A Generalization of QN-Maps

S. C. Arora¹, Vagisha Sharma²

¹Former Professor & Head, Department of Mathematics, University of Delhi, Delhi, INDIA ²Department of Mathematics, IP College for Women, (University of Delhi), Delhi, INDIA

Abstract: The notion of GQN-Maps is introduced and some results regarding these maps are obtained. Keywords: Quasi-nonexpansive maps, GQN-maps, convex set, fixed point set, continuous maps, retract, retraction mapping, locally weakly compact, conditional fixed point property. AMS subject classification codes: 47H10, 54H25

I. Introduction

A self mapping T of a subset C of a normed linear space X is said to be nonexpansive if $||Tx - Ty|| \le ||x - y||$ for allx, y in C [3]. It is quasi- nonexpansive if T has at least one fixed point p of T in C and $||Tx - p|| \le ||x - p||$ for allx in C and for each fixed point p of T in C [5,6]. Many results have been proved for nonexpansive and quasi-nonexpansive mappings. One may referBrowder and Petryshyn [1], Bruck [4], Chidume [5], Das and Debata [6], Dotson [7], Petryshyn and Williamson [8], Rhoades [9], Singh and Nelson [11], Senter and Dotson [10]and many more.

The purpose of the present paper is to introduce the notion of generalized quasi-nonexpansive mappings (GQN-maps).

Throughout the paper, unless stated otherwise, X denotes a Banach space, \Re , the field of real numbers, \overline{A} , the closure of A and F(T), the fixed point set of a mapping T. A subset C of X is locally compact if each point of C has a compact neighbourhood in C [12]. The mapping r from a set C onto A, A being a subset of C, is a retraction mapping if ra = afor alla in A[2].

II. Definition

2.1: A selfmapping T of a subset C of X is said to be generalised quasi-nonexpansive mapping (GQN-map) provided T has at least one fixed point and corresponding to each fixed point T, there exists a constant M depending on the fixed point p (referred as M(p)) in \Re such that for each x belonging to C, $||Tx - p|| \le M(p)||x - p||$

Clearly, every quasi-nonexpansive map is a GQN map. However, the converse may not be true. Example 1.2 establishes the same. It is well known that for a linear map, the fixed point setF(T) is convex and for a continuous map, the fixed point set is closed. But there are non-linear discontinuous GQN-maps whose fixed point sets are closed and convex.

Example 2.2:

- (i) Define T: $[0, \frac{\pi}{2}] \rightarrow [0, \frac{\pi}{2}]$ by Tx = x + $(x - \frac{\pi}{4})(\cos x + 1)$ Then F(T) = $\{\frac{\pi}{4}\}$
- (ii) Define T: $[0,1] \rightarrow [0,1]$ by $Tx= (n+1)x - 1, \frac{1}{n+1} < x \le \frac{1}{n}, n = 1,2,...$ T(0) = 1Then $F(T) = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, ..., \}$
- (iii) Define T: $\Re^+ \to \Re^+$ by $Tx = \frac{1-x}{n}, \frac{1}{n+1} < x \le \frac{1}{n}, n = 0, 1, 2, 3, \dots$ Then F(T) = { $\frac{1}{n+1}$: n = 0, 1, 2, 3, \dots }
- (iv) Consider the Banach space $\Re^n = \{(x_1, x_2, x_3 \dots x_n): x_i \in \Re \text{ for all } i = 1, 2, 3, \dots, n\}$. Set $C = \{(x_1, x_2, x_3 \dots x_n): x_n = 0 \text{ for all } n > 2, x_2 \neq 0, x_2 \neq 1\}$.

 $\begin{array}{l} \text{Define } T: C \to C \ \text{ by} \\ T(x_1, x_2, 0, 0 \dots .0) = (2x_2 - (x_2 - 1)x_1, \, x_2, 0, 0, \dots .0) \\ \text{Then } F(T) = \{(2, x_2, 0, 0, \dots , 0): x_2 \in \mathfrak{R} \sim \{0, 1\}\}. \end{array}$

The above examples show that F(T) may or may not be closed and convex for a GQN-map. Note that except in example (i), the GQN-maps are discontinuous also. The exact set of conditions under which the fixed point set of a GQN-map is closed and convex, areyet to obtained, but the conditions for F(T) to be a GQN-retract are obtained in the next section.

III. Main results IV.

In this section, C always denotes a closed, bounded and convex subset of the space X.

Definition3.1:A subset A of C is said to be a GQN-retract of C if there exists a retraction mapping r from C onto A which is a GQN-map.

To find the set of conditions for any nonempty subset of a locally weakly compact set to be aGQN-retract, we prove the following two lemmas:

Lemma3.2: Suppose A is a nonempty subset of a locally weakly compact set C and let $G(A) = \{f: C \to C \text{ is a } GQN\text{-map and } f(x) = x \text{ for each } x \text{ in } A\}$. Then G(A) is compact in the topology of weak-pointwise convergence.

Proof: Fix $x_0 \in A$. For each $f \in G(A)$, there exists a real number $M_f(x_0)$ such that $|| f(x) - f(x_0)|| \le M_f(x_0)|| x - x_0||$ for all $x \in C$. Let $M(x_0) = \int_{f \in G(A)}^{Sup} M_f(x_0)$.

Case (i): Let $M(x_0)$ be finite. For each $x \in C$, define $A_x = \{y \in C : ||y - x_0|| \le M(x_0)||x - x_0||\}$. Then A_x contains f(x) for each x in C and f in G(A) which gives that G(A) is a subset of the Cartesian product $P = \prod_{x \in C} A_x$. Now A_x is convex and weakly compact. So if A_x is given the weak topology and P is given the product topology, by Tychonoff's theorem for the product of compact sets, P is compact.

Case (ii): Let $M(x_0)$ be infinite. Then P = C and hence P is compact. Now to show that G(A) is closed in P, let f be a limit point of G(A) in Pand $\langle f_{\lambda} \rangle$, a net in G(A) such that $f_{\lambda} \rightarrow f$. Then, using lower semi-continuity of the norm function and the fact that f_{λ} is in G(A), we get that G(A) is a closed subset of the compact set P and hence is compact as desired.

Lemma3.3: Suppose A is nonempty subset of C and C is locally weakly compact. Then there exists an r in G(A) such that for each $f \in G(A)$ we have $||rx - ry|| \le ||f(x) - f(y)||$ for all x, yin C.

Proof: Define an order < on G(A) by setting f < g if $||f(x) - f(y)|| \le |g(x) - g(y)||$ for each x, y in C with inequality holding for at least one pair of x and y. Also $f \le g$ means either f < g or f = g. Clearly \le is a partial order on G(A).For each f in G(A), we define the initial segmentIs(f) = { $g \in G(A)$: $g \le f$ }. Then, as shown in lemma 2.2, Is(f) is closed and compact in G(A). Now consider a chain ξ in G(A). Then $T = \{Is(f): f \in \xi\}$ is a chain of compact sets under set- inclusion as a partial order relation.By the finite intersection property for compact sets, T is bounded below, say, by Is(h). Then $f \le h \forall f \in G(A)$. Now we prove the desired result in the following form:

Theorem3.4: Suppose C is locally weakly compact and A is a nonempty subset of C. Suppose further that for each z in C, there exists an $h \in G(A)$ such that $h(z) \in A$. Then A is a GQN-retract of C.

Proof: By lemma 2.3, there exists an
$$r \in G(A)$$
 such that for each x, y in C and $f \in G(A)$
 $||r(x) - r(y)|| \leq |f(x) - f(y)||$ (2.1)

Also, it can be easily verified that for each $f \in G(A)$, the composite map $f \circ r \in G(A)$. Since $r \in G(A)$, it is sufficient to show that for each $x \in C$, $r(x) \in A$. For this, let $x \in C$ and put z = r(x). Then as $z \in C$, the hypothesis assures the existence of an $h \in G(A)$ such that $h(r(x)) \in A$. Now, let h(r(x)) = y then as $h \circ r \in G(A)$, the inequality 2.1 implies $|| r(x) - r(y) || \le || h \circ r (x) - h \circ r (y) || \qquad (2.2)$ Since $y = h(r(x)) \in A$ and $r \in G(A)$, therefore, r(y) = y which further implies h(r(y)) = h(y) = y = y

h(r(x)). So we get , in view of 2.2, that $r(x) \in A$.

Since for a GQN-map T, the fixed point set F(T) is always nonempty, so we have the following :

Corollary 3.5: Let C be a locally weakly compact set and T: $C \rightarrow C$ is a GQN-map. Suppose that for each $z \in C$ there exists an h in G(F(T)) such that $h(z) \in F(T)$. Then F(T) is a GQN-retract of C.

Theorem 3.6: Under the conditions of Theorem 2.4, the class of GQN-retracts is closed under arbitrary intersection.

Proof:By theorem 2.4, the collection { Is(f): $f \in \xi$ }, where ξ is a chain in G(A), has a minimal element f in G(A) which is a GQN-retract of C. Let $\Lambda = \{A_f \subseteq C: f \in G(A) \text{ and } A_f \text{ is the corresponding GQN-retract of C}\}$. Clearly $\Lambda \neq \varphi$ as $A \in \Lambda$. Order Λ by $A_f \subseteq A_g$ iff $\leq g \forall f$ and g in G(A). By Zorn's lemma, Λ has a minimal element, say, A_g . It can be seen that g is minimal in G(A).

Put $F = \bigcap_{f \in G(A)} A_f$. As $A \subseteq F(f)$ for every f, therefore, F is nonempty. Also minimality of g in G(A) implies that A_g is contained in each GQN-retract of C and hence in F. Then $F = A_g$. Thus F is a GQN-retract of C.

We now establish that the set of common fixed points of an increasing sequence of GQN-maps is a GQN-retract of C .

Theorem 3.7: Let C be a locally weakly compact subset of X. If $\langle r_n \rangle$ is a sequence of GQN-maps in G(A) such that the corresponding GQN-retracts $F(r_n)$ form an increasing sequence with $\bigcap_n F(r_n) \neq \phi$ then there exists a GQN-map r from C to C such that $F(r) = \bigcap_n F(r_n)$.

Proof: Consider $\Im = \{F(r_n): r_n \text{ is a GQN-retraction of C onto } F(r_n)\}$.Order \Im as $A \leq B$ if $A \subseteq B$. By Zorn's lemma, there exists a minimal element, say, $F \in \Im$.Then $F = \bigcap_n F(r_n)$. Thus $\bigcap_n F(r_n)$ is a GQN-retract of C. By hypothesis, $\bigcap_n F(r_n) \neq \varphi$. So let $\in \bigcap_n F(r_n)$. Then $p \in F(r_n)$ for each n. Choose a sequence $\langle \lambda_n \rangle$ of

positive numbers such that $\sum_{n} \lambda_{n} = 1$ and let $r = \sum_{n} \lambda_{n} r_{n}$. For each $p \in \bigcap_{n} F(r_{n})$ and $x \in C$, $||r(x) - r(p)|| \le ||(\sum_{n} \lambda_{n} r_{n})(x) - (\sum_{n} \lambda_{n} r_{n})(p)||$

$$\leq \sum_{n} \lambda_{n} || \mathbf{r}_{n} \mathbf{x} - \mathbf{r}_{n} \mathbf{p} || \\ \leq \mathbf{M}(\mathbf{p}) || \mathbf{x} - \mathbf{p} ||$$

 $as\sum_{n} \lambda_n = 1$ and $M(p) = max_n \{ M_{r_n}(p) : M_{r_n}(p) \text{ is a constant corresponding to the GQN-map } r_n \}$. Thus r is a GQN-map. Further, using $\sum_n \lambda_n = 1$, it can be shown that $F(r) = \bigcap_n F(r_n)$ which proves the result.

Definition3.8: [3]:A mapping T: C \rightarrow X is said to satisfy the conditional fixed point property (CFPP) if either T has no fixed point or T has a fixed point in each nonempty bounded closed set it leaves invariant.

Definition 3.9: A nonempty subset C is said to have the hereditary fixed point property (HFPP) for GQN maps if every nonempty bounded closed convex subset of C has a fixed point for GQN-mappings. Following Bruck [3], we prove the following:

Theorem 3.10: If C is locally weakly compact and T: C \rightarrow C is a GQN-map which satisfies CFPP then F(T) is a GQN retract of C.

Proof: By definition of T, F(T) is nonempty. For a fixed z in C, define $K = \{f(z) : f \in G(F(T))\}$. In view of the compactness of G(F(T)), following [3], K is weakly compact and hence bounded. Also, $K \neq \phi$. For f and g in G(F(T) and $0 \le \lambda \le 1$, consider $\lambda f + (1 - \lambda)g$. If $y_0 \in F(T)$ then $F(y_0) = y_0 = g(y_0)$ so that for all x, y in C, $|| (\lambda f + (1 - \lambda)g)(x) - y_0|| \le |(\lambda M_f(y_0) + (1 - \lambda)M_g(y_0)|| |x - x_0||$

where $M_f(y_0)$ and $M_g(y_0)$ are real numbers corresponding to the fixed point y_0 and for mappings f and g respectively. Let us $putM_{(\lambda M_f + (1-\lambda)M_g)}(y_0) = \lambda M_f(y_0) + (1-\lambda)M_g(y_0)$ then $\lambda f + (1-\lambda)g$ is a GQN-map. Also every fixed point x of T is a fixed point of $\lambda f + (1-\lambda)g$ and hence K is convex. Also for $f \in G(F(T))$, $T \circ f \in G(F(T))$ i.e. $T(K) \subseteq K$. Therefore, by hypothesis T has a fixed point in K i.e. $\exists f \in G(F(T))$ such that $f(z) \in F(T)$ for each $z \in C$. Thus, by theorem 2.4, F(T) is a GQN-retract of C.

Corollary3.11: Suppose T: C \rightarrow C is a GQN-map satisfying CFPP and the convex closure $\overline{\text{conv}(T(C))}$ of the range of T is locally weakly compact then F(T) is a GQN-retract of C.

The following result can be proved following the arguments of Bruck [3].

Theorem3.12: Let C be locally weakly compact and $\{F_{\alpha}: \in \Lambda\}$ be a family of weakly closed GQN retracts of C. Then

- (a) If this family is directed by \neg , then $\bigcap_{\alpha} F_{\alpha}$ is a generalised quasi-nonexpansive retract of C.
- (b) If each F_{α} is convex and the family is directed by \subset then $(\overline{U_{\alpha}F_{\alpha}})$, the closure of $(U_{\alpha}F_{\alpha})$, is a generalised quasi-nonexpansive retract of C.

Lemma3.13: Let C be weakly compact and satisfies HFPP for GQN-maps. Let F be nonempty GQN- retract of C and T: $C \rightarrow C$ is a GQN-map which leaves F invariant. Then $F(T) \cap F$ is a nonempty GQN-retract of C.

Theorem3.14: Suppose C is weakly compact and has HFPP for GQN-maps. If $\{T_j : 1 \le j \le n\}$ is a finite family of commuting GQN-maps $T_i: C \rightarrow C$ then $\bigcap_{i=1}^n F(T_i)$ is a nonempty GQN-retract of C.

Theorem 3.15: Let $\{T_{\alpha}: \alpha \in \Lambda\}$ is a family of GQN-maps of C, where, Λ is some index set. If exactly one map, say T_{α} , of the family is linear and continuous and commutes with each of the remaining then $F(T_{\alpha}) \cap (\bigcap_{\beta \neq \alpha} \text{ conv. } F(T_{\beta}))$ is nonempty.

Proof: Without loss of generality, we may assume that T_1 is linear and continuous such that $T_1T_{\alpha} = T_{\alpha}T_1$ for all $\alpha \in \Lambda$. Clearly $\overline{\text{conv}(F(T_1))} = F(T_1)$. Also for each $\alpha \in \Lambda$, $\overline{\text{conv}(F(T_{\alpha}))}$ is a nonempty compact convex subset of C. Linearity and continuity of $\underline{T_1}$ implies $\underline{T_1}(\overline{\text{conv}(F(T_{\alpha}))} \subset \overline{\text{conv}(F(T_{\alpha}))})$. So, by Tychonoff's theorems for fixed points, T_1 has fixed points in $\overline{\text{conv}(F(T_{\alpha}))}$ and hence the result.

Remark3.16: In the proof of the above result, the condition of the self mapping being GQN-map is required to assume that $F(T_{\alpha})$'s are nonempty. So if the hypothesis of the theorem contains the fact that $F(T_{\alpha}) \neq \phi$ for all $\alpha \in \Lambda$, the result remains true for an ordinary family of mappings with exactly one map of the family being linear and continuous.

The result of theorem 2.15 can be extended to a countable intersection of convex closures of $F(T_i)$'s but the least conditions required are yet to be traced though the result is trivially true for the family of linear and continuous maps.

References

- Browder, F.E. andPetryshyn, W.V.: The Solutions Of Iterations Of Nonlinear Functional Analysis Of Banach Spaces, Bull. Amer. Math. Soc. 72 (1966), 571 – 575.
- [2]. Bruck R. E.: Nonexpansive Retracts of Banachspaces, Bull. Amer. Math. Soc. 76 (1970), 384 386.
- [3]. Bruck, R. E.: Properties of Fixed Points of Nonexpansive Mappings InBanach Spaces, Trans. Amer. Math. Soc., Vol. 179 (1973), 251 262.
- [4]. Bruck, R.E.: A Common Fixed Point Theorem For A Commuting Family of Nonexpansivemaps, Pac. J. Math., Vol. 53, No.1, 1974, 59-71.
- [5]. Chidume, C.E.: Quasi-Nonexpansive Mappings AndUniform Asymptotic Regularity, Kobe J. Math. 3 (1986), No.1,29 35.
- [6]. Das, G. andDebata, J. P.:FixedPoints Of Quasi-Nonexpansive Mappings, Indianj. Pure Appl. Math, 17 (1986), No.11, 1263 1269.
- [7]. Dotson, W. G.: Fixed Points OfQuasi- Nonexpansive Mappings, J. Australian Math. Soc.13 (1972), 167 170.
- [8]. Petryshyn, W. V. AND Williamson, T. E.: Strong And Weak Convergence Of The Sequence Of Successive Approximations For Quasi-Nonexpansive Mapping, J. Math. Anal.Appl. Vol. 43 (1973), 459 – 497.
- [9]. Rhoades, B. E.:Fixedpoint Iterations OfGeneralised Nonexpansive Mappings, J. Math. Anal.Appl. Vol. 130 (1988), No. 2, 564 576.
- [10]. Senter, H. F. And Dotson, W. G.: Approximating Fixed Points OfNonexpansive Mappings, Proc. Amer. Math. Soc. 44 (1974), 375 - 380.
- Singh, K. L. AND Nelson, James L.: Nonstationary Process ForQuasi- Nonexpansivemappings, Math. Japon. 30 (1985), No. 6, 963 970.
- [12]. Yosida, K.: Functional Analysis, Narosa Publishing House, New Delhi, 1979.