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Abstract: In this paper we consider the three forms of self-duality that can be exhibited by a planar graph G, 

map self-duality, graph self-duality, matroid self-duality. We show how these concepts are related with each 

other and with the connectivity of G. Also we go to characterize partial duality of graphs in terms of bijection 

between edge sets of corresponding graphs. This result generalizes a well known result of J.Edmonds in which 
natural duality of graphs is characterized in terms of edge correspondence, and gives combinatorial 

characterization of partial duality.  

 

I.        Introduction 
Self-dual graph was developed by Brigitte Servatius and Herman Servatius. The three forms of self-

duality that can be exhibited by a planar graph G, map self-duality, graph self-duality, matroid self-duality. They 

shown how these concepts are related with each other and with the connectivity of G. We use the geometry of 

self-dual polyhedra together with the structure of the cycle matroid to construct all self-dual graphs.  

S. Chmutov recently introduced the concept of the partial dual GA of a ribbon graph G ([8]). Partial 

duality generalizes the natural dual (or Euler-Poincare dual or geometric dual) of a ribbon graph by forming 

the dual of G only with respect to a subset of its edges A (a formal definition of partial duality is given in 

Section 3.2). In contrast with natural duality, where the topologies of G and G* are similar, the topology of a 
partial dual GA can be very different from the topology of G. For example, although a ribbon graph and its 

natural dual always have the same genus, a ribbon graph and a partial dual need not. 

As one would expect with a generalization of duality, partial duality has desirable properties. For 

example, (up to normalization and specialization) the weighted (Bollobas-Riordan) ribbon graph polynomials of 

G and GA are equal. This generalizes the well known relation between the Tutte polynomial of a plane graph and 

its natural dual: T (G; x; y) = T (G*; y; x). 

 

II.      Self-Dual Graphs 
2.1 Forms of self-duality 

Definition 2.1 

A planar graph is isomorphic to its own dual is called a self-dual graph. 

Example 

4K  is a Self-dual graph. 

 

 

 

Fig.: 2.1 

 

 

 
Fig.:2.1 

Definition 2.2 

Given a planar graph G = (V,E), any regular embedding of the topological realization of G into a 

sphere partitions the sphere into regions called the faces of the embedding, and we write the embedded graph, 

called a map, as M = (V,E,F). G may have loops and parallel edges. 

 

Definition 2.3 

Given a map M, form the dual map, M* by placing a vertex f* in the centre of each face f, and for each 

edge e of M bounding two faces 
1f  and

2f , draw a dual edge e* connecting the vertices 
1f * and 

2f * and 

crossing e once transversely. Each vertex V of M will then correspond to a face V* of M* and write M* = (F*, 

E*, V*). If the graph G has distinguishable embeddings, then G may have more than one dual graph,               
see Fig.: 2.2. In this example a portion of the map (V, E, F) is flipped over on a separating set of two vertices to 

form    (V, E, F').                                                        

V1 

V2 V3 

V

4 
V4 



Self-Dual and Characterization of Partial Dual Graphs 

www.iosrjournals.org                                                    15 | Page 

 
             (V, E, F)             *           (F*, E*, V*)                           (V, E, F')     *           (F*, E*, V*) 

Fig.:2.2 

Such a move is called Whitney flip, and the duals of (V, E, F) and (V, E, F') are said to differ by a 
Whitney twist. If the graph (V, E) is 3-connected, then there is a unique embedding in the plane and so the dual 

is determined by the graph alone. 

Given a map X = (V, E, F) and its dual X* = (F*, E*, V*), there are three notions of self-duality. The 

strongest, map self-duality, requires that X and X* are isomorphic as maps, that is, there is an isomorphism                       

 : (V, E, F) (F*, E*, V*) preserving incidences. A weaker notion requires only a graph isomorphism           

 : (V, E)  (F*, E*), in which case that the map (V, E, F) is graph self-dual, and we say that G = (V, E) is a 

self-dual graph. 

 

Definition 2.4 

A geometric duality is a bijection g: E (G)E(G*) such that e   E is the edge dual to g(e)E(G*). If 

M is     2-cell, then M is connected so if M is a 2-cell embedding, then (M*)* M (we use * to indicate the 

geometric dual operation). 

 

Definition 2.5 

An algebraic duality is a bijection g: E (G) E (Ĝ ) such that P is a circuit of G if and only if g(p) is 

a minimal edge-cut of Ĝ . Given a graph G = (V, E), an algebraic dual of G is a graph Ĝ  for which there exists 

an algebraic duality g: E (G) E (Ĝ ). 

 

 

 

 

  

 

 

 

(a)   (b)                                                   (c)                                     (d) 

Fig.:2.3. A graph and several of its embeddings. 
 

The geometric duals are shown in dotted lines. Embedding (b) is map self-dual, (c) is graphically self-

dual and (d) is algebraically self-dual. Now define several forms of self-duality. Let G = (V, E) be a graph and 

let M = (V, E, F) be a fixed map of G, with geometric dual M* = (F*, E*, V*). 

 

Definition 2.6 
1. M is map self-dual if M M*.  

2. M is graphically self-dual if (V, E) (F*, E*).  

3. G is algebraically self-dual if G G*, where Ĝ  is some algebraic dual of G. 

 

Theorem 2.1 
For w 1, there exists a self-dual embedding of some graph G of order n on Sn (w-1)+1 if and only if n 4w+1. 

Note that a self-dual graph need not be self-dual on the surface of its genus. A single loop is planar 

however it has a (non 2-cell) self-dual embedding on the torus. 

Also note that there are infinitely many self-dual graphs. One such infinite family for the plane is the 

wheels. A wheel Wn consists of cycle of length n and a single vertex adjacent to each vertex on the cycle by 

means of a single edge called a Spoke. The complete graph on four vertices is also W3.    See Fig.:2.4 for
 
W6. 
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Fig.:2.4.The 6-Wheel and its dual 

Matroids 

Matroids may be considered a natural generalization of graphs. Thus when discussing a family of 

graphs, we should also consider the matroidal implications. 

 

Definition 2.7  

Let S be a finite set, the ground set, and let I be a set of subsets of S, the independent sets. Then M =

( , )S I  is a matroid if: 

1.  I ; 

2. If J   J I , then J I ; and  

3. For all AS, all maximal independent subsets of A have the same cardinality. 

An isomorphism between two matroids 
1M  = 1 1( , )S I  and 

2M =
2 2( , )S I  is a bijection  :

1 2S S  

such that I 1I  if and only if  (I) 2I . If such a  exists, then 
1M  and 

2M are isomorphic denoted 
1 2M M  

Given a graph G = (V, E), the cycle matroid M (G) of G is the matroid with ground set E, and FE is 

independent if and only if F is a forest. A matroid M  is graphic if there exists a graph G such that M  = M (G). 

For a matroid M = (S,I) the dual matroid M * = (S,I*) has ground set S and I S in I* if there is a 

maximal independent set B in M  such that IS\B.   A matroid M  is co-graphic if *M  is graphic. It is easily 

shown that if G is a connected planar graph, then M * (G) = M (G*). It is well known that G is algebraically 

self-dual if and only if cycle matroids of G and G* are isomorphic.  

 

2.2 A comparison of self-duality 
It is clear that for a map (V, E, F) we have, 

Map self-duality   Graph self-duality   Matroid self-duality. 

However, In general, these implications cannot be reversed, as shown by Fig.: 2.3. But, we are concerned to 

what extent these implications can be reversed.  

 

2.2.1 Self - Dual Maps and Self – Dual Graphs 
In the previous examples the graphs were of low connectivity, a planar   3-connected simple graph has 

a unique embedding on the sphere, in the sense that if p and q are embeddings, then there is a homeomorphism h 

of the sphere so that p = hq. Any isomorphism between the cycle matroids of a 3-connected graph is carried by a 

graph isomorphism. Thus, for a 3-connected graph  

Map self-duality   Graph self-duality   Matroid self-duality, So self-dual 3-connected graphs, as 

well as self-dual 3-connected graphic matroids, reduce to the case of self-dual maps. Since, the examples in 

Fig.:2.3 are only 1-connected, we must consider the 2-connected case. In Fig.2.5 is an example of a graphically 

self-dual map whose graph is 2-connected which is not map self-dual.  One might hope that, as was the case in 

Fig.:2.3, that such examples can be corrected by re - embedding or rearranging, however we have the following 

strong result.  

 

Theorem 2.2.1 

There exists a 2-connected map (V, E, F) which is graphically self-dual, so that (V, E)  (F*, V*), but 

for which every map ( , ,V E F   ) such that  M (E)   M ( E ) is not map self-dual. 

 

Proof 

Consider the map in Fig.:2.5 which is drawn on an unfolded cube. The graph is obtained by gluing two 

3-connected self-dual maps together along an edge (a, b) and erasing the common edge. One map has only two 

reflections as self-dualities, both fixing the glued edge the other has only two rotations of order four as dualities, 
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again fixing the glued edge. The graph self-duality is therefore a combination of both, an order 4 rotation 

followed by a Whitney twist of the reflective hemisphere. It is easy to see that all the embeddings of this graph, 

as well as the graph obtained after the Whitney flip have the same property. 

 

 
Fig:.2.5 

Theorem 2.2.2  

There is a graphically self-dual map (V, E, F) with (V, E) 1-connected and having only 3-connected 

blocks, but for which every map ( , ,V E F   ) such that M ( E ) M ( E ) is not map self- dual. 

Proof 

Consider the 3-connected self-dual maps in Fig.:2.2. 
1X  has only    self-dualities of order 4, two 

rotations and two flip rotations, while 
2X  has only a left-right reflection and a 180  rotation as a self-duality. 

Form a new map X by gluing two copies of 
2X  to 

1X  in the quadrilateral marked with q’s, with the gluing at the 

vertices marked v and v*. X is graphically self-dual, as can easily be checked, but no gluing of two copies of 

2X  can give map self-duality since every quadrilateral in 
1X  has order 4 under any self-duality. 

 

Fig.:2.6 

In particular, self-dual graphs of connectivity less than 3 cannot in general be re-embedded as self-dual maps. 

 

2.2.2 Self-dual graphs and matroids 

If G is 1-connected, then its cycle matroid has a unique decomposition as the direct sum of connected 

graphic matroids, M (G) = 
1 2 kM M M  , and if G* is a planar dual of G, then M(G*) =M(G)* = 

1 2* * *kM M M  . If G is a graph self-dual, then there is a bijection  : M(G) M(G*) sending 

cycles to cycles, and so there is a partition   of {1,2,…….k} such that  : iM  
( )iM

, and we that M(G) 

is the direct sum of self-dual connected matroids, together with some pairs of terms consisting of a connected 

matroid and its dual. 

Next theorem that not every self-dual matroid arises from a self-dual graph. 

Theorem 2.2.3 

There exists a self-dual graphic matroid M such that for any graph  

G = (V, E) with M(G)=M, and any embedding (V, E, F) of G, (V, E)  (F*, E*). 

Proof 

Consider 
1M  and

2M , the cycle matroids of two distinct 3-connected self-dual maps 
1X  and 

2X  

whose only self-dualities are the antipodal map.  
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The matroid 
1 2M M  is self–dual, but its only map realizations are as the 1-vertex union of 

1X  and

2X , which cannot be self-dual since the cut vertex cannot simultaneously be sent to both “antipodal” faces.            

So for 1-connected graphs, the three notions of self-duality are all distinct. For 2-connected graphs, 
however we have the following. 

Theorem 2.2.4 

If G = (V, E) is a planar 2-connected graph such that M (E)   M(E)*, then G has an embedding        

(V, E, F) such that (V, E)  (F*, E*). 

Proof 

Let (V, E, F) be any embedding of G. Then G is 2-isomorphic, in the sense of [10] to (F*, E*), and thus 

there is a sequence of Whitney flips which transform  

(F*,E*,V*) into an isomorphic copy of G and act as re-embeddings of G. Thus the result is a new embedding 

( , , )V E F  of G such that (V, E, F) ( *, *, *)F E V .  

Thus, to describe 2-connected self-dual graphs it is enough up to embedding, to describe self-dual 2-connected 

graphic matroid. 

 

2.3 Self – Dual matroids 

Definition 

A polyhedron P is said to be self-dual if there is an isomorphism  : P P*, where P* denotes the 

dual of P. We may regard   as a permutation of the elements of P which sends vertices to faces and vice versa, 

preserving incidence.  

As noted earlier 3-connected self-dual graphic matroids are classified via self-dual polyhedra. On the 

other hand, 1-connected self-dual matroids are easily understood via the direct sum. Also we show how a         

2-connected self-dual matroid M with self-duality   arises via 3-connected graphic matroids by recursively 

constructing its 3-block tree T (M) by adding orbits of pendant nodes.  

 

Theorem 2.3.1 

Let M be a self-dual connected matroid with 3-block tree T. Let T' be the tree obtained from T by 

deleting all the pendant nodes, and let M' be the 2-connected matroid determined by T'. Then M' is also self-

dual. 

Proof 

Let M be a self-dual connected matroid on a set E, so there is a matroid isomorphism  : MM*, so 

  is a permutation of E sending cycles to co-cycles. The 3-block tree of M* is obtained from that of M by 

replacing every label with the dual label, so   corresponds to a bijection ( ,{ }  ) of T onto itself, such that 

for each node  of T, 
 : M  ( )fM 

 sends cycles of M
 to    co-cycles of 

( )fM 
. The restriction of        

( ,{ }  ) to T  has the same property and so corresponds to a self-dual permutation of M  .               

Theorem 2.3.2 

Suppose M is a self-dual 2-connected matroid with self-dual permutation   and let 
1e M . Let 

1 2{ , ,...... }ke e e  be the orbit of 1e  under . Suppose one of the following: 

1) k is even and 
0M  is a 3-connected matroid or a cycle and 

0  is a matroid automorphism of 
0M  

fixing an edge 
0e . 

2) K is odd and 
0M  is a 3-connected self-dual matroid with self-dual permutation 

0  fixing an edge
0e . 

For i =1, 2, …., k set 
2 1 0iM M   and 

2 0 *iM M . Let M   be the matroid obtained from M by 2-sums 

with the matroids iM , amalgamating 0e  or 0e * in iM  with ie . 

Let    be defined by   (e) for e
1 2{ , ,....., }kM e e e  ,   :

0 1 0i iM e M e    is induced by * for  i =1, 

2,…., k and 
0 1: kM M    . Then M   is a 2-connected self-dual matroid with self-dual permutation  .  

Moreover, every 2-connected self-dual matroid and its self-duality is obtained in this manner. 

Proof 

The fact that this construction gives a 2-connected self-dual matroid follows at once, since to check if 

   is a self-duality, it sufficient to check that ( )   sends cycles to co-cycles on each 3-block. The fact that 
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0M  must be self-dual if K is odd follows by considering that 𝛿1𝑘  is a self-duality and maps 
0M = 

1M  onto 

itself. 

To see that all self-dualities arise this way, let : M M     be a self-duality, let   be a pendant node 

of T, and set 
0M M  . Let M be the self-dual matroid that results from removing from ( )T M   the K nodes 

corresponding to the orbit of the node  .    induces : MM. Then the desired 
0  is  ( )k

 .                       

 

III.     A Characterisation Of Partial Dual Graphs 
3.1 Ribbon Graphs 

S. Chmutov recently introduced the concept of the partial dual GA of a ribbon graph G. Partial duality 

generalizes the natural dual (or Euler- Poincare dual or geometric dual) of a ribbon graph by forming the dual of 

G with respect to a subset of its edges A. In contrast with natural duality, where the topologies of G and G* are 
similar, the topology of a partial dual G* can be very different from the topology of G. 

For Example, Although a ribbon graph and its natural dual always have the same genus, a ribbon graph and a 

partial dual need not. 

Definition 3.1.1 

A ribbon graph G = ( (G), (G)) is (possibly non-orientable) surface with boundary represent as the 

union of two sets of topological discs: a set  (G) of vertices, and set of edges  (G) such that  

(i) The vertices and edges intersect in disjoint line segment. 

(ii) Each such line segment lies on the boundary of precisely one vertex and precisely one 

edge; 

(iii) Every edge contains exactly two such line segments.  

It will be convenient to use a description of a ribbon graph G as a spanning sub- ribbon graph equipped 
with a set of colored arrows that record where the missing edges. 

 

 

 

 

 

 

 

(i)          (ii)   (iii) 

Fig.: 3.1 Realizations of a ribbon graph. 

Definition 3.1.2 

An arrow marked ribbon graph G


 consists of a ribbon graph G equipped with a collection of colored 

arrows, called marking arrows, on the boundaries of its vertices. The marking arrows are such that no marking 

arrow meets an edge of the ribbon graph, and there are exactly two marking arrows of each other. 

Illustration 

A ribbon graph can be obtained from an arrow-marked ribbon graph by adding edges in a way 

prescribed by the marking arrows, thus take a disc and orient its boundary arbitrarily. Add this disc to the ribbon 

graph by choosing two non-interesting arcs on the boundary of the disc and two marking arrows on the same 

color, and then identifying the arcs with the marking arrows according to the orientation of the arrow. The disc 

that has been added forms an edge of a new ribbon graph. 

This process is illustrated in Fig,:3.2, and an example of an arrow -marked ribbon graph and the ribbon 

graph it describes in  Fig.:3.1 (i) and (ii). 

 

 
Fig.: 3.2 

Result  

An arrow-marked ribbon graph describes a ribbon graph. Conversely, every ribbon graph can be 

described as an arrow-marked spanning sub-ribbon graph. 

Proof  

Suppose that G is a ribbon graph and B  (G). 

To describe G as an arrow-marked ribbon graph, 𝐺\𝐵          start by arbitrarily orienting each edge in B. This 

induces an orientation on the boundary of each edge in B. To construct the marking arrows for each eB, place 
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an arrow on each of the two arcs where e meets vertices of G, the direction of this arrow should follow the 

orientation of the boundary e, color the two arrows with e and delete the edge e. This gives a marked ribbon 

graph 𝐺\𝐵         . Moreover, the original ribbon graph G can be recovered from 𝐺\𝐵          by adding edges of 𝐺\𝐵          as 
prescribed by the marking arrows. 

Notice that, if G is a ribbon graph and H is any spanning sub-ribbon graph, then there is an arrow 

marked ribbon graph of 𝐻    which describes G. 

Definition 3.1.3 

An arrow presentation of a ribbon graph consists of a set of oriented (topological) circles (called 

cycles) that are marked with colored arrows called marking arrows, such that there are exactly two marking 

arrows of each color. 

Example 

An example of a ribbon graph and its arrow presentation is given in below figure. 

 

 

 

 

                                      

Fig.:3.3 

Two arrow presentations are considered equivalent if one can be obtained from the other by reversing 

pairs of marking arrows of the same color. 

 

3.2 Partial Duality                                                                                                                  
Partial duality is a generalization of the natural dual of a ribbon graph.    A key feature of partial duality 

is that it provides a way extend the well known relation T (G; x, y) =T (G*; y, x), relating the Tutte polynomial 

of a planar graph and its dual, to the weighted ribbon graph polynomial. 

 Although the construction of the partial dual 
AG  of g is perhaps a little lengthy to write down, in 

practice the formation of the partial dual is a straightforward process. 

 

Definition 3.2.1 

Let G be a ribbon graph and ( )A G . The partial dual 
AG  of G along A is defined below. 

(Step P1.) : 

Give every edge in (G) orientation (this need not extend to an orientation of the whole ribbon graph). 

Construct a set of marked, oriented, disjoint paths on the boundary of the edges of G in the following 

way:   

(1) If eA then the intersection of the edge e with distinct vertices         (or vertex if e is a loop) 

defines two paths. Mark each of these paths with an arrow which points in the direction of the 
orientation of the boundary of the edge. Color both of these marks with e. 

(2) If eA then the two sides of e which do not meet the vertices define the two paths. 

Mark each of these paths with an arrow which points in the direction of the orientation of the boundary 

of the edge. Color both of these marks with e.  

(Step P2):  

Construct a set of closed curves on the boundary of G\
cA  by joining the marked paths constructed 

above by connecting them along the boundaries of G\
cA  in the natural way.  

 

(Step P3):  

This defines a collection of non-interesting, closed curves on the boundary of G\
cA  which are marked 

with colored, oriented arrows. This is precisely an arrow presentation of a ribbon graph. The 

corresponding ribbon graph is the partial dual of GA. 

The construction is shown locally at an edge e in Fig.:2.4 

 

 
An untwisted edge e      If e  A        If e  A  
 

 

= 
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A twisted edge e       If e  A        If e  A 

Fig.:3.4 Forming paths in the partial dual. 

 

 

Example 1 

 

 

 

 
 

 

 

 

G with A = {2, 3} 

 

 

 

 

 

 

 
 

 

Steps P1 and P2               Step P3 

 

 

 

 

 
      

 

 

                GA                           Redrawing GA 

Fig.:3.5 

Example 2 

 

 
G with A = {2, 3} 

 

 

 

 

 

 

 

 
Steps P1 and P2        Step P3 
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Natural Duality 

Let G = ( ( ), ( )G G  ) be a ribbon graph. We can regard G as a punctured surface. By filling in the 

punctures using a set of discs denoted ( *)G .We obtain a surface without boundary . The natural dual (or 

Euler-Poincare dual) of G is the ribbon graph G* = ( ( *), ( )G G  ). 

 

3.3 Partial Dual Embedding 

A dual embedding {G, H, } of G and H into a surface   to be an embedding of G in a surface without 

boundary   which has the property that   H =  \ (G)  

Note that a dual embedding is independent of the order of the ribbon graphs G and H (i.e. the dual 

embeddings {G, H,  } and {H, G,  } are equivalent). 

Definition 3.3.1 

A set {G, H, , M } is a partial dual embedding of ribbon graph G and H if  

i) {G, H, } is a dual embedding; 

ii) M  is a set of disjoint colored arrows marked on the boundaries of the embedded    vertices in 

( ) ( )G H  with the property that there are exactly two arrows of each color. 

Theorem 3.3.1 

Let G and H be ribbon graphs. Then G and H are partial duals if and only if there exists a partial dual 

embedding { , , ,G H   M } with the property that \ ( )H  M  is an arrow-marked ribbon graph describing G, 

and \ ( )G  M is an arrow-marked ribbon graph describing H. 

 

Proof 

First suppose that G and H are partial duals. Then there exists a set of edges A  (G) such that   

AG = H. Then G can described as an arrow-marked ribbon graph 𝐺\𝐴𝑐           , where 
cA  (A)\A. Let   be the 

surface obtained from \ cG A  by filling in the punctures. Then { \ , ( \ )*,c cG A G A } forms a natural dual 

embedding. The arrow markings on 𝐺\𝐴𝑐            induce a set of colored arrows on ( \ (( \ )*)c cG A G A   with the 

property that there are exactly two arrows of each color. Denote this induced set of colored arrows by M .                  

Then{ \ ,( \ )*, , }c cG A G A  M  is a partial dual embedding. Moreover, \ (( \ )*)cG A  describes G by 

construction, and \ (( \ ))cG A  clearly describes 
AG =H if we use the construction of partial duality from the 

lemma, 

“Let G be a ribbon graph, ( )A G  and 
cA  (A)\A. Then the following construction gives

AG

 (Step 1P  ): Present G as the arrow-marked ribbon graph 𝐺\𝐴𝑐           . 

(Step 2P  ): Take the natural dual of \ .cG A  The marking arrows on 𝐺\𝐴𝑐             

        induce marking arrows on ( \ )*cG A . 

(Step 3P  ): 
AG  is the ribbon graph corresponding to the arrow-marked  ribbon graph ( \ )*cG A


”. 

Conversely, suppose that { , , ,G H   M } is a partial dual embedding with the property that \ ( )H  M  

is an arrow-marked ribbon graph describing G, and \ ( )G  M  is an arrow marked ribbon graph describing 

H. Then G  and H  are precisely the naturally dual marked ribbon graphs described in step 2P   of the 

construction of partial dual. Here A is the set of edges of G that are also in G .                                                                                                                                                                                                                                                          
 

    GA 

Fig.:3.6 
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3.4 Partial Duality for Graphs 

Definition 3.4.1 

If G=( ( ), ( )G G  ) is a ribbon graph then we can construct a graph G =( ( ), ( )G G  ) form G by 

replacing each edge of G with a line, and then contracting the vertices of G into points, such a graph G is called 

the core of G. 

Notice that there is a natural correspondence between the edges of a ribbon graph and its core, and the 

vertices of a ribbon graph and its core. 

Definition 3.4.2 

We say that two graphs are partial duals if they are cores of partially dual ribbon graphs. 

Let G be a ribbon graph and A  (G). By the notation 
AG  we mean that 

AG  is the core of 
AG  

where G is the core of G and A is the edge set of G that corresponds with A. 

We have seen that partially dual ribbon graphs can be characterized by the existence of an appropriate 

partially dual embedding. A corresponding result holds partial dual graphs. To describe the corresponding result, 

we make the following definition. 

Definition 3.4.3 

A partial dual embedding of graphs is a set { , , ,G H    }, Where   is a surface without boundary 

,G H    are embedded graphs and E is a set of colored edges that are embedded in   such that 

(1) Only the ends of each embedded edge in E meet G H   ; 

(2) { , ,G H   } is dual embedding; 

(3) Each edge in E is incident to one vertex in ( )G   and one vertex in ( )H  ;       

(4) There are exactly two edges of each color in E. 

 

Example  

An example of partial dual embedding  

 
Fig.: 3.7 

Where  is the disjoint union of two spheres, 
1 ({ , },{1})G    and 2 ({ , , },{1})G a b c    . 

Following the recipe in the theorem we recover the graphs. 

 

 

 

 

 

 

 

G      G{1} 

Fig.: 3.8 

 

These graphs are indeed partial duals as they are cores of the following graphs respectively. 

 

 

 

 

 

 

Fig.:3.9 
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Theorem 3.4.1  

Two graphs 1G  and 2G  are partial duals if and only if there exists a partial dual embedding                 

{
1 2, , ,G G    } such that for each i, iG  is obtained from iG  by adding an edge between the vertices of 

iG , 

that are incident with the two edges in E that have the same color, for each color. 

Proof 

First suppose that 1G  and 2G  are partial duals, so 1G  and 2G  are the cores of partially dual ribbon 

graphs. Then by theorem, there exists a partial dual embedding 
1 2{ , , , }G G   M such that 

2\ (G  ) M  is an 

arrow-marked ribbon graph describing 
1 1\ (G G   ) M  is an arrow-marked ribbon graph describing 2G : 1G  

is the core of 
1G  and 

2G  is the core of 2G . 

A partial dual embedding of graphs {
1 2, ,G G   , E} can be constructed from {

1 2, , ,G G   M } in the 

following way: Let 
1G  be the canonically embedded core of 

1G  and 
2G  let be the canonically embedded core of 

2G . Each arrow on   meets exactly two vertices of 
1 2G G  . For each arrow, add an embedded edge between 

the two corresponding vertices of the graph 
1 2G G    which passes through this arrow. Color the edge with 

the color of the arrow that it passes through.  The set of edges added in this way forms E.  

Now to show that 
1 2[ , , , }G G     is indeed a partial dual embedding of graphs and the graphs 1G  and 

2G  can be recovered from the partial dual embedding in the way described by the theorem.    

To see that 
1 2[ , , , }G G     is a partial dual embedding, first note that by construction 

1 2,G G   and E are 

all embedded in  , and that only the ends of the edges in E meet 
1G  or 

2G . {
1 2, ,G G   } is a dual embedding.  

Since each arrow in M  meets one vertex in 
1( )V G  and one vertex in

2( )V G , each edge in E is incident 

to vertex in 
1( )V G  and one vertex in 

2( )V G . The coloring requirement follows since there are exactly two 

edges of each color in M and the edge colorings of E are induced from M . 

Finally,
iG  can be recovered from 

iG  M  by adding edges between the marking arrows of the same 

color. Therefore, if u and v are vertices of 
iG  which are marked with an arrow of the same color and u and v 

are vertices of 
iG  which are marked with an arrow of the same color and u and v are the corresponding vertices 

of 
iG , then to construct the core of iG  we need to add an edge between u and v.  

But since u and v are each incident with the edges in E of the same color we need to add an edge 

between the vertices of 
iG  that are incident with the two edges in E of the same color. This is exactly the 

construction described in the statement of the theorem. Using this for each color gives iG , completing the 

proof of necessity. 

Conversely, suppose that {
1 2, ,G G   , E} is a partial dual embedding and that 1G  and 2G  are obtained 

as described in the statement of the theorem. Construct a partial dual embedding {
1 2, ,G G   , M } of ribbon graph 

in the following way take a small neighborhood in   of the embedded graph 
1G  to form 

1G ;                            

let 2G  =(
1 1\ , ( )G G   ) wherever an edge in E meets a boundary of vertices add an arrow pointing in an arbitrary 

direction which is colored by the color of the edge in E. M  is the set of such colored arrows. 

To see that {
1 2G G  , , ,M } is a partial dual embedding, note that {

1 2G G  , , } is a dual embedding 

since {
1 2G G  , , } is, and that there exactly two arrows of each color since there are exactly two edges of each 

color in E. 

Let iG  denote the ribbon graph described by the arrow-marked ribbon graph 
iG  M . Then iG  is the 

core of iG (since whenever an edge is added between two vertices of 
iG  in the formation of iG , an edge is 
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added between the corresponding vertices of 
iG  in the formation of iG ). Finally, 1G  and 2G  are partial dual 

graphs since, by Theorem: 1G  and 2G  are partial dual ribbon graphs. 

 

IV. Conclusion 
This dissertation deals with self-dual graphs and characterization of partial dual graphs. In this paper 

first we studied about Forms of self-dual graphs and comparisons of forms of self dual graphs are discussed. 

And finally Characterization of partial dual graphs are studied. 
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