n-Path Graph

P. Uma ${ }^{1}$ and R. Kala ${ }^{2}$
Department of Mathematics, Einstein College of Engineering Tirunelveli 627 012, Tamil Nadu, India. Department of Mathematics, Manonmaniam Sundaranar University,Tirunelveli 627 012, Tamil Nadu, India.

Abstract: The n-path graph $P G_{n}(G)$ of a graph G is a graph having the same vertex set as G and 2 vertices u and v in $P G_{n}(G)$ are adjacent if and only if there exist a path of length n between u and v in G. In this paper we find n-path graph of some standard graphs. Bounds are given for the degree of a vertex in $P G_{n}(G)$. We further characterise graphs G with $P G_{2}(G)=\bar{G}, P G_{2}(G)=G$ and $P G_{2}(G)=K_{n}$
Keyword: n-path, distance, diameter. AMS subject classification: 05C76

I. Introduction

By a graph $G=(V, E)$ we mean a finite, undirected connected graph without loops and multiple edges. Terms not defined here are used in the sense of Harary[2,].

Research in graph theory is developing in diverse aspects. One among these is the study of graphs derived from graphs. In this paper we define a new graph called n-path graph for any connected graph G. It is defined as a graph having the same vertex set as G and 2 vertices u and v are adjacent in $P G_{n}(G)$ if and only if there exist a path of length n between u and v in G.
The open neighbourhood $N(v)$ of a vertex v in a graph G is the set of all vertices adjacent to v in G.

II. Main Results

Definition 2.1 The n-path graph $P G_{n}(G)$ of a graph G is a graph having the same vertex set as G and 2 vertices u and v in $P G_{n}(G)$ are adjacent if and only if there exist a path of length n between u and v in G.

Example 2.2 A graph G and its $P G_{n}(G)$ are given in figure.

Theorem 2.3

1. $P G_{2}\left(K_{1, n}\right)=K_{n} \cup K_{1}$.
2. $P G_{2}\left(B_{m, n}\right)=K_{m+1} \cup K_{n+1}$.
3. $P G_{2}\left(K_{m, n}\right)=K_{m} \cup K_{n}$.
4. If G is a spider $S\left(K_{1, n}\right)$ then $P G_{2}(G)=K_{n} \cup K_{1, n}$.
5. If G is a wounded spider with r wounded edges then $P G_{2}(G)=K_{1, n-r} \cup K_{n}$.
6. If G is a Wheel W_{n} then $P G_{2}(G)=K_{n+1}$.
7. $P G_{2}\left(K_{n}\right)=K_{n}$.

Proof.

1. Let $V\left(K_{1, n}\right)=\left(V_{1}, V_{2}\right)$, where $V_{1}=\left\{v_{0}\right\}, V_{2}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. All the vertices of V_{2} are connected to each other by a path of length 2 . So all the n vertices in V_{2} are adjacent to each other in $P G_{2}(G)$. Also v_{0} is not adjacent to any other vertex in $P G_{2}(G)$. Hence $P G_{2}\left(K_{1, n}\right)=K_{n} \cup K_{1}$.
2. Let the vertices of $B(m, n)$ be $v_{1}, v_{2}, v_{1 i}(1 \leq i \leq m), v_{2 j}(1 \leq j \leq n)$, where v_{1}, v_{2} are 2 centers and $v_{1 i}, v_{2 j}$ are pendent vertices. Let $S_{1}=\left\{v_{1}, v_{21}, v_{22}, \ldots, v_{2 n}\right\}, S_{2}=\left\{v_{2}, v_{11}, v_{12}, \ldots, v_{1 m}\right\}$ be a partition of
$V(G)$. No vertex of S_{1} is connected by a path of length 2 to a vertex of S_{2}. Therefore $<S_{1}>$ and $<S_{2}>$ are 2 components in $P G_{2}(G)$. Also any 2 vertices in S_{1} (resp. S_{2}) are connected by a path of length 2 in $P G_{2}(G)$. Hence $P G_{2}\left(B_{m, n}\right)=K_{m+1} \cup K_{n+1}$.
3. Let $V\left(K_{m, n}\right)=U \cup V$, where $U=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}, V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. As above, we get $P G_{2}\left(K_{m, n}\right)=K_{m} \cup K_{n}$.
4. Let the vertices of $K_{1, n}$ be $\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ where v_{0} is the center. Let G be the spider obtained by subdividing $K_{1, n}$ and u_{i} be the new vertex obtained by subdividing $v_{0} v_{i}(1 \leq i \leq n)$. Let $S_{1}=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $S_{2}=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be a partition of the vertex set. No vertex of S_{1} is connected by a path of length 2 to a vertex of S_{2}. So $\left\langle S_{1}\right\rangle$ and $\left\langle S_{2}\right\rangle$ are 2 components in $P G_{2}(G)$. Also any 2 vertices of S_{2} are connected to each other by a path of length 2 . So in $P G_{2}(G),\left\langle S_{2}\right\rangle=K_{n}$. Also all the vertices $v_{1}, v_{2}, \ldots, v_{n}$ are connected to v_{0} by a path of length 2 and they are not connected to themselves by a path of length 2 . So $\left\langle S_{1}\right\rangle=K_{1, n}$. Hence $P G_{2}(G)=K_{n} \cup K_{1, n}$.
5. Let the vertices of $K_{1, n}$ be $\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}$ where v_{0} is the center. Let G be the wounded spider obtained by subdividing $n-r$ edges. Let u_{i} be the new vertex obtained by subdividing $v_{0} v_{i}(1 \leq i \leq n-r)$. By an argument similar to the above, we get $P G_{2}(G)=K_{1, n-r} \cup K_{n}$.
6. Let the vertices of the wheel W_{n} be $\left\{v, v_{1}, v_{2}, \ldots, v_{n}\right\}$, where v is the center of the wheel. Every vertex is connected by a path of length 2 to all the other vertices. Hence $P G_{2}\left(W_{n}\right)=K_{n+1}$.
7. Let the vertices of K_{n} be $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. It is obvious that $P G_{2}\left(K_{n}\right)=K_{n}$.

Theorem 2.4 Let P_{n} be a path on n vertices. $P G_{2}\left(P_{n}\right)=P_{n_{1}} \cup P_{n_{2}}$, where $n_{1}+n_{2}=n, n_{1}=\left\lceil\frac{n}{2}\right\rceil$ and $n_{2}=\left\lfloor\frac{n}{2}\right\rfloor$.

Proof. Let P_{n} be $v_{1} v_{2} \ldots v_{n}$. Let $n_{1}=\left\lceil\frac{n}{2}\right\rceil, n_{2}=\left\lfloor\frac{n}{2}\right\rfloor$. Let $S_{1}=\left\{v_{1}, v_{3}, \ldots\right\}, S_{2}=\left\{v_{2}, v_{4}, \ldots\right\}$. No vertex of S_{1} is adjacent to a vertex of S_{2} in $P G_{2}\left(P_{n}\right)$. So $\left\langle S_{1}\right\rangle$ and $\left.<S_{2}\right\rangle$ are two components of $P G_{2}\left(P_{n}\right)$. Also $\left|S_{1}\right|=n_{1}$ and $\left|S_{2}\right|=n_{2}$. It is easy to observe that $\left\langle S_{1}\right\rangle=P_{n_{1}}$ and $\left\langle S_{2}\right\rangle=P_{n_{2}}$. Hence $P G_{2}\left(P_{n}\right)=P_{n_{1}} \cup P_{n_{2}}$.
Now we extend this to any positive integer r.
Theorem 2.5 Let P_{n} be a path of n vertices. $P G_{r}\left(P_{n}\right)=P_{n_{1}} \cup P_{n_{2}} \cup \ldots \cup P_{n_{r}}$, where $n_{1}+n_{2}+\ldots+n_{r}=n$ and $n_{i}=\left\lfloor\frac{n-i}{r}\right\rfloor+1 .(1 \leq i \leq r)$

Proof. Let $S_{i}=\left\{v_{i}, v_{r+i}, v_{2 r+i} \ldots, v_{k_{i} r+i}\right\}, k_{i}=\left\lfloor\frac{n-i}{r}\right\rfloor, 1 \leq i \leq r$. By the definition of $P G_{r}\left(P_{n}\right), v_{i}$ and $v_{k_{i} r+i}$ are the 2 vertices which are adjacent to one vertex and all other vertices are adjacent to 2 vertices. Therefore each $\left\langle S_{i}\right\rangle$ is a path of length k_{i}. Also for any i and $j(1 \leq i, j \leq r)$, no vertex of S_{i} is
adjacent to a vertex of S_{j}. Therefore $<S_{i}>$'s are disconnected components of $P G_{r}\left(P_{n}\right)$. Hence $P G_{r}\left(P_{n}\right)=P_{n_{1}} \cup P_{n_{2}} \cup \ldots \cup P_{n_{k}}$.

Lemma 2.6 Let C_{n} be a cycle of length n. Then $P G_{r}\left(C_{n}\right)=P G_{n-r}\left(C_{n}\right)$.

Proof. If there is a path of length r in the clockwise direction then there is a path of length $n-r$ in the anti clockwise direction. So $P G_{r}\left(C_{n}\right)=P G_{n-r}\left(C_{n}\right)$.

Theorem 2.7 Let C_{n} be a cycle of length n. Then $P G_{r}\left(C_{n}\right)=q C_{\frac{n}{q}}$, where $q=\operatorname{gcd}(r, n)$.

Proof. Let $V\left(C_{n}\right)=\{1,2,3, \ldots, n\}$ and $q=\operatorname{gcd}(r, n)$. Let us partition $V\left(C_{n}\right)$ into r subsets as follows. Assume that the vertices of $S_{i^{\prime}} S$ are listed in the increasing order of their indices. $S_{i}=\left\{r s+i / i=1,2, \ldots, k, s=0,1,2, \ldots, \frac{n-k}{r}, n \equiv k(\bmod r)\right\}$,
$S_{j}=\left\{r s+j / j=k+1, k+2, \ldots, r, s=0,1,2, \ldots, \frac{n-k}{r}-1\right\}$. By the choice of S_{i} any 2 vertices in each S_{i} 's are at a distance $m r, m=1,2, \ldots$ Therefore each $\left\langle S_{i}\right\rangle$ is connected in $P G_{r}\left(C_{n}\right)$.
Case: $1 r \mid n$
Now $n \equiv 0(\bmod r)$ and so $k=0$.
Claim $\left\langle S_{j}\right\rangle$'s are r components in $P G_{r}\left(C_{n}\right)$.
Suppose 2 vertices $v_{m} \in S_{i}$ and $v_{n} \in S_{j}$ are connected in $P G_{2}\left(C_{n}\right)$.
$d\left(v_{m}, v_{n}\right)=\left|r m_{1}+i-\left(r m_{2}+j\right)\right|=\left|r\left(m_{1}-m_{2}\right)+(i-j)\right| \neq$ multiple of r (since $i-j<r$), which is a contradiction. $\left\langle S_{j}\right\rangle$'s are r components in $P G_{r}\left(C_{n}\right)$ and each $\left\langle S_{j}\right\rangle$ has $\frac{n}{r}$ vertices. Therefore $P G_{r}\left(C_{n}\right)=r C_{\frac{n}{r}}=\operatorname{gcd}(r, n) C_{l}$.

If $r=\frac{n}{2}$, then $P G_{r}\left(C_{n}\right)=r P_{2}$.
Case: $2 r \nmid n$
Claim 1: Last vertex of S_{i} and first vertex of S_{t} are adjacent where
$t=\left\{\begin{array}{cl}i+r-k, & \text { if } i+r-k \leq r \\ i+r-k-r & \text { if } i+r-k>r\end{array}\right.$.
Let u be the vertex which is at a distance r in the clockwise direction from the last vertex of s_{i}. Therefore
$u=r\left(\frac{n-k}{r}+1\right)+i-n=n-k+r+i-n=r-k+i$. Hence the claim.
Claim 2: If S_{i} and S_{j} lies in the same component in $P G_{r}\left(C_{n}\right)$ then $j-i$ is a multiple of q.
Suppose S_{i} and S_{j} lies in the same component in $P G_{r}\left(C_{n}\right)$. Then by claim 1, $j-i$ is a multiple of $r-k$, which is a multiple of q. Hence $j-i$ is a multiple of q.
If $q=1$, then by claim 2 , all the S_{i} 's are connected and hence $P G_{r}\left(C_{n}\right)=C_{n}$.
Suppose $q>1$.

Claim 3: No two of $S_{1}, S_{2}, \ldots, S_{q}$ lie in the same component.
If S_{i} and $S_{j},(1 \leq i<j \leq q)$ lies in the same component, then $j-i$ is a multiple of q, which is a contradiction.
Hence by claims 2 and $3, P G_{r}\left(C_{n}\right)$ has q components and each has equal number of S_{i} 's. Therefore $P G_{r}\left(C_{n}\right)=q C_{\frac{n}{q}}$.
Theorem 2.8 Let G be any graph and let $v \in V(G)$. Then $\operatorname{deg}_{P} G_{2}(G)(v) \leq \sum_{u \in N(v)}\left(\operatorname{deg} g_{G}(u)-1\right)$. Further equality holds for any vertex v iff v does not lie in a C_{4}, K_{4} or $K_{4}-e$.

Proof. By the definition of $P G_{2}(G), v$ is adjacent to all the vertices which are connected to it by a path of length 2. In other words all the vertices of $\{N(u)-\{v\} / u \in N(v)\}$ are adjacent to v in $P G_{2}(G)$. Therefore $d e g_{P G_{2}(G)} v \leq \sum_{u \in N(v)}\left(d e g_{G} u-1\right)$.
If v does not lie in a C_{4}, then $\underset{u \in N(v)}{\cap}(N(u)-\{v\})=\varnothing$. Therefore $\operatorname{deg}_{P G_{2}(G)} v=\sum_{u \in N(v)}\left(d e g_{G} u-1\right)$. Conversely, let $v \in V(G)$ with $\operatorname{deg}_{P G_{2}(G)} v=\sum_{u \in N(v)}\left(\operatorname{deg}_{G} u-1\right)$. Let $\operatorname{deg}_{G}(v)$ be denoted by δ_{v}.
Claim v does not lie in a C_{4}.
If not, suppose v lies in a C_{4}. Let $N(v)=\left\{u_{1}, u_{2}, \ldots, u_{\delta_{v}}\right\}$ and $N\left(u_{i}\right)=\left\{w_{1}, w_{2}, \ldots, w_{\delta_{u_{i}}}\right\}\left(1 \leq i \leq \delta_{v}\right)$.
The cycle C_{4} containing v is either of the form $v u_{i} u_{j} u_{k} v$ or of the form $v u_{r} w_{s} u_{t} v$. In both the cases $\operatorname{deg}_{P G_{2}(G)}(v)<\sum_{u \in N(v)}\left(\operatorname{deg}_{G} u-1\right)$, which is a contradiction. Therefore v does not lie in a C_{4}.

Corollary 2.9 If G is a r-regular graph, then for every $v \in V(G), d e g_{P G_{2}(G)} v \leq r(r-1)$.
Theorem 2.10 Let G be any graph. Let $v \in V(G)$ and $S_{i}=\{u \in V(G) / d(u, v)=i\}(1 \leq i \leq n)$. Then $\left|S_{n}\right| \leq \operatorname{deg}{ }_{P G_{n}(G)}(v) \leq\left|S_{1} \bigcup S_{2} \bigcup \ldots \bigcup S_{n}\right|$.

Proof. The set S_{n} contains all the vertices which are at a distance n from v. So there is a path of length n between them. Therefore $\operatorname{deg}_{P G_{n}(G)}(v) \geq\left|S_{n}\right|$. Every vertex u adjacent to v in $P G_{n}(G)$ should lie in at least one $S_{j}(1 \leq j \leq n)$. Hence $\operatorname{deg}{ }_{P G_{n}(G)}(v) \leq\left|S_{1} \bigcup S_{2} \bigcup \ldots \bigcup S_{n}\right|$.

Corollary 2.11 If G is a tree, then $d e g_{P G_{n}(G)}(v)=\left|S_{n}\right|$.
Proof. For a tree, there is only one path between any 2 vertices. Hence for every $u \in S_{i}$, there is only one path of length n between u and v.
So $\operatorname{deg}{ }_{P G_{n}(G)} v=\left|S_{n}\right|$.

Lemma 2.12 Let T be a tree. For $u, v \in V(T), d_{T}(u, v)$ is even if and only if $u \& v$ are connected by a path in $P G_{2}(T)$.

Proof. Assume $d_{T}(u, v)=2 n$. Let $u=u_{1}, u_{2} \ldots u_{2 n} u_{2 n+1}=v$ be the path connecting $u \& v$. By the
definition of 2-path graph, $u_{1} \& u_{3}$ are adjacent in $P G_{2}(T)$. Let the edge be e_{1}. Likewise we have $u_{3} u_{5}=e_{2}, u_{5} u_{7}=e_{2}, \ldots, u_{2 n-1} u_{2 n+1}=e_{\frac{n-1}{2}}$. Therefore there is a path of length $\frac{n-1}{2}$ between $u \& v$ in $P G_{2}(T)$.
Conversely assume $u \& v$ are connected by a path of length l in $P G_{2}(T)$. Let $u=w_{1}, w_{2} \ldots w_{l+1}=v$ be the path connecting $u \& v$ in $P G_{2}(T)$. By the definition of 2-path graph, as w_{1}, w_{2} are adjacent in $P G_{2}(T)$, there is a path of length 2 between $w_{1} \& w_{2}$ in T. Let the path be $w_{1}, w_{1^{\prime}}, w_{2}$. Since T is a tree, this path is the unique path between $w_{1} \& w_{2}$ in T. by similar argument we get the path between $u \& v$ in T namely $w_{1}, w_{1^{\prime}}, w_{2}, w_{2^{\prime}}, w_{3} \ldots w_{l} w_{l^{\prime}} w_{l+1}$ which is of length $2 l$. Hence the proof.

Theorem 2.13 For any connected tree $T . \mathrm{PG}_{2}(T)$ is disconnected with 2 components. But the converse is not true.

Proof.

Let T be a connected tree. Let u be a pendant vertex $\& v$ is the support. Let the vertex set $V_{1}=V(T)-\{u\} \quad$ is partition as follows $\quad V_{1}=S^{1} \cup S^{2}, \quad S^{1}=S_{1}^{1} \cup S_{2}^{2} \cup \ldots \cup S_{l}^{1} \quad$ and $S^{2}=S_{1}^{2} \cup S_{2}^{2} \cup \ldots \cup S_{m}^{2} \quad$ and $\quad S_{i}^{1}=\left\{v_{i r}^{1} \in V_{1} / d\left(u, v_{i r}^{1}\right)=2 i, 1 \leq r \leq l_{i}\right\}$ $S_{j}^{2}=\left\{v_{j t}^{2} \in V_{1} / d\left(u, v_{j t}^{1}\right)=2 j-1,1 \leq t \leq m_{j}\right\}$.
Claim:1 $\left\langle S^{1}\right\rangle$ is connected in $P G_{2}(T)$.
Let $v_{i s}^{1} \in S_{i}^{1} \& v_{j t}^{1} \in S_{j}^{1}$. Since T is connected there exists a path $v_{i s}^{1}=u_{1}, u_{2}, \ldots, u_{m}=v_{j i}^{1}$ in $T . u_{1} \in S_{i}^{1}$, $u_{2} \in S_{i+1}^{2} \cup S_{i-1}^{2}$, since no two vertices of S_{i}^{1} are adjacent. i.e, $u_{2} \in S^{2}, u_{3} \in S^{1}$ etc. ie) $u_{l} \in S^{1}$ if l is odd. Here $v_{j t}^{1}=u_{m} \in S^{1}$. Therefore m is odd. Therefore length of path is even. By lemma $2.12, v_{i s}^{1} \& v_{j t}^{1}$ are connected in $P G_{2}(T)$. ie) $\left\langle s^{1}\right\rangle$ is connected in $P G_{2}(T)$. Similarly $\left\langle s^{2}\right\rangle$ is connected in $P G_{2}(T)$.
Claim:2 $\left\langle s^{1}\right\rangle$ and $\left\langle s^{2}\right\rangle$ are disconnected in $P G_{2}(T)$. Let $v_{i s}^{1} \in S_{i}^{1} \& v_{j t}^{2} \in S_{j}^{2}$. Let $v_{i s}^{1}=w_{1}, w_{2}, \ldots, w_{n}=v_{j t}^{2}$ be the path between $v_{i s}^{1} \& v_{j t}^{2}$ in $T . v_{i s}^{1}=w_{1} \in S_{i}^{1} \Rightarrow w_{2} \in S_{i+1}^{1} \cup S_{i-1}^{1}$. i.e., $w_{2} \in S^{2}, w_{3} \in S^{1}$ so on. Since $w_{m}=v_{j t}^{2} \in S^{2}$ implies m is even. ie) $d\left(v_{i s}^{1}, v_{j t}^{2}\right)$ is odd. By lemma $v_{i s}^{1} \& v_{j t}^{2}$ are not connected in $P G_{2}(T)$. ie) $\left\langle s^{1}\right\rangle$ and $\left\langle s^{2}\right\rangle$ are disconnected in $P G_{2}(T)$. Hence $P G_{2}(T)$ is disconnected with 2 components. Converse is not true.

Example 2.14 $P G_{2}\left(C_{6}\right)$ has 2 components.
Theorem 2.15 For any graph $G, P G_{2}(G)=\bar{G}$ if and only if G is a star.
Proof. Suppose $P G_{2}(G)=\bar{G}$. If 2 vertices. u and v are adjacent in G then they are not adjacent in \bar{G} and vice versa. Since $P G_{2}(G)=\bar{G}$, any 2 adjacent vertices u and v in G are not connected by a path of length 2. ie., G is K_{3}-free. Also for any two non-adjacent vertices u and v in G, there is a path of length 2 between u and v so that distance between u and v is 2.Thus $\operatorname{diam}(G) \leq 2$. Hence $G \cong K_{1, n}$. Converse is obvious.

Theorem 2.16 For any simple graph $G, P G_{2}(G)$ can never be a path.
Proof. If not there exist a graph G with $P G_{2}(G) \cong P_{p}$. By theorem2.7, G does not contain C_{n} as a
subgraph. Therefore G is a tree. By theorem 2.3, G does not contain $K_{1, n}(n \geq 3)$ as a subgraph. Therefore G is a path. By theorem 2.4, $P G_{2}(G)$ is disconnected which is a contradiction.

Theorem 2.17 If G is an Eulerian graph which does not contain C_{4}, K_{4} or $K_{4}-e$ as an induced subgraph, then $P G_{2}(G)$ is also Eulerian.

Proof. G is Eulerian and so $\operatorname{deg}_{G} u$ is even $\forall u \in V(G)$. Since G is C_{4}-free, by Theorem 2.8, $d e g_{P G_{2}(G)} u=\sum_{v \in N(u)}(\operatorname{deg}(v)-1)$. Since $|N(u)|$ is even and $(\operatorname{deg}(v)-1)$ is odd, $\operatorname{deg}_{P G_{2}(G)} u$ is even.
Hence $P G_{2}(G)$ is Eulerian. But the converse is not true.
Example 2.18 $P G_{2}(G)$ is Eulerian but G is an Eulerian graph which contains K_{4} as an induced subgraph.
Theorem 2.19 If $G^{\prime}, G^{\prime \prime}$ are 2 graphs such that $G^{\prime} \cong G^{\prime \prime}$, then $P G_{2}\left(G^{\prime}\right) \cong P G_{2}\left(G^{\prime \prime}\right)$. But the converse is not true.

Proof. Let ϕ be an isomorphism of G^{\prime} onto $G^{\prime \prime}$.
Then $(u, v) \in E\left(G^{\prime}\right)$ iff $(\phi(u), \phi(v)) \in E\left(G^{\prime \prime}\right)$
$(u, v) \in E\left(P G_{2}\left(G^{\prime}\right)\right)$
\Leftrightarrow There is a path of length 2 between u and v in G^{\prime}.
\Leftrightarrow There is a path of length 2 between $\phi(u)$ and $\phi(v)$ in $G^{\prime \prime}$.
$\Leftrightarrow(\phi(u), \phi(v)) \in E\left(P G_{2}\left(G^{\prime \prime}\right)\right)$.
Therefore $P G_{2}\left(G^{\prime}\right) \cong P G_{2}\left(G^{\prime \prime}\right)$.
Converse is not true.
Consider G^{\prime} and $G^{\prime \prime}$ given above. we observe that $G^{\prime ®} G^{\prime \prime}$, but $P G_{2}\left(G^{\prime}\right) \cong P G_{2}\left(G^{\prime \prime}\right)$.
Theorem 2.20 Let G be a connected graph. $P G_{2}(G)=G$ iff $G \cong C_{2 n+1}$ or K_{p}.
Proof. Assume $P G_{2}(G)=G$.
By theorem 2.12, G is not a tree.
Also G contains no pendent edge.
If G is a unicyclic graph, then by theorem 2.7 $G \cong C_{2 n+1}$.
If $G ® C_{2 n+1}$ we prove that $G \cong K_{p}$ by induction on p.
If $p=4$, then the only graph with $P G_{2}(G)=G$ is K_{4}.
Assume that if G is a graph with n vertices with $P G_{2}(G)=G$ then $G \cong K_{n}$.
Let G be a graph with $n+1$ vertices and $P G_{2}(G)=G$. Let $u \in V(G)$. Let $G^{\prime}=G-\{u\}$.
By induction hypothesis $G^{\prime} \cong K_{p}$.
claim: In G, u is adjacent to all the n vertices of G^{\prime}.
If not, u is not adjacent to $v \in V\left(G^{\prime}\right)$. Since G is connected, u is adjacent to $v^{\prime} \in V\left(G^{\prime}\right)$ and v^{\prime} is adjacent to $v \Rightarrow u$ and v are adjacent in $P G_{2}(G)$ which is contradiction to $P G_{2}(G)=G$.
Therefore u is adjacent to all the vertices of G^{\prime}.
Therefore $\left.G \cong K_{(} n+1\right)$.
Converse is obvious.

Theorem 2.21 If G is a connected graph that contains a spanning subgraph isomorphic to $G_{1}, G_{2} o r G_{3}$ given below, then $P G_{2}(G)=K_{n}$. But converse is not true.

Proof. Let $G \cong G_{1}, G_{2} \operatorname{or} G_{3}$. It is clear any two vertices in G_{1}, G_{2}, G_{3} are connected by a path of length 2 .
Therefore $\operatorname{deg}_{P G_{2}(G)} u=p-1$
Therefore $P G_{2}(G)=K_{n}$.
Converse is not true.
Here $P G_{2}(G)=K_{n}$ but $G ® G_{1}, G_{2} o r G_{3}$.

References

[1]. S. Arumugam, S. Velammal, Edge Domination in Graphs, Taiwanese Journal of mathematics, 2(2)(1998), 173-179.
[2]. F.Harary, Graph Theory, Addison Wesley, Reading,Mass, 1972.

