Hardy-Steklov operator on two exponent Lorentz spaces for non-decreasing functions

Arun Pal Singh

Department of Mathematics, Dyal Singh College (University of Delhi)
Lodhi Road, New Delhi - 110 003, INDIA
Email: arunps12@yahoo.co.in

Abstract: In this paper, we obtain the characterization on pair of weights \(v \) and \(w \) so that the Hardy-Steklov operator \(\int_{a(x)}^{b(x)} f(t)dt \) is bounded from \(L^p_v (0, \infty) \) to \(L^q_w (0, \infty) \) for \(0 < p, q, r, s < \infty \).

2010 AMS Mathematics Subject Classification: 26D10, 26D15.
Keywords: Hardy-Steklov operator, Lorentz spaces, non-decreasing.

I. Introduction

By a weight function \(u \) defined on \((0, \infty)\) we mean a non-negative locally integrable measurable function. We take \(M_0^+ = M_0^+ ((0, \infty), u(x)dx) \) to be the set of functions which are measurable, non-negative and finite a.e. on \((0, \infty)\) with respect to the measure \(u(x)dx \). Then the distribution function \(\tilde{\lambda}^u_f (t) \) of \(f \in M_0^+ \) is given by

\[
\tilde{\lambda}^u_f (t) := \int_{\{x \in (0, \infty) : f(x) \geq t\}} u(x)dx, \quad t \geq 0.
\]

The non-increasing rearrangement \(f_u^* \) of \(f \) with respect to \(du(x) \) is defined as

\[
f_u^*(y) := \inf \{ t : \tilde{\lambda}^u_f (t) \leq y \}, \quad y \geq 0.
\]

For \(0 < p < \infty, \ 0 < q \leq \infty \), the two exponent Lorentz spaces \(L^{p,q}_v (0, \infty) \) consist of \(f \in M_0^+ \) for which

\[
\|f\|_{L^{p,q}_v} := \left\{ \left(\int_0^\infty \left(\int_0^t f^p_u(x) \frac{dx}{x} \right)^{\frac{q}{p}} \left(\frac{dt}{t} \right)^{\frac{q}{q-p}} \right)^{\frac{1}{q}} \right\}^{\frac{1}{q}}, \quad 0 < q < \infty,
\]

\[
\|f\|_{L^{p,q}_v} := \sup_{t > 0} \left(\int_0^t f^p_u(x) \frac{dx}{x} \right)^{\frac{q}{p}} \left(\frac{dt}{t} \right)^{\frac{q}{q-p}}, \quad q = \infty
\]

is finite.

In this paper, we characterize the weights \(v \) and \(w \) for which a constant \(C > 0 \) exists such that

\[
\|Tf\|_{L^{r,s}_w} \leq C \|f\|_{L^{p,q}_v}, \quad f \geq 0
\]

where \(T \) is the Hardy-Steklov operator defined as

\[
(Tf)(x) = \int_{a(x)}^{b(x)} f(t)dt.
\]
The functions \(a = a(x) \) and \(b = b(x) \) in (3) are strictly increasing and differentiable on \((0, \infty) \).
Also, they satisfy
\[
a(0) = b(0) = 0; \quad a(\infty) = b(\infty) = \infty \quad \text{and} \quad a(x) < b(x) \quad \text{for} \quad 0 < x < \infty.
\]

Clearly, \(a^{-1} \) and \(b^{-1} \) exist, and are strictly increasing and differentiable. The constant \(C \) attains different bounds for different appearances.

II. Lemmas

Lemma 1. We have
\[
\|f\|_{L^p_{[0,\infty)}}^p = \left(\int_0^\infty s^{p-1} [\lambda_f^v(t)]^{slr} \, dt \right)^{\frac{p}{s}}, \quad 0 < s < \infty
\]
\[
s = \frac{r}{s}, \quad 0 < r < \infty, \quad \text{and} \quad \sup_{t > 0} t [\lambda_f^v(t)]^{slr}, \quad s = \infty.
\]

Proof. Applying the change of variable \(y = \lambda_f^v(t) \) to the R.H.S. of (1) and integrating by parts we get the lemma. \(\Box \)

Lemma 2. If \(f \) is nonnegative and non-decreasing, then
\[
\|f\|_{L^p_s}^s = \frac{s}{r} \int_0^\infty f^s(x) \left(\int_0^\infty v(t) \, dt \right)^{\frac{s-1}{s}} v(x) \, dx.
\]

Proof. We obtain the above equality by evaluating the two iterated integrals of \(st^{s-1} \left(\frac{s}{r} \right) h^{-\frac{r-1}{r}} (x) v(x) \)
over the set \(\{ (x,t); 0 < t < f(x), 0 < x \} \), so that we have
\[
\int_0^\infty \int_0^f f(x) \left(\frac{s}{r} \right) h^{-\frac{r-1}{r}} (x) v(x) \, dx \, dt = \int_0^\infty \int_0^\infty st^{s-1} \left(\frac{s}{r} \right) h^{-\frac{r-1}{r}} (x) v(x) \, dx \, dt,
\]
where \(x(t) = \sup \{ x : f(x) \leq t \} \) for a fixed \(t \), and \(h(x) = \int_0^\infty v(t) \, dt \).

Integrating with respect to \(t \) first, the L.H.S. of (6) gives us the R.H.S. of (5). Further
\[
\frac{s}{r} \int_0^\infty h^{-\frac{r-1}{r}} (x) v(x) \, dx = h(x(t))^{\frac{s}{r}} = \left(\int_{x(t)}^\infty v(s) \, ds \right)^{\frac{s}{r}} = \left[v \left(x : f(x) > t \right) \right]^{\frac{s}{r}} = \left[\lambda_f^v(t) \right]^{\frac{s}{r}}.
\]

Hence the lemma now follows in view of Lemma 1. \(\Box \)

III. Main Results

Theorem 1. Let \(0 < p, q, r, s < \infty \) be such that \(1 < q \leq s < \infty \). Let \(T_f \) be the Hardy-Steklov operator given in (3) with functions \(a \) and \(b \) satisfying the conditions given thereat. Also, we assume that \(a'(x) < b'(x) \) for \(x \in (0, \infty) \).

Then the inequality
\[
\left(\int_0^\infty \frac{s}{r} \left[T_f(x) \right]^s \, x^{slr} \, dx \right)^{\frac{1}{ls}} \leq C \left(\int_0^\infty \frac{q}{p} \left[f_r^v(x) \right]^q \, x^{qdr} \, dx \right)^{\frac{1}{lq}}
\]

where \(C \) is a constant. \(\Box \)
holds for all nonnegative non-decreasing functions f if and only if

$$
\sup_{0 < s < x < \infty} \left(\frac{s}{r} \int_0^s \left(\int_y^\infty w(z)dz \right)^{\frac{q}{r}} w(y)dy \right) \frac{1}{s} \left(\int_0^s \int_0^x v(z)dz^p \right)^{\frac{1}{p}} v(y)dy \right) < \infty. \tag{8}
$$

Proof. Using differentiation under the integral sign, the condition $a'(x) < b'(x)$ for $x \in (0, \infty)$ ensures that Tf is nonnegative and non-decreasing. Consequently, by Lemma 2, the inequality (7) is equivalent to

$$
\left(\int_0^s \left(\int_0^x w(z)dz \right)^{\frac{q}{r}} w(y)dy \right)^{\frac{1}{s}} \leq \frac{1}{s} \left(\int_0^s \int_0^x v(z)dz^p \right)^{\frac{1}{p}} v(x)dx \tag{9}
$$

where $W(x) = \frac{s}{r} \left(\int_0^x w(z)dz \right)^{\frac{q}{r}} w(x)$ and $V(x) = \frac{q}{p} \left(\int_x^\infty v(z)dz^p \right)^{\frac{1}{p}} v(x)$.

Thus it suffices to show that (9) holds if and only if (8) holds. The result now follows in view of Theorem 3.11 [2].

Similarly, in view of Theorem 2.5 [1], by making simple calculations, we may obtain the following:

Theorem 2. Let $0 < p, q, r, s, \infty$ be such that $0 < s < q, 1 < q < \infty$. Let T be the Hardy-Steklov operator given in (3) with functions a and b satisfying the conditions given thereat. Also, we assume that $a'(x) < b'(x)$ for $x \in (0, \infty)$. Then the inequality (7) holds for all nonnegative non-decreasing functions f if and only if

$$
\left(\int_0^\infty \left[a^s(t) - b^s(t) \right]^{\frac{q}{p}} v(t)^{\frac{q}{p}} dx \right)^{\frac{r}{l}} \leq \frac{q}{p} \left(\int_0^\infty v(x)dy \right)^{\frac{q}{p}} v(x)dx \sigma(t)dt < \infty
$$

and

$$
\left(\int_0^\infty \left[a^s(t) - b^s(t) \right]^{\frac{q}{p}} v(t)^{\frac{q}{p}} dx \right)^{\frac{r}{l}} \leq \frac{q}{p} \left(\int_0^\infty v(x)dy \right)^{\frac{q}{p}} v(x)dx \sigma(t)dt < \infty,
$$

where $\frac{1}{r} = \frac{1}{q} - \frac{1}{p}$, $\frac{1}{l} = \frac{1}{q} - \frac{1}{s}$, and σ is the normalizing function as defined in [3].

Remark. The condition $a'(x) < b'(x)$ for $x \in (0, \infty)$ cannot be relaxed since otherwise the monotonicity of Tf would be on stake. For example, consider the functions

$$
a(x) = \begin{cases}
 \frac{\sqrt{x}}{10}, & 0 \leq x < 10 \\
 \frac{1}{10} - 9, & 10 \leq x < 20 \\
 \frac{\sqrt{x} + 9(\sqrt{2} - 1)}{10}, & x \geq 20
\end{cases}
$$

and
Hardy-Steklov operator on two exponent Lorentz spaces for non-decreasing functions

\[b(x) = \begin{cases}
10\sqrt{10}x, & 0 \leq x < 10 \\
\frac{x}{\sqrt{10} + 99}, & 10 \leq x < 20 \\
10\sqrt{10}x + 99(\sqrt{2} - 1), & x \geq 20.
\end{cases} \]

Note that \(a \) and \(b \) satisfy all the aforementioned conditions, except that, we have \(a'(x) > b'(x) \) for \(10 \leq x < 20 \).

Acknowledgement

This work was supported in part by the Department of Science and Technology (DST), INDIA.

References