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Abstract: The concept of edge rotations and distance between graphs was introduced by Gary Chartrand et.al 

[1].A graph G can be transformed into a graph H by an edge rotation if G contains distinct vertices u, v and w 

such uwuvGHandGEuwandGEuv    )(  )( . In this case, G is transformed into H by” rotating” 

the edge uv of G into uw. In this paper we consider rotations on generalized Petersen graphs and minimum self-

centered graphs. We have also developed algorithms to generate distance degree injective (DDI) graphs and 

almost distance degree injective (ADDI) graphs from cycles using the concept of rotations followed by some 

general results. 

Keywords: ADDI graphs, average eccentricity, DDI graphs, edge rotations, edge rotation distance graphs, 

Generalized Petersen graph, r-distance graph. 

 

I.     Introduction 
Unless mentioned otherwise, for terminology and notation the reader may refer to Buckley and 

Harary[23] and Chartrand and Zang [24], new ones will be introduced as and when found necessary. 

In this paper, by a graph G, we mean a simple, undirected, connected graph without self- loops. The 

order and size are respectively the number of vertices denoted by n and number of edges denoted by m. 

The distance d(u, v) between any two vertices u and v, of G, is the length of the shortest path between u 

and v. The eccentricity e(u) of a vertex u is the distance to a farthest vertex from u. The maximum and the 

minimum eccentricity amongst the vertices of G are respectively called the diameter diam(G) and radius 

rad(G). If diam(G) = rad(G), then the graph G is said to be self-centered graph. If d(u,v) = e(u), (v ≠ u) then we 

say that v is an eccentric vertex of u.  
The distance degree sequence (dds) of a vertex in a graph G = (V, E) is the list of number of vertices at 

distance 1, 2, …e(v) in that order, where e(v) denotes the eccentricity of v. Thus the sequence 

0 1 2
( ,  ,  ,  ,  )

ji i i id d d d , is the distance degree sequence (dds) of the vertex vi in G where 
jid denotes the 

number of vertices at distance j from vi. 

The concept of distance degree regular (DDR) graphs was introduced by Bloom et al. [26] as the graph 

for which all vertices have the same distance degree sequence. This was further studied by Bloom et al. [25], 

Halberstam et al. [27], Itagi Huilgol et al. [2], [3], [4].  

  The other extreme of distance degree regular (DDR) graphs is the distance degree injective 

(DDI) graphs. The concept of distance degree injective graphs was introduced by Bloom et al. in [25]. A graph 

G is said to be a distance degree injective (DDI) graph if no two of its vertices have the same distance degree 

sequence. In literature, characterizations of both DDR and DDI graphs are not known. But there are several 

particular cases, [26], [27], [2], [3], [4], [28], etc. So the construction of distance degree injective graphs or the 

almost distance degree injective graphs (DDI/ADDI) is also a challenging one. In [3] Itagi Huilgol et al. have 

constructed higher order DDI graphs using products. Fast generation of cubic graphs was done by Brinkmann 
[5]. In [6] Itagi Huilgol et al. have introduced the concept of Almost Distance degree Injective (ADDI) graphs. A 

graph G of order n is said to be ADDI or almost DDI if  n - 2 vertices have different distance degree sequence 

and two vertices have the same distance degree sequence. 

  The concept of distance between isomorphism classes of graphs was introduced by Zelinka [7] 

which was later extended to trees [8] also. Based on these two papers the concept of rotations called „edge 

rotations‟ and the distance between such graphs was introduced by Chartrand et al. [1]. A graph G can be 

transformed into a graph H  be an edge rotation given by H G uv uw   where u, v and w are distinct 

vertices of G such that ( )  ( )uv E G and uw E G  . Later in [9] Zelinka gave a comparison of various distance 

for the isomorphism classes of graphs and trees, which was based on the concept of edge rotations. It was also 
showed that this distance is a metric by Balaz et al. in [10]. 

Zelinka studied various aspects using the concept of distance between graphs and edge rotations in 

[11], [12] and [13]. The concept of “edge move” was defined by Balaz et al. [10] and is defined in this manner. 

A graph G can be transformed into a graph H by an edge move given by H G uv xw  
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( )  x ( )uv E G and w E G  . Later Johnson in [14] introduced a new kind of edge rotation called the “edge 

shift”. It is defined as an edge rotation for the given graph A, t = (u, v, w) such that vw is an edge of A. As with 

an edge rotation, tA will denote the newly formed graph A – uv + uw. This new edge rotation is again a metric. 

Later an inequality between edge shift, edge rotation and edge move was proposed by Benade et al. 
[15]. The upper and the lower bounds were given by Faudree et al. in [16]. Under the concept of labeling, the 

distances between graphs using edge operation was done by Goddard et al. in [17]. 

The rotation distance between graphs G and H is denoted by dr(G, H), if there exists a sequence of 

graphs G1, G2, …, Gk-1 such that G1 is obtained by an edge rotation on G, and for each 1 ≤  i  ≤ k-1, Gi+1 is 

obtained by an edge rotation on Gi, with H obtained from Gk-1by one edge rotation. In this case we denote the 

rotation distance from G to H as dr(G, H) and it is equal to k. 

Definition 1: [1] Let S = G1, G2, …,Gk be a set of graphs all of same order and the same size. Then the 

rotation distance graph D(S) of S has S as its vertex set and vertices (graphs) Gi and Gj are adjacent if dr(Gi, Gj) 

= 1, where dr(Gi, Gj) is the rotation distance between Gi and Gj.  

A graph G is a edge rotation distance graph (ERDG) (or r-distance graph) if G   D(S) for some set of 

graphs. 
A study done by Chartrand et al. [18] showed that the cycles, the complete bipartite graph K3, 3 and K2, p 

(p ≥ 1) are edge rotation distance graphs (ERDG). This was later extended by Jarrett [19] in showing that 

complete graphs, trees and the wheel (W1, n) are also edge rotation distance graphs. Jarrett also gave a different 

proof other than the one due to Chartrand et al. [18]. It was shown that the complete bipartite graph Km, n (3 ≤ m 

≤  n) is a edge rotation distance graph. 

In this paper we consider the edge rotations for the generalized Petersen graphs (Gp(n, k)) and show 

that it is an edge rotation distance graph for n ≥ 5, n ∈ Z +, k = 1 where Z + is the set of all positive integers. We 

have also developed two algorithms which show the construction of distance degree injective graphs and almost 

distance degree injective graphs from cycles using the concept of edge rotation, some results on average 

eccentricity with respect to edge rotation are also proved. 

 

II. Edge Rotations for Generalized Petersen Graphs Gp (n, k) 
  The generalized Petersen graphs were introduced by Coxeter in [20] and later named by 

Watkins in [21]. 

 

Definition 2:For integers n and k with 2 ≤ 2k ≤ n, the generalized Petersen graph G(n,k) has the vertex set 

V(G(n,k)) = u0, u1, . . . , un-1, v0, v1, . . ., vn-1 and the edge set E(G(n, k)) = [ui, ui + j], [ui, vi], [vi, vi + k], where i is 

an integer and all subscripts are read modulo n.  

 

As the name suggests G(n, k) is generalization for the Petersen graph. In particular for n = 5, k = 2, we get the 
Petersen graph. Note that a generalized Petersen graph is a cubic graph. 

 

  In this section we consider edge rotations on the generalized Petersen graph where n ≥ 5, n ∈ 

Z +, k = 1.  

The new graph obtained after a single edge rotation will be called as G , i.e., ( ) ( )G G e G e G     

 

Theorem 2.1: An edge rotation in Gp(n, 1) when n is odd results in a self-centered graph if the rotation of any 

edge induces a cycle of length 5 or 3.  

 

Proof: By the definition of rotation: ( ) ( )G G e G e G    where G is the new graph obtained after a single 

edge rotation. As Gp(n, 1) is cubic graph, on rotation, a change in degrees of two vertices resulting in a non-

regular graph. The girth of any generalized Petersen graph is always four. Hence upon rotation, G induces a 

cycle of minimum length three to a maximum length (n-1). Among these, similar to the rotations shown in “Fig. 

1” , result in a self-centered graph.  
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Fig 1: Rotations on a Gp(7,1) graph 

 

 

Remark 1: An edge rotation made on a Gp(n,1) when n is even does not allow the graph to be self-centered. 

 

Remark 2: An edge rotation on Gp(3, 1) retains the radius thus resulting in a self-centered graph.  

 

Remark 3: The complement of a circulant graph is not a Edge Rotation Distance Graph if the circulant consists 

of more than two jump sizes. 

 

   It was shown by E. B. Jarrett [19] that the cycles (for n ≥ 3), the complete bipartite 

graph Km, n (3 ≤ m ≤ n) and the wheel (W1, n) is a ERDG. Now by a slight modification of the graphs used in 

proofs of the theorems proved by Jarrett in [19], we show that Gp (n, k) where k = 1 result in ERDG‟s. We first 

generate two cycles as in [19] and then show that the rotation distance graph on this class of cycles results in a 

generalized Petersen graph. 

 

Theorem 2.2: The generalized Petersen graph Gp(n, 1) where n ≥ 3 and n ∈ N is a edge rotation distance 
graph(ERDG).  

 

Proof: Let P be a path of length 3n – 1 where n is a natural number. Let the vertices of the path be denoted by 

P: v0, v1, v2, . . . , v2, v2n+1, . . . , v3n-1. Let G be a graph obtained from P by adding two new vertices a1, a2 and 

three new edges v2n+1a1, a1a2, a2v2n+1. Then for i = 1, 2, . . . , n -1, we define Gi to be the graph obtained from G 

by adding two new vertices x and y such that x is adjacent to v2i and y is adjacent to v2i+2. We also define Gn as 

the graph obtained from G by adding two new vertices namely x adjacent only to v2n and vertex y adjacent only 

to v2.  
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Fig 2: Rotation on graph G 

 

      Since an edge rotation changes the degrees of exactly two vertices dr(Gi, Gj) > 1 for integers i and j, 

such that 1 ≤ i ≤ j ≤ n. On the other hand, for  i = 1, 2, . . . , n – 2,  the graph 1 2 2 4i i i iG G xv xv     and 

consequently dr(Gi,Gi+1)=1. Similarly dr(Gn-1,Gn) = dr(Gn,G1) = 1, since

1 2 2 2 1 1 2 4  n n n n nG G xv xv and G G xv xv        ; thus dr(G1, G2, G3, . . . , Gn) ≅ Cn. 

 

     In a similar way we shall construct one more graph H and consider the path to consists of vertices P1: 

v0, v1, v2, . . . , v2, v2n+1, . . . , v3n-1. Let G be a graph obtained from P1 by adding two new vertices a1, a2 and three 
new edges v2n+1a1, a1a2, a2v2n+1. Then for i = 1, 2, . . . , n -1, we define Hi to be the graph obtained from H by 

adding two new vertices x and y such that x is adjacent to v2i and y is adjacent to v2i+2. We also define Hn as the 

graph obtained from H by adding two new vertices namely x adjacent only to v2n and vertex y adjacent only to 

v2.  

      We now show that the edge rotation distance between each of these Gi and Hi is equal to one. To show 

that this relation exists we add two new vertices namely w and k and then rotate these edges such that dr(GI, Hi) 

= 1, for i = 1, 2, 3, . . . , n.  
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Fig 3: Rotations on graph H 

 

For i = 1, 2, . . .  ,n,  we first define G1 to be the graph obtained from G by adding two other vertices „k‟ 
adjacent to v0 and „w‟ adjacent to v1. The next graph G2 is obtained by adding the vertices k and w adjacent to v3 

and v4. In G3 , k is adjacent to v6 and w is adjacent to v7. The other Gi‟ s are obtained in a similar pattern up to i = 

n – 1. In the last graph when i = n, the vertices k and w are adjacent to  3n- 3 and 3n - 2.  

     For i = 1, 2, . . . , n,  we first define H1 to be the graph obtained from H by adding two other vertices 

„w‟ adjacent to v1 and „k‟ adjacent tov2. The next graph H2 is obtained by adding the vertices w and k adjacent to 

v4 and v5. H3 is obtained by making w adjacent to v7 and k adjacent to v8. The other Hi‟ s are obtained in a similar 

pattern up to i = n – 1. In the last graph when i = n, the vertices w and k are adjacent to 3n- 3 and 3n – 2. 

Since an edge rotation changes degrees of exactly two vertices dr(GI, Gi) > 1. On the other hand for i = 

1, 2, 3, . . . , n , 1 1 0 2 2 2 3 5 , HH G kv kv G kv kv      and so on. Consequently, dr(Gi, Hi) = 1.  

Hence, the rotation distance between each of Gi and Hi is always one.  

 

We consider an example to generate a generalized Petersen graph for n = 5 and give an algorithmic construction 

of the graph which can be applied to higher order generalized Petersen graph. 

 

Example 2.3Consider the graph Gp(5, 1)  

STEP – 1: For the graphs G1 and H1 obtained after adding the vertices a1, a2  which are used in the generation of 

the cycle, we add two new vertices namely „k‟ and „w‟ to G1 and H1. The adjacencies between these vertices is 

establishes as follows.  

 
Join „k‟  to v0  and „w‟ to v1 in G1. Now in H1, join „w‟ to v1 and „k‟ to v2.  

In G2, join „k‟  to v3  and „w‟ to v4 . In H2, join „w‟  to v4  and „k‟ to v5.  

In G3, join „k‟  to v6  and „w‟ to v7 . In H3, join „w‟  to v7  and „k‟  to v8.  

In G4, join „k‟  to v9  and „w‟ to v10 . In H4, join „w‟ to v10 and „k‟ to v11.  

In G5, join „k‟  to v12  and „w‟ to v13 . In H4, join „w‟ to v13 and „k‟ to v14. 

 

STEP – 2:  Apply the concept of edge rotation to the newly added vertices. 
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STEP – 3: We now rotate the newly added edges between each of Gi and Hi. That is the edge v0k in G1 is rotated 

to v2k in H1 and thus dr(G1, H1) = 1. 

In a similar way the rotation is carried in the rest of the graphs to establish the r-distance relation. 
Also, dr(G2 , H2) = dr(G3, H3) = dr(G4, H4) = dr(G5, H5) = 1 = dr(G1,H1). 

STEP – 4: Thus, a relation is brought between the vertices of G and H in showing that the generalized Petersen 

graph is a ERDG.   

 

 
Fig 4: Edge rotation on Gp(5,2) 

 

III. Edge Rotation on K1,m    

 
Here we prove that the start K1,m is a edge rotation distance graph. The proof is an algorithmic one.  

 

Lemma 3.1:The star K1,m , where m ∈ Z+ is a ERDG  (for m ≥ 2). 

 

Proof: Consider the path P of order 1 + m, where 1 + m is the order of the star considered. We give a step by 

step procedure as proof to show that the star is a ERDG.  

 

STEP – 1: Let P = v1, v2, . . . , vm+1be a path and G be the graph formed by adding two new vertices vm+2, vm+3. 

STEP – 2: Join the vertices vm+1 vm+2,  vm+2 vm+3, vm+3  vm+1. 

STEP – 3: Add a new vertex “x” to Gi, i = 1, 2, . . . , m+1 such that x is adjacent to vi in Gi. 

STEP – 4: dr(G1, G1+k) = 1. k = 1, 2, . . . , m. 

That is dr(G1 , G2) = dr(G1, G3) = . . . . =  dr(G1, Gm) = 1. 
Here we observe that deg(v1) in G1 = 2. Similarly deg(v2) in G2 = 3, deg(v3) in G3 = 3. The presence of a degree 

two vertex in G1 at v1 changes the degree of that vertex upon rotation. There exists at least one vertex of degree 

three in each of G2 to Gm+1 which is the result of edge rotation.  

STEP – 5 : Thus the star K1,m is a ERDG.  

 

Example 3.1:The following example shows that K1,4 is a ERDG. Similar construction can be given to any 

positive integer m.  
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Fig 5:The star K1,mis a ERDG. 

 

Remark 4:Let G be a graph with a single cut – edge, then the graph becomes disconnected if the cut- edge is 

rotated to any other vertex on the same component. 

 

Definition 3: [23] The eccentric mean or average eccentricity is defined as 
1

1
( )

n

e i i

i

G m e
n




 
  
 

 taken over 

all vertices in the graph where mi‟s are the multiplicities of the eccentricities ei.  

 

Theorem 3.2 : For any even cycle Cn, for n > 4, then average eccentricity of C‟n lies between 1, 1
2 2

n n 
  

 
for any edge rotation in the cycle. 

 

Proof: Let u1, u2, . . . , un, u1 be an even cycle. Let u1u2 be the edge to be rotated to any other vertex say u3, u4, . . 
. ., un-1 or u2u1 be the edge to be rotated to any other vertex say  u4, u5,  . . . ., un . The rotation made induces a 

cycle of minimum length three to a maximum length n- 1. As their length of the cycle induced increases , the 

eccentricity of the vertices also increases. We observe that there exist at least two or more vertices which have 

the same eccentricity after the edge rotation. This occurs at the vertex where the rotation has been performed 

since this is the only vertex where we find two or more vertices with the same eccentricity and the rest of the 

vertices with different eccentricities. Thus we find that the average eccentricity of the graph C‟n reduces by one 

upon rotation. Hence the eccentricity ranges from a minimum of 1
2

n
 to a maximum of 1

2

n
 upon different 

rotations. Thus when the average is taken over all the vertices we find that the average eccentricity lies between 

the closed interval 1, 1
2 2

n n 
  

 
. 
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Lemma 3.2 For any odd cycle Cn the average eccentricity of C‟n is not greater than 2
2

n  
  

  
. 

Proof : A single edge rotation induces a cycle of minimum length three and a maximum length n-1. The graph 

C‟n formed is a cycle followed by a path of some length “m”. The eccentricity of each vertex ranges from (n/2)  

to (n-2). Hence when the average is taken for the vertices of C‟n we find that the value does not go beyond 

2
2

n  
  

  
.  

 

Remark 5: Let u1, u2, . . . , un be a path. The average eccentricity becomes infinite and the graph becomes 

disconnected for the below mentioned rotations. 

1 1

1 2

n n

n

u u  is rotated  to u
Avg Eccentricity

u u  is rotated  to u


  


 

 

Remark 6:A complete binary tree of “n” levels requires at least one rotation to get transformed to a unicyclic 
graph. 

 

Remark 7: Any tree on n vertices with n ≥ 5 requires at least two rotations to become a unicyclic graph.  

 

Lemma 3.3: The maximum number of rotations required for K1,n to be rotated to a path is n – 2 for any natural 

number n.  

 

Proof: Leaving the last two edges or a P3 the rest of the edges need to be rotated to form a path. Hence the 

number of edges that remain is n-2. Thus n-2 rotations are sufficient to transform to a path of length n. 

 

IV. Edge Rotations on Minimum Sized Self- Centered Graphs 
In this section we consider the minimal self-centered graphs of radius two proposed by Akiyama et al. 

[29]. We have checked these graphs for their radius and self-centeredness invariance after a single edge rotation. 

We also check on the average eccentricity of these graphs and give the bounds. Akiyama et al .[29] have 

constructed minimal self-centered graphs of radius two and shown that they one of the three classes given 

below. 

 

(i) The Petersen graph (5,2). 

(ii) The graph obtained from the double star Sm,n by adding a new vertex v and joining v to every end vertex of 

Sm,n. 
(iii) The graph obtained from any K3(a, b, c) by joining a new vertex w to each vertex of this K3(a, b, c).  

 

 
Fig 6:  Minimal Self-centered graphs of radius two. 

 

Lemma 4.1: If  „m‟ is the average eccentricity of any of the minimal self-centered graphs of radius two then the 

average  eccentricity of G‟ is not more than m + 1.  
 

Proof: For the above mentioned three graphs we find that any rotation made increases the eccentricity of the 

vertices. Here we observe that when the edge operation is performed on Petersen graph, the eccentricity of at 

most two vertices increases by one since these exist other vertices whose eccentricity may increase or remain the 

same., Thus resulting the change in average eccentricity by at most one. Similar argument shows that the 
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average eccentricity of the other two graphs increases by at most one. Thus the average eccentricity of the 

resulting graph does not exceed the value m + 1. 

 

V. Algorithms 
In the next part we develop algorithms to generate DDI graphs/ ADDI graphs from an odd and even 

cycle by rotating a single edge. In literature the construction of DDI graphs is considered by Itagi Huilgol et al. 

[21]. But constructing a DDI graph from a minimum sized DDR graph viz., cycles is an interesting problem. 

Hence we give algorithms to construct DDI/ADDI graphs from cycles.  

 

Algorithm 5.1  

In the following algorithm we generate DDI/ADDI graphs from an odd cycle by rotating a single edge. 

Let Cn be a cycle of length n. 
 

STEP – 1: Input the cycle length n where n ≥ 5. 

 

STEP − 2: Find the eccentricity of the given cycle by using ecc = 
2

n  
  
  

. 

STEP − 3: Consider the edge e = uv to be rotated. 

 

STEP − 4: Using the definition of rotation ( ) ( )G G e G e G    perform the edge rotation. 

 

STEP − 5: If the newly added edge results in a cycle of length less than (or equal to) the eccentricity then the 

graph formed is a DDI graph. 

 

else 

 
If length = ecc or ecc + 1, then it is a ADDI graph . 

 

STEP − 6 : If length ≥ ecc + 2, then it is neither a ADDI/DDI graph. 

 

STEP − 7 : Repeat steps 4 to 5 until length  > ecc + 2. 

 

STEP − 8 : STOP. 

 

Algorithm 5.2. 

In the second algorithm we develop ADDI graphs from evencycles using the concept of rotation of a 

single edge. 

 
Let Cn be a cycle of length n. 

 

STEP − 1 : Input the cycle length n where n ≥ 6. 

 

STEP − 2 : Find the eccentricity of the given cycle by using e = n/2. 

 

STEP − 3 : Consider the edge e = uv to be rotated. 

 

STEP −4 : Using the definition of rotation ( ) ( )G G e G e G     perform the edge rotation. 

 

STEP − 5 : If the newly added edge results in a cycle of length less thanthe eccentricity then the graph formed is 

a ADDI graph. 
else 

it is not a ADDI graph. 

 

STEP − 6 : Repeat steps 4 to 5 until length of the induced cycle is less than eccentricity. 

 

STEP − 8 : STOP. 
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