampling for stratification estimator of population mean 𝑌 𝑗  of the 𝑗𝑡𝑕  

characteristic measured on each selected unit is given by                                        

                                                                   𝑦 𝑕𝑑𝑠 =  𝑤𝑕𝑦 𝑗𝑕
𝐿
𝑕=1                                                                                                (1) 

 𝑦 𝑗𝑕 =
1

𝑛𝑕
 𝑦𝑗𝑕𝑖
𝑛𝑕
𝑖=1  is a sample mean of the 𝑗𝑡𝑕 characteristic, where 𝑗 = 1, 2,… ,𝑝 based on 𝑛𝑕

 

units for stratum 

𝑕 and ‘ds’ stand for double sampling. 

The sampling variance of 𝑦 𝑗𝑑𝑠  is then given by 

                                                        𝑉 𝑦 𝑗𝑑𝑠  =  
1

𝑛′
−

1

𝑁
 𝑆𝑗

2 +
1

𝑛′
 𝑤𝑕  

1

𝑣𝑕
− 1 𝑆𝑗𝑕

2

𝐿

𝑕=1

                                                (2) 
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where 𝑆𝑗
2 and 𝑆𝑗𝑕

2  denote the population and stratum variances of  𝑗𝑡𝑕  characteristic based on 𝑁 and 𝑁𝑕  

units.  

In the presence of non-response, let 𝑛𝑕1units respond at the first attempt and 𝑛𝑕2  units are the number 

of non-respondents out of 𝑛𝑕  units. Using Hansen and Hurwitz (1946) technique, subsamples are selected from 

non-respondents group of sizes 𝑚𝑕2 = 𝑘𝑕
∗𝑛𝑕2; 0 < 𝑘𝑕

∗ < 1 out of 𝑛𝑕2  units is drawn and interviewed with extra 

effort. Where 𝑘𝑕
∗

 
is a known constant ; 𝑕 = 1, 2,… ,𝐿 . 

Let  𝑦 𝑗𝑕1 and 𝑦 𝑗𝑚𝑕2
 denote the sample mean of 𝑗𝑡𝑕 characteristic of the  𝑛𝑕1 respondents at the first attempt and 

the 𝑚𝑕2 subsampled units at the second attempt. 

For 𝑗𝑡𝑕
 
characteristic, an unbiased estimator 𝑦 𝑗𝑑𝑠

∗  for 𝑌 𝑗  based on sample means from the respondents and the 

non-respondents group obtained in second attempt is given by  

                                                                      𝑦 𝑗𝑑𝑠
∗ =  𝑤𝑕𝑦 𝑗𝑕

∗𝐿
𝑕=1                                                                                       (3)                                                          

where, 𝑦 𝑗𝑕
∗ =

𝑛𝑕1𝑦 𝑗𝑕1+𝑛𝑕2𝑦 𝑗𝑚𝑕2

𝑛𝑕
 

The variance of 𝑦 𝑗𝑑𝑠
∗  

 
is given by  

      𝑉 𝑦 𝑗𝑑𝑠
∗  = 𝑉 𝑦 𝑗𝑑𝑠  +

1

𝑛′
 𝑤𝑕2  

1 − 𝑘𝑕
∗

𝑘𝑕
∗𝑣𝑕

 𝑆𝑗𝑕2
2

𝐿

𝑕=1

                                                   

                                                =  
1

𝑛′
−

1

𝑁
 𝑆𝑗

2 +
1

𝑛′
 𝑤𝑕  

1

𝑣𝑕
− 1 

𝐿

𝑕=1

𝑆𝑗𝑕
2 +

1

𝑛′
 𝑤𝑕2  

1 − 𝑘𝑕
∗

𝑘𝑕
∗𝑣𝑕

 𝑆𝑗𝑕2                
2               

𝐿

𝑕=1

     = 𝑍𝑗  ;  𝑗 = 1, 2,… , 𝑝                                                                     

(4)                 

In the above expression 𝑤𝑕2 =
𝑛𝑕2

𝑛𝑕  is the proportion of non-respondents and 𝑆𝑗𝑕2
2  is the population variance 

of 𝑗𝑡𝑕 characteristic, 𝑗 = 1, 2,… ,𝑝

 

of the non-respondents in the 𝑕𝑡𝑕 stratum. 

A fully generalized cost function draws upon differential calculus and decision theory to minimize 

variance subject to a given cost (see Cochran, 1963), but a simpler algebraic relationship permits an examination 

of the effect of  sample survey design on survey cost. The cost of carrying out multivariate stratified double 

sampling in presence of non response are characterized by four major categories as defined in the following.   

                                        𝐶 = 𝑐0𝑛
′ +  𝑐𝑕1𝑛𝑕 +  𝑐𝑕11𝑛𝑕1 +  𝑐𝑕12𝑚𝑕2

𝐿

𝑕=1

𝐿

𝑕=1

𝐿

𝑕=1

                                                     (5) 

where  𝑐0 is the cost of measuring each unit in the preliminary sample. 

 𝑐𝑕1 is the cost of measuring each unit in the first attempt (phase-1).  

 𝑐𝑕11  is the cost of processing the result of all the p characteristic on the 𝑛𝑕1 selected units from respondents 

group in the 𝑕𝑡𝑕
 
stratum at phase-I. 

𝑐𝑕12  is the cost for measuring and processing the results of all the p characteristic on the  𝑚𝑕2 units selected 

from the non-respondents group in the 𝑕𝑡𝑕
 
stratum at the second attempt(phase-II). 

 𝑐𝑗𝑕11  and 𝑐𝑗𝑕12
 
are the per unit cost of measuring the  characteristic at phase-I and phase-II respectively. 

Since 𝑛𝑕1 is not known until the first attempt has been made, the quantity 𝑤𝑕1𝑛𝑕 may be used as its estimated 

value. The total expected cost of 𝐶  the survey is thus given by 

                                           𝐶 = 𝑐0𝑛
′ +   𝑐𝑕1 + 𝑤𝑕1𝑐𝑕11 𝑛𝑕

𝐿
𝑕=1 +  𝑐𝑕12𝑚𝑕2

𝐿
𝑕=1                                                  (6)  

In linear cost function the cost associated with the non travel activity of the survey include drawing 

samples, preparing survey materials, locating identifying and interviewing respondents and coding data. 

Sometimes, it is not fulfill our requirement. If the cost of travelling between selected units of a stratum is 

substantial it should also be considered while estimating the total cost of the survey.  Then the total cost includes 

both the travel and the measurement costs. Let the per unit travel cost be  𝑡𝑕1 and 𝑡𝑕12 for first and second 

attempt respectively. An adequate approximation to the total expected cost  𝐶  of the double sampling stratified 
survey in presence of non response will then be 

              𝐶 = 𝑐0𝑛
′ +   𝑐𝑕1 + 𝑤𝑕1𝑐𝑕11 𝑛𝑕

𝐿
𝑕=1 +  𝑐𝑕12𝑚𝑕2

𝐿
𝑕=1 +   𝑡𝑕1 𝑛𝑕

𝐿
𝑕=1 +  𝑡𝑕12 𝑚𝑕2

𝐿
𝑕=1            (7)  

 

III. Formulation of the above problem 
In phase-I, the problem is to find the optimum sizes of the second samples 𝑛𝑕 ;𝑕 = 1,2,… ,𝐿 which may 

be obtained by minimizing 𝑍𝑗 ; 𝑗 = 1,2,… ,𝑝 given by (4) for the cost given in (7). In phase-II the optimum 

subsample of size  𝑚𝑕2;𝑕 = 1,2,… , 𝐿 from non response are obtained for a fixed cost of the survey. 

The multi-objective formulation of the problem at phase-I may be given as 
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Minimize       𝑍1 ,𝑍2 ,… ,𝑍𝑝            simultaneously                                                                                     

Subject to       𝑐𝑕1 + 𝑤𝑕1𝑐𝑕11 𝑛𝑕

𝐿

𝑕=1

+  𝑐𝑕12𝑚𝑕2

𝐿

𝑕=1

+   𝑡𝑕1 𝑛𝑕

𝐿

𝑕=1

+  𝑡𝑕12 𝑚𝑕2  ≤ 𝐶 − 𝑐0𝑛
′

𝐿

𝑕=1

2 ≤ 𝑛𝑕 ≤ 𝑛𝑕
′

and                                   𝑛𝑕   integers ;𝑕 = 1,2,… , 𝐿                         

  

 
  
 

  
 

       (8) 

where 𝑍𝑗 ; 𝑗 = 1,2,… ,𝑝 are as defined in (4). 

After ignoring the terms which are independent of 𝑛𝑕  in (4) and rearranging the cost constraints for first phase, 

the MINLPP (8) becomes 

 

Minimize     𝑉𝑗 =     
𝑎𝑗𝑕
𝑛𝑕

𝐿

𝑕=1

                                                             

Subject to            𝑐𝑕1 + 𝑤𝑕1𝑐𝑕11 𝑛𝑕

𝐿

𝑕=1

+  𝑡𝑕1 𝑛𝑕

𝐿

𝑕=1

≤ 𝐶 0   

2 ≤ 𝑛𝑕 ≤ 𝑛𝑕
′

and                 𝑛𝑕   integers ; 𝑕 = 1,2,… ,𝐿           
                    

 
 
 
 

 
 
 

                                                                  (9) 

       where        𝑎𝑗𝑕 =
1

𝑛′
  𝑤𝑕𝑛𝑕

′ 𝑆𝑗𝑕
2 + 𝑤𝑕2  

 1 − 𝑘𝑕
∗ 

𝑘𝑕
∗  𝑛𝑕

′ 𝑆𝑗𝑕2
2

𝐿

𝑕=1

  

 and   𝑐𝑕1 + 𝑤𝑕1𝑐𝑕11 

𝐿

𝑕=1

𝑛𝑕 ≤ 𝐶 0    

where 𝐶 0 = 𝐶 − 𝑐0𝑛
′ − 𝑐𝑕12𝑚𝑕2

𝐿

𝑕=1

+  𝑡𝑕12 𝑚𝑕2

𝐿

𝑕=1

          

Ignoring the terms independent of 𝑚𝑕2 in the R.H.S of (4), at phase-II, the problem is to work out the 

optimum values of 𝑚𝑕2 which minimize 𝑉𝑗
′, 𝑗 = 1,2,… , 𝑝  for a given cost in (7).  

Substituting 𝑘𝑕
∗ = 𝑚𝑕2/𝑛𝑕2 and  𝑣𝑕 =

𝑛𝑕

𝑛𝑕
′  , and rearranging the cost constraints for the phase-II, problem (8) may 

be stated as 

 

Minimize  𝑉𝑗
′ =  

𝑏𝑗𝑕
𝑚𝑕2

 

𝐿

𝑕=1

                                                          

      Subject to          𝑐𝑕12𝑚𝑕2

𝐿

𝑕=1

+  𝑡𝑕12 𝑚𝑕2

𝐿

𝑕=1

≤ 𝐶 0
′                    

2 ≤ 𝑚𝑕2 ≤ 𝑛𝑕2

         and         𝑚𝑕2   integers ;𝑕 = 1,2,… ,𝐿 ;  𝑗 = 1, 2,… , 𝑝             
 
 
 
 
 

 
 
 

                                                                   10  

where 𝑏𝑗𝑕 =
1

𝑛′
 

𝑤𝑕2𝑛𝑕2𝑛𝑕
′ 𝑆𝑗𝑕2

2

𝑛𝑕

𝐿

𝑕=1

 

and  𝐶 0
′ = 𝐶 − 𝑐0𝑛

′ −  𝑐𝑕1 + 𝑤𝑕1𝑐𝑕11 𝑛𝑕 +  𝑡𝑕1 𝑛𝑕

𝐿

𝑕=1

.

𝐿

𝑕=1

 

 

IV. The Solution 
In the following two approaches to solve to solve the formulated problems in phase-I and phase-II are 

discussed. The first approach is through Fuzzy Programming Technique while the second approach is through 

Fuzzy Goal Programming Technique using piecewise linear approximation. 

 

4.1 Fuzzy Programming 

 Let 𝑉𝑗
∗ is the optimal value of 𝑉𝑗  obtained by solving the MINLPP (9) 

Further let  

                                                                𝑉 𝑗 = 𝑉 𝑗  𝑛1 ,𝑛2 ,… , 𝑛𝑕 ,… , 𝑛𝐿                                                                        (11) 

denote the value of the variances under the compromise allocation, where 𝑛𝑕 ;𝑕 = 1, 2,… ,𝐿 are to be worked 

out. 
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 Obviously 𝑉 𝑗 ≥ 𝑉𝑗
∗ and 𝑉 𝑗 −𝑉𝑗

∗ ≥ 0; 𝑗 = 1, 2,… ,𝑝 will give the increase in the variance due to not 

using the individual optimum allocation for 𝑗𝑡𝑕  characteristic.  

To obtain a fuzzy solution, we first compute the maximum value 𝑈𝑗  and the minimum value 𝐿𝑗 , for each 

𝑗 = 1, 2,… , 𝑝. 
Now, 

                                         𝐿𝑗 = min
𝑗

𝑉  𝑛𝑕 ,𝑗
∗                          𝑈𝑗 = max

𝑗
𝑉(𝑛𝑕 ,𝑗

∗ )                                                               (12) 

where 𝑛𝑕 ,𝑗
∗  denote the optimum allocation for the 𝑗𝑡𝑕  characteristic in four strata. 

The differences of the maximum and minimum values of 𝑉𝑗  are denoted by 𝑑𝑗 = 𝑈𝑗 − 𝐿𝑗 , 𝑗 = 1, 2,… , 𝑝. 

 The fuzzy programming formulation of the MINLPP in (9) is given by the following INLPP: 

 

                   Minimize               𝛿                                                                                     

     Subject to              
𝑎𝑗𝑕
𝑛𝑕

𝐿

𝑕=1

  − 𝛿𝑑𝑘 ≤ 𝑉𝑗         
∗                               

                                               𝑐𝑕1 + 𝑤𝑕1𝑐𝑕11 𝑛𝑕

𝐿

𝑕=1

+  𝑡𝑕1 𝑛𝑕

𝐿

𝑕=1

≤ 𝐶 0   

                                            2 ≤ 𝑛𝑕 ≤ 𝑛𝑕
′   𝑛𝑕 ≥ 0  , 𝛿 ≥ 0 ,                       

                and            𝑛𝑕  𝑎𝑟𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠;          𝑗 = 1,2,…𝑝;   𝑕 = 1,2,… ,𝐿   

 

 
 
 
 
 

 
 
 
 

                                           (13) 

 

where δ ≥ 0 is the decision variable representing the worst deviation level. 

The fuzzy programming (FPP) may be solved using the optimization software LINGO-13. 

Similarly, for Phase II the MINLPP (10)  FPP becomes 

            

Minimize              𝛿 ′                                                                                 

Subject to                
𝑏𝑗𝑕
𝑚𝑕2

 

𝐿

𝑕=1

  − 𝛿 ′𝑑𝑘 ≤ 𝑉𝑗
′∗                                           

           𝑐𝑕12𝑚𝑕2

𝐿

𝑕=1

+  𝑡𝑕12 𝑚𝑕2

𝐿

𝑕=1

≤ 𝐶 0
′

                  2 ≤ 𝑚𝑕2 ≤ 𝑛𝑕2    ,𝛿 ′ ≥ 0 ,                                
        and               𝑚𝑕2  𝑎𝑟𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠;          𝑗 = 1,2,…𝑝;   𝑕 = 1,2,… ,𝐿       

 

 
 
 
 
 

 
 
 
 

                                    (14) 

 

4.2 Fuzzy Goal Programming using piecewise linear approximation  
First, we formulate the fuzzy programming model of NLLP in (8) by transforming the objective 

function   𝑉𝑗  into fuzzy goals by means of assigning an imprecise aspiration level for each objective. Let 𝑉𝑗
∗ be 

the optimal solution of the objective function. Then the fuzzy goals appear in the form 

𝑉1 ≥ 𝑉1
∗

⋮
𝑉𝑗 ≥ 𝑉𝑗

∗
  

Using the individual best solution, we find the upper and lower tolerance limit  𝑈𝑗   and 𝐿𝑗  for each objective 

function already described in section (4.1). 

The fuzzy goals are characterized by their membership functions. The membership function of objective 

function for each characteristic is given below 

                       𝜇𝑗  𝑛  =  

1
𝑈𝑗 −𝑉𝑗  𝑛  

𝑈𝑗 − 𝐿𝑗
0

                 
            𝑖𝑓  𝑉𝑗  𝑛  ≤ 𝐿        ,                           

𝑖𝑓  𝐿𝑗 ≤ 𝑉𝑗  𝑛  ≤ 𝑈𝑗 ,   

𝑖𝑓  𝑉𝑗  𝑛  ≥ 𝑈𝑗 ,            

 𝑗 = 1,2,… ,𝑝                 (15) 

        
In the fuzzy goal programming (FGP) formulation,  the defined membership function in equation (15) 

for each characteristics are transformed into membership goals by introducing under and over deviational 

variables and assigning the highest membership value means unity (one)  as the aspiration level to each of them.  

Under the above circumstances, the membership goals are 

                                             
𝑈𝑗 −𝑉𝑗  𝑛  

𝑈𝑗 − 𝐿𝑗
+ 𝑑𝑗 = 1 ; 𝑗 = 1,2,… , 𝑝                                                                             (16) 

Where 𝑑𝑗 ≥ 0 represent the under and over deviational variables. 

We transform the non linear membership function 𝜇𝑗  𝑛   into equivalent linear membership function by using 

piecewise linear approximation: 
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The goal in (16) can be written as 

                                              
𝑈𝑗 −  𝑓𝑗𝑕 𝑛𝑕 

𝐿
𝑕=1

𝑈𝑗 − 𝐿𝑗
+ 𝑑𝑗 = 1 ; 𝑗 = 1,2,… ,𝑝   𝑕 = 1,2,… , 𝐿                                          (17)  

For linearizing the non linear function 𝑓𝑗𝑕 𝑛𝑕  in (17), the grid points for the variable 𝑛𝑕  (𝑕 = 1,2,…𝐿) 

are chosen as 𝑎𝑕𝑟  (𝑟 = 0,1,… , 𝑟𝑕 ) Further, we introduced a new variable  𝑦𝑕𝑟  (𝑟 = 0,1,… , 𝑟𝑕) , so that   𝑛𝑕 can 

be expressed as 

                                                           𝑛𝑕  =  𝑎𝑕𝑟  𝑦𝑕𝑟

𝑟𝑕

𝑟=0

                                                                                                     (18) 

Where   𝑦𝑕𝑟
𝑟𝑕
𝑟=0 = 1 (𝑦𝑕𝑟 ≥ 0) with grid points 𝑎𝑕0 ,𝑎𝑕1 ,… , 𝑎𝑕𝑟𝑕  . 

So, the piecewise linear form of nonlinear function 𝑓𝑗𝑕 𝑛𝑕  nominated as 𝐹𝑗𝑕  can be written as 

                                                       𝐹𝑗𝑕 =  𝑦𝑕𝑟

𝑟𝑕

𝑟=0

𝑓𝑗𝑕 𝑎𝑕𝑟                                                                                                (19) 

 Then, the linear FGP model by using expression of (18) and (19) in MINLPP (9) for Phase I can 

 

 Minimize 𝑍 =  𝑑𝑗
𝑝
𝑗=1                                                                                                        

so as to satisfy                                                                                                                  

     
1

𝑈𝑗−𝐿𝑗
 𝑈𝑗 −  𝐹𝑗𝑕

𝐿
𝑕=1  + 𝑑𝑗 = 1      

𝑤𝑕𝑒𝑟𝑒 𝐹𝑗𝑕 =  𝑦𝑕𝑟
𝑟𝑕
𝑟=0 𝑓𝑗𝑕 𝑎𝑕𝑟     

    Subject to       𝑐𝑕1 + 𝑤𝑕1𝑐𝑕11  𝑎𝑕𝑟  𝑦𝑕𝑟
𝑟𝑕
𝑟=0

𝐿
𝑕=1 +  𝑡𝑕1  𝑎𝑕𝑟  𝑦𝑕𝑟

𝑟𝑕
𝑟=0

𝐿
𝑕=1 ≤ 𝐶 0   

 𝛾𝑘𝑟
𝑟𝑘
𝑟=0 = 1 (𝛾𝑘𝑟 ≥ 0)

𝑕 = 1,2,…𝐿
𝑟 = 0,1,… , 𝑟𝑘
𝑗 = 1,2,… , 𝑝  

 
 
 
 
 

 
 
 
 
 

                                     (20) 

Simlarly, for Phase- II FGPP for MINLPP (10) can be written as 

 

 

 Minimize 𝑍 =  𝑑𝑗
′

𝑝

𝑗=1

                                                                               

so as to satisfy                                                                                         

     
1

𝑈𝑗 − 𝐿𝑗
 𝑈𝑗 − 𝐹𝑗𝑕

′

𝐿

𝑕=1

 + 𝑑𝑗
′ = 1

where                    𝐹𝑗𝑕
′ =  𝑦𝑕𝑟

𝑟𝑕

𝑟=0

𝑓𝑗𝑕 𝑎𝑕𝑟   𝑗𝑕
′                                   

    Subject to    𝑐𝑕12  𝑎𝑕𝑟  𝑦𝑕𝑟

𝑟𝑕

𝑟=0

𝐿

𝑕=1

+  𝑡𝑕12  𝑎𝑕𝑟  𝑦𝑕𝑟

𝑟𝑕

𝑟=0

𝐿

𝑕=1

≤ 𝐶 0
′    

 𝛾𝑘𝑟

𝑟𝑘

𝑟=0

= 1 (𝛾𝑘𝑟 ≥ 0)

𝑕 = 1,2,…𝐿
𝑟 = 0,1,… , 𝑟𝑘
𝑗 = 1,2,… , 𝑝  

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

                                                             (21) 

 

In above expression 𝑚𝑕2 =  𝑎𝑕𝑟  𝑦𝑕𝑟
𝑟𝑕
𝑟=0   

 

V. Numerical Example 
An application of the above technique is given in the following using a numerical data of Haseen et al 

(2011). The travelling costs 𝑡𝑕1 and  𝑡𝑕12 are assumed by authors.  

A population of size 𝑁 = 3850 is divided into four strata. Two characteristics are defined on each unit 

of the population. It is assumed that the estimation of population means of the two characteristics is of interest. 
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Table 1 shows the required information. Each stratum is further subdivided into respondents and non-

respondents groups as given in Table2.  It is assumed that 𝑣𝑕  and 𝑘𝑕
∗  are known and the preliminary sample size 

n'=1000. 
 

Table 1 Data for four strata and two characteristics 
𝑕 𝑤𝑕  𝑆1𝑕

2  𝑆2𝑕
2  𝑣𝑕  𝑘𝑕

∗  𝑐𝑕1 𝑐𝑕11  𝑐𝑕12  𝑡𝑕1 𝑡𝑕12 

1 0.32 784 1444 0.4 0.5 1 2 3 0.5 2 

2 0.21 576 676 0.5 0.6 1 3 4 0.5 2.5 

3 0.27 1024 1936 0.6 0.7 1 4 5 0.5 3 

4 0.20 2916 6084 0.65 0.75 1 5 6 0.5 4.5 

   

Table 2 Subdivided data as respondents and non-respondents groups for four strata with two characteristics 

𝑕 Group 𝑆1𝑕
2  𝑆2𝑕

2  
𝑤𝑕𝑘  

𝑘 = 1,2 

1 
Respondents 361.06 767.82 𝑤11  = 0.70 

Non-respondents 310.55 454.76 𝑤12  = 0.30 

2 
Respondents 373.79 449.92 𝑤21 = 0.80  

Non-respondents 326.29 353.81 𝑤22 = 0.20 

3 
Respondents 930.15 1272.88 𝑤31 = 0.75 

Non-respondents 560.28 1165.97 𝑤32 = 0.25 

4 
Respondents 2355.98 2690.53 𝑤41 = 0.72 

Non-respondents 1013.08 2403.55 𝑤42 = 0.28 

 

In the last column of the Table 2, 𝑘 = 1 is for respondents group and 𝑘 = 2 is for non-respondents 

group. Further the total amount available for the survey be 𝐶 = 3000 units. Out of these 3000 units 750 units 

are earmarked for the preliminary sample of size 𝑛′, 1,900 units are earmarked for phase-I and 350 units are 

earmarked for phase-II.  

Using estimated values of strata weights and the size of selected preliminary sample, the values of 𝑛𝑕
′ =

𝑤𝑕𝑛
′;𝑕 = 1,2,… , 𝐿 are obtained as 

𝑛1
′ = 320,   𝑛2

′ = 210,   𝑛3
′ = 270,   𝑛4

′ = 200   𝑤𝑖𝑡𝑕    𝑛𝑕
′

4

𝑕=1

= 1,000. 

5.1 Solution using Fuzzy programming 

 We obtain the individual best solution for each of the objective in Phase I. After putting the values from Table 

1 and Table 2, the MINLPP (9) becomes 

For 𝑗 = 1 

Minimize   𝑉1 =
110.09440

𝑛1

+
45.95787

𝑛2

+
162.89370

𝑛3

+
286.83744

𝑛4

                                                           

Subject to        2.4𝑛1 + 3.4𝑛2 + 4𝑛3 + 4.6𝑛4 + 0.5 𝑛1 + 0.5 𝑛2 + 0.5 𝑛3  + 0.5 𝑛4  ≤ 1900            

2 ≤ 𝑛1 ≤ 320                  

2 ≤ 𝑛2 ≤ 210                 

2 ≤ 𝑛3 ≤ 270                

2 ≤ 𝑛4 ≤ 200                

and                                           𝑛𝑕  𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 ;   𝑕 = 1, 2,… , 4.                                                                              

  

The optimum solution of the above problem using software LINGO-13 is 

𝑛11
∗ = 140,  𝑛21

∗ = 75,  𝑛31
∗ = 133, 𝑛41

∗ = 164       𝑤𝑖𝑡𝑕   𝑉1
∗ = 4.372934 

Similarly, for 𝑗 = 2 

Minimize   𝑉1 =
191.52260

𝑛1

+
52.10163

𝑛2

+
324.7747

𝑛3

+
647.15640

𝑛4

                                                     

Subject to        2.4𝑛1 + 3.4𝑛2 + 4𝑛3 + 4.6𝑛4 + 0.5 𝑛1 + 0.5 𝑛2 + 0.5 𝑛3 + 0.5 𝑛4 ≤ 1900    

2 ≤ 𝑛1 ≤ 320                  
2 ≤ 𝑛2 ≤ 210                 
2 ≤ 𝑛3 ≤ 270                
2 ≤ 𝑛4 ≤ 200                

and                                      𝑛𝑕  𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 ;   𝑕 = 1, 2,… , 4.                                                                             

  

The optimum solution using software LINGO-13 is 

𝑛11
∗ = 136,  𝑛21

∗ = 58,  𝑛31
∗ = 135, 𝑛41

∗ = 177       𝑤𝑖𝑡𝑕   𝑉2
∗ = 8.368548 

Further the value of 𝑉1  at the point 𝑛𝑕2
∗  is 4.429065 and the value of  𝑉2 at the point 𝑛𝑕1

∗  is 8.450698. Thus,  

           𝐿1 =  4.372934,                        𝑈1 = 4.429065  
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𝐿2 =  8.368548,                        𝑈2 =  8.450698                     
𝑑1 =  0.056131,                        𝑑2 =  0.08215                      

 After computing the optimum allocation and optimal variances for the two characteristics the compromising 

optimal solution for the above problem can be obtained by solving the given FPP (13)   
Minimize                   𝛿                                                                                                                                     

Subject to 
110.09440

𝑛1

+
45.95787

𝑛2

+
162.89370

𝑛3

+
286.83744

𝑛4

− 𝛿 0.056131 ≤ 4.372934 

                      
191.52260

𝑛1

+
52.10163

𝑛2

+
324.7747

𝑛3

+
647.15640

𝑛4

−  𝛿 0.08215  ≤  8.368548

2.4𝑛1 + 3.4𝑛2 + 4𝑛3 + 4.6𝑛4 + 0.5 𝑛1 + 0.5 𝑛2 + 0.5 𝑛3 + 0.5 𝑛4 ≤ 1900

2 ≤ 𝑛1 ≤ 320
2 ≤ 𝑛2 ≤ 210
2 ≤ 𝑛3 ≤ 270
2 ≤ 𝑛4 ≤ 200

and                                                   𝑛𝑕  𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 ;   𝑕 = 1, 2,… , 4.                                                             

 

  Now the fuzzy compromise solution using LINGO-13 is  
𝑛1
∗ = 136,  𝑛2

∗ = 67,  𝑛3
∗ = 133,𝑛4

∗ = 172       𝑤𝑖𝑡𝑕   𝛿 = 0.2662736 

𝑉1 = 4.387880,    𝑉2 = 8.390343   
Similarly for Phase II the MINLPP (10)  

For 𝑗 = 1 

Minimize   𝑉1
′ =

8.94384

𝑚12

+
2.740836

𝑚22

+
9.454725

𝑚32

+
15.88509

𝑚42

                                                              

Subject to        3𝑚12 + 4𝑚22 + 5𝑚32 + 6𝑚42 + 2 𝑚12 + 2.5 𝑚22 + 3 𝑚32  + 4.5 𝑚42  ≤ 350

2 ≤ 𝑚12 ≤ 41                  
2 ≤ 𝑚22 ≤ 12                 
2 ≤ 𝑚32 ≤ 34                
2 ≤ 𝑚42 ≤ 50                

and                                      𝑚𝑕2  𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 ;   𝑕 = 1, 2,… , 4.                                                                             

 

The optimum solution of the above problem using LINGO-13 is 

𝑚1,12
∗ = 20,𝑚1,22

∗ = 9,𝑚1,32
∗ = 17,𝑚1,42

∗ = 20       𝑤𝑖𝑡𝑕   𝑉1
′∗ = 2.102144 

 

Similarly, for 𝑗 = 2 

Minimize   𝑉2
′ =

191.52260

𝑚12

+
52.10163

𝑚22

+
324.7747

𝑚32

+
647.15640

𝑚42

                                                            

Subject to        3𝑚12 + 4𝑚22 + 5𝑚32 + 6𝑚42 + 2 𝑚12 + 2.5 𝑚22 + 3 𝑚32  + 4.5 𝑚42  ≤ 350    

2 ≤ 𝑚12 ≤ 41                  
2 ≤ 𝑚22 ≤ 12                 
2 ≤ 𝑚32 ≤ 34                
2 ≤ 𝑚42 ≤ 50                

and                                      𝑚𝑕2  𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 ;   𝑕 = 1, 2,… , 4.                                                                             

 

The optimum solution by using software LINGO-13 is 

𝑚2,12
∗ = 17,𝑚2,22

∗ = 7,𝑚2,32
∗ = 18,𝑚2  42

∗ = 22       𝑤𝑖𝑡𝑕   𝑉2
′∗ = 4.001161 

Further the value of 𝑉1
′at the point 𝑚2,𝑕2

∗  is 2.164968 and the value of  𝑉2
′  at the point 𝑚2,𝑕2

∗  is 4.026857. Thus,  

                   𝐿1 =  2.102144,                        𝑈1 = 2.164968  
𝐿2 =  4.001161,                        𝑈2 =  4.026857                     
 𝑑1 =  0.062824,                        𝑑2 =  0.025696                      

 After computing the optimum allocation and optimal variances for the two characteristics the compromising 

optimal solution for the above problem can be obtained by solving the given FPP (14)   
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Minimize                         𝛿 ′                                                                  

Subject to      
8.94384

𝑚12

+
2.740836

𝑚22

+
9.454725

𝑚32

+
15.88509

𝑚42

                         

𝛿 ′ 0.0628241 ≤  2.102144
191.52260

𝑚12

+
52.10163

𝑚22

+
324.7747

𝑚32

+
647.15640

𝑚42

𝛿 ′ 0.025696  ≤  4.001161
 3𝑚12 + 4𝑚22 + 5𝑚32 + 6𝑚42 +

2 𝑚12 + 2.5 𝑚22 + 3 𝑚32  + 4.5 𝑚42  ≤ 350

2 ≤ 𝑚12 ≤ 41
2 ≤ 𝑚22 ≤ 12
2 ≤ 𝑚32 ≤ 34
2 ≤ 𝑚42 ≤ 50

and                                  𝑚𝑕2  𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 ;   𝑕 = 1, 2,… , 4                                      

 

 

Now the fuzzy compromise solution by using software LINGO 13 is 

𝑚12
∗ = 18,𝑚22

∗ = 9,𝑚32
∗ = 17,𝑚 42

∗ = 21       𝑤𝑖𝑡𝑕   𝛿 ′ = 0.3395363 

𝑉1
′ = 2.114010,    𝑉2

′ = 4.009886 
5.2 Fuzzy goal programming using piecewise linear approximation 

For Phase-I, we calculate the membership function for each characteristic 

𝜇1 𝑛  =
1

0.056131
[4.429065 −𝑉1 𝑛  ] 

and          𝜇2 𝑛  =
1

0.08215
 8.450698 − 𝑉2 𝑛                       

 

Each of the objective function can be expressed as the sum of the separable functions which are shown in the 

table 3. 

 

Table 3 Separable functions associated with the each objective 

 

 

 
 

 

 

 

After introducing the deviational variables the nonlinear membership goals are 
1

0.056131
 4.429065 − 𝑓11 𝑛1 − 𝑓12 𝑛2 − 𝑓13 𝑛3 − 𝑓14 𝑛4  + 𝑑1 = 1                               

and  
1

0.08215
 8.450698 − 𝑓21 𝑛1 − 𝑓22 𝑛2 − 𝑓23 𝑛3 − 𝑓24 𝑛4  + 𝑑2 = 1                          

 

These non linear membership goals are approximated with linear form. Let the grid points for each variables  

𝑛1 ,𝑛2 ,𝑛3 ,𝑛4 are 

𝑎10 = 2,   𝑎11 = 81.5,  𝑎12 = 161,  𝑎13 = 240.5,𝑎14 = 320 

𝑎20 = 2,𝑎21 = 54, 𝑎22 = 106,  𝑎23 = 158,  𝑎24 = 210 

𝑎30 = 2,  𝑎31 = 69,  𝑎32 = 136,  𝑎33 = 203,  𝑎34 = 270 

𝑎40 = 2, 𝑎41 = 51.5,  𝑎42 = 101,  𝑎43 = 150.5,  𝑎44 = 200 
 

The piecewise linear approximation to the function given in table 3 are 

   𝐹11 =  55.04720 𝑦10 +  1.350852 𝑦11 + (0.6838161) 𝑦12 + (0.4577730) 𝑦13 + (0.3440450) 𝑦14  

  𝐹12 =  22.97893 𝑦20 +  0.8510717 𝑦21 +  0.4335648  𝑦22 +  0.2908726 𝑦23 +  0.2188470 𝑦24    
𝐹13 =  81.44685 𝑦30 +  2.360778 𝑦31 +  1.197748  𝑦32 +  0.8004604 𝑦33 + (0.6033100) 𝑦34      

  𝐹14 =  143.4187 𝑦40 +  5.569659 𝑦41 + (2.839975) 𝑦42 +  1.905897 𝑦43 +  1.434187 𝑦44   

   𝐹21 =  95.76130 𝑦10 +  2.349971 𝑦11 + (1.189581) 𝑦12 + (0.7963518) 𝑦13 + (0.5985081) 𝑦14 

 𝐹22 =  26.050821 𝑦20 +  0.9648450 𝑦21 +  0.4915248  𝑦22 +  0.3297572 𝑦23 + (0.2481030) 𝑦24 

        𝐹23 =  162.3873 𝑦30 +  4.706880 𝑦31 +  2.388049  𝑦32 +  1.595944 𝑦33 + (1.202869) 𝑦34 

        𝐹24 =  323.5782 𝑦40 +  12.56614 𝑦41 +  6.407489  𝑦42 +  4.300043 𝑦43 +  3.235782 𝑦44   

       𝑔1 = 2𝑦10 + 81.5𝑦11 + 161𝑦12 + 240.5 𝑦13 + 320𝑦14 

𝑓11 𝑛1  110.09440 𝑛1  

𝑓12 𝑛2  45.95787 𝑛2  

𝑓13 𝑛3  162.89370 𝑛3  

𝑓14 𝑛4  286.83744 𝑛4  

𝑓21 𝑛1  191.52260 𝑛1  

𝑓22 𝑛2  52.10163 𝑛2  

𝑓23 𝑛3  324.7747 𝑛3  

𝑓24 𝑛4  647.15640 𝑛4  



Two-Phase Multivariate Stratified Sampling with Travel Cost: A Fuzzy Programming Approach 

www.iosrjournals.org                                                    47 | Page 

       𝑔2 = 2𝑦20 + 54𝑦21 + 106𝑦22 + 158 𝑦23 + 210𝑦24 

      𝑔3 = 2𝑦30 + 69𝑦31 + 136𝑦32 + 203 𝑦33 + 270𝑦34 

      𝑔4 = 2𝑦40 + 51.5𝑦41 + 101𝑦42 + 150.5 𝑦43 + 200𝑦44 

 

Using these values the proposed linear FGP at Phase-I becomes 

 
Minimize     𝑉 = 𝑑1 + 𝑑2                                                                                 

Subject to     
1

0.056131
 4.429065 − 𝐹11 − 𝐹12 − 𝐹13 − 𝐹14 + 𝑑1 = 1

                         
1

0.08215
 8.450698 − 𝐹21 − 𝐹22 − 𝐹23 − 𝐹24 + 𝑑2 = 1

                2.4𝑔1 + 3.4𝑔2 + 4𝑔3 + 4.6𝑔4 + 0.5 𝑔1  + 0.5 𝑔2  + 0.5 𝑔3  + 0.5 𝑔4  ≤ 1900

𝛾10 + 𝛾11 + 𝛾12 + 𝛾13 + 𝛾14 = 1
𝛾20 + 𝛾21 + 𝛾22 + 𝛾23 + 𝛾24 = 1
𝛾30 + 𝛾31 + 𝛾32 + 𝛾33 + 𝛾34 = 1
𝛾40 + 𝛾41 + 𝛾42 + 𝛾43 + 𝛾44 = 1

𝛾𝑘𝑟 ≥ 0;𝑘 = 1,2,3,4 𝑎𝑛𝑑 𝑟 = 0,1,2,3,4,

 

 
Using the software LINGO-13 the problem is solved and the obtained solution is 

𝑛1
∗ = 161,  𝑛2

∗ = 54,  𝑛3
∗ = 136,𝑛4

∗ = 163       𝑤𝑖𝑡𝑕 𝑉1  = 4.492375 𝑎𝑛𝑑  𝑉2 = 8.512760 

𝐶 = 1886.033 
Similarly, Phase-II, we calculate the membership function for each characteristic 

𝜇1 𝑚  =
1

0.062824
[2.164968 −𝑉1

′  𝑚  ] 

and          𝜇2 𝑚  =
1

0.025696
 4.026857 −𝑉2

′  𝑚                       

 

Each of the objective function can be expressed as the sum of the separable functions which are shown in the 

table 4. 

Table 4 Separable functions associated with the each objective 

 

 

 

 

 

 

 

 

After introducing the deviational variables the nonlinear membership goals are 
1

0.062824
 2.164968 − 𝑓11

′  𝑚12 − 𝑓12
′  𝑚22 − 𝑓13

′  𝑚32 − 𝑓14
′  𝑚42  + 𝑑1

′ = 1             

and  
1

0.025696
 4.026857 − 𝑓21

′  𝑚12 − 𝑓22
′  𝑚22 − 𝑓23

′  𝑚32 − 𝑓24
′  𝑚42  + 𝑑2

′ = 1          

 These non linear membership goals are approximated with linear form. Let the grid points for each subsample 

𝑚12 ,  𝑚22 ,  𝑚32 ,  𝑚42  are 

𝑎10 = 2,   𝑎11 = 11.75,  𝑎12 = 21.5,  𝑎13 = 31.25,𝑎14 = 41 

𝑎20 = 2, 𝑎21 = 4.5,𝑎22 = 7,  𝑎23 = 9.5,  𝑎24 = 12 

𝑎30 = 2,  𝑎31 = 10,  𝑎32 = 18,  𝑎33 = 26,  𝑎34 = 34 

𝑎40 = 2,𝑎41 = 14,  𝑎42 = 26,  𝑎43 = 38,  𝑎44 = 50 
The piecewise linear approximation to the function given in table 4 are 

 𝐹11
′ =  4.471920 𝑦10 +  0.7611779 𝑦11 + (0.4159926) 𝑦12 + (0.2862029) 𝑦13 + (0.2181424) 𝑦14  

𝐹12
′ =  1.370418 𝑦20 +  0.6090747 𝑦21 +  0.3915480  𝑦22 +  0.2885091 𝑦23 + (0.2284030) 𝑦24 

𝐹13
′ =  4.727362 𝑦30 +  0.9454725 𝑦31 +  0.5252625  𝑦32 +  0.3636433 𝑦33 + (0.2626312) 𝑦34    

  𝐹14
′ =  7.942545 𝑦40 +  1.134649 𝑦41 + (0.6109650) 𝑦42 + (0.4180287) 𝑦43 + (0.3177018) 𝑦44     

 𝐹21
′ =  6.548545 𝑦10 +  1.114646 𝑦11 + (0.6091670) 𝑦12 + (0.4191069) 𝑦13 + (0.3194412) 𝑦14  

𝐹22
′ =  1.486002 𝑦20 +  0.6604453 𝑦21 +  0.4245720  𝑦22 +  0.3128425 𝑦23 + (0.2476670) 𝑦24    
𝐹23
′ =  9.837870 𝑦30 +  1.967574 𝑦31 +  1.093097  𝑦32 +  0.7567592 𝑦33 +  0.5465483 𝑦34        

𝐹24
′ =  18.84383 𝑦40 +  2.691976 𝑦41 +  1.449525  𝑦42 +  0.9917805 𝑦43 + (0.7537532) 𝑦44        

𝑓11
′  𝑚12  8.94384 𝑚12  

𝑓12
′  𝑚22  2.740836 𝑚22  

𝑓13
′  𝑚32  9.454725 𝑚32  

𝑓14
′  𝑚42  15.88509 𝑚42  

𝑓21
′  𝑚12  13.09709 𝑚12  

𝑓22
′  𝑚22  2.972004 𝑚22  

𝑓23
′  𝑚32  19.67574 𝑚32  

𝑓24
′  𝑚42  37.68766 𝑚42  
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𝑔1
′ = 2𝑦10 + 11.75𝑦11 + 21.5𝑦12 + 31.25 𝑦13 + 41𝑦14 

𝑔2
′ = 2𝑦20 + 4.5𝑦21 + 7𝑦22 + 9.5 𝑦23 + 12𝑦24 

𝑔3
′ = 2𝑦30 + 10𝑦31 + 18𝑦32 + 26 𝑦33 + 34𝑦34 

𝑔4
′ = 2𝑦40 + 14𝑦41 + 26𝑦42 + 38 𝑦43 + 50𝑦44 

 

Using these values the proposed linear FGP at Phase-II becomes      
 

Minimize     𝑉′ = 𝑑1
′ + 𝑑2

′                                                                                 

Subject to     
1

0.062824
 2.164968 − 𝐹11

′ − 𝐹12
′ − 𝐹13

′ − 𝐹14
′  + 𝑑1

′ = 1

                         
1

0.025696
 4.026857 − 𝐹21 − 𝐹22 − 𝐹23 − 𝐹24 + 𝑑2

′ = 1

                3𝑔1
′ + 4𝑔2

′ + 5𝑔3
′ + 6𝑔4 + 2 𝑔1

′  + 2.5 𝑔2
′  + 3 𝑔3

′  + 4.5 𝑔4
′  ≤ 350

𝛾10 + 𝛾11 + 𝛾12 + 𝛾13 + 𝛾14 = 1
𝛾20 + 𝛾21 + 𝛾22 + 𝛾23 + 𝛾24 = 1
𝛾30 + 𝛾31 + 𝛾32 + 𝛾33 + 𝛾34 = 1
𝛾40 + 𝛾41 + 𝛾42 + 𝛾43 + 𝛾44 = 1

𝛾𝑘𝑟 ≥ 0;𝑘 = 1,2,3,4 𝑎𝑛𝑑 𝑟 = 0,1,2,3,4,

 

 

Using the software LINGO-13 the problem is solved and the obtained solution is 

𝑚12
∗ = 12,  𝑚22

∗ = 7,  𝑚32
∗ = 18,𝑚42

∗ = 24       𝑤𝑖𝑡𝑕 𝑉1  = 2.324009 𝑎𝑛𝑑  𝑉2 = 4.179412 

and 𝐶 = 346.3159 

 

Table 5  Solution at Phase-I 
 

Techniques 

Allocations Variances Cost 

incurred 𝑛1 𝑛2 𝑛3 𝑛4 𝑉1 𝑉2 

FP 136 67 133 172 4.387880 8.390343 1900 

FGP 161 54 136 163 4.492375 8.512760 1886 

 

Table 6  Solution at Phase-II 
Techniques Allocations Variances Cost 

incurred 𝑚12 𝑚22 𝑚32 𝑚42 𝑉1
′  𝑉2

′  

FP 18 9 17 21 2.114010 4.009886 350 

FGP 12 7 18 24 2.324009 4.179412 346 

 

VI. Conclusion 
Tables 5 and 6 show that none of the two methods is uniformly better than the other. At Phase-I the 

Fuzzy Goal Programming (FGP) technique gives a slightly better result as compared to the Fuzzy Programming 

(FP) technique in terms of the Trace (See Sukhatme et al. (1984)). The trace while FP technique is used is 

4.387880+8.390343=12.778223 and that for FGP technique is 4.492375+8.512760=12.619975. Which gives a 

relative increase in Trace as  
12.778223−12.619975

12.619975
× 100% ≅ 1.25%   when FP technique is used. 

At Phase-II the relative increase in the trace is 
6.50342−6.123896

6.123896
× 100% ≅ 6.20% when FGP technique is use. 

Thus we conclude that the use of FP technique is more advisable because it gives a comparative large gain at 

Phase-II at the cost of a small loss in precision at Phase-I. 
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