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Abstract: Analogous to Maxwell stress tensor in electric and magnetic fields, a stress tensor is defined in a 

vorticity field. Thus by treating vortices as physical structures, it is possible to study the forces on a surface 

element in it. Based on this the force between vortex lines, the pressure and the shearing stress that deform the 
volume element can also be defined. 
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I. Introduction 

Though the electromagnetic theory was developed more than a century back, the practice of calculating 

forces on magnetic media remained ambiguous (Casperson, 2002)[1]. In particular, the application of Maxwell 

stress tensor gave way to other methods based on energy variation principle (Shwarz, 1963) [2](Sher, 1968) [3] 

(Pohl and Crane, 1972)[4] and effective dipole or multipole method (Wang, 1996)[5]. The method was revived 

by Washizu and Jones (1996) [6], Sauer and Schlogl (1985) [7] etc. 
Wang, Wang and Gascoyne (1997)[8] explored the application of the Maxwell Stress Tensor (MST) 

method to dielectrophoresis (DEP) and electrorotation (ROT) studies. By integrating Maxwell stress tensor over 

the surface of a dielectric particle, they derived the general expressions for DEP and ROT generated by electric 

fields of arbitrary configurations. As they claim, this was the first time that, such complete expressions were 

derived from the first principles using MST formalism. 

The analogy between the electromagnetic and fluid dynamic equations was first noted by Maxwell 

(1861) [9]. He suggested that the vector potential A of the magnetic induction B  represents  some kind of a 

fluid velocity field. This was interpreted in the light of Fizeau’s experiment by Cook, Fearn and Milonni 

(1995)[10]. The analogy between Navier Stoke’s equation and Maxwell’s equations was used by Marmanis 

(1997-1998) [11] in the development of his metafluid dynamics for the study of turbulence. This marked the 

beginning of introducing new flow parameters (Lamb vectors). To complete the analogy between 

electromagnetic and fluid dynamic equation, Scofield and Huq (2008, 2009, 2010)[12] [13] [14] introduced the 
concept of vortex field and developed a uniform theory for electro dynamic, fluid dynamic and gravitational 

fields. A main source of interest in the study of the analogy was the theoretical developments in ferrofluids 

following its synthesis in 1960’s.” The Maxwell Stress Tensor and the forces in magnetic liquids” by Klaus 

Stierstadt and Mario Liu (2014)[15] can be considered as the present state of the theory. In this paper we explore 

yet another analogy between Maxwell stress tensor in electromagnetic continuum and a stress in incompressible 

inviscid fluids whose origin is vorticity. 

 

II. Vorticity Stress Tensor 
In the case of incompressible flow of an inviscid fluid, the vorticity field is frozen-in and satisfies the equation: 

                                                                  
 ∂𝛚

∂t
= ∇ × (𝛝 × 𝛚)                                                                            (1) 

 

Here ϑ   is the velocity and 𝛚 = ∇ × 𝛝 is the vorticity. This equation admits the solution given by: 

                                                               ωi X, t = ωj(x, 0)
∂X i

∂xj
                                                                          (2) 

 

This is the well-known Cauchy’s equation, which relates the current vorticity (at Xi) to the initial 

velocity (at xi), and thus it establishes a topological equivalence between them.  Corresponding to the magnetic 

energy, the energy associated with the vorticity field is defined by 
1

2
ω2. Thus the rate of change of energy is:  

∂

∂t
 
ω2

2
 = 𝛚 ∙

∂𝛚

∂t
 

                                                                                      = 𝛚 ∙  ∇ × (𝛝 × 𝛚)                                        [from (1)] 

          = −𝛝 ∙   ∇ × 𝛚 × 𝛚 + ∇ ∙   𝛝 × 𝛚 × 𝛚  
          = −𝛝 ∙  𝐟 × 𝛚 + ∇ ∙   𝛝 × 𝛚 × 𝛚                          (3) 
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where 𝐟 = ∇ × 𝛚 is the flexion field. 

  If the vorticity is confined to a sub-domain of the fluid, the divergence term vanishes on integrating 
over the entire volume. 

Thus we get: 

                                                                  
dM

dt
= − 𝛝 ∙ 𝐅 dV

V
                                                                        (4)                                       

Here M =  
ω2

2
dV

V
  is the total enstrophy and 𝐅 = 𝐟 × 𝛚 is a force analogous to Lorentz force. 

The ith component of this force 𝐅 is: 

                                                         Fi =
∂

∂xj
ij   , where ij =  ωiωj  −

ω2

2
δij                                                (5) 

and δij  is the kronecker delta. 

Thus analogous to the Maxwell Stress tensor associated to Lorentz force (Ferraro and Plumpton 1966) 

[16] we get ij as the vorticity stress tensor. This tensor is related to the enstrophy in the same way, as 

magnetic stress tensor is associated to magnetic energy.  If we consider a vortex, the normal component of this 

stress represents the tension in the line vortices and the terms ωiωj  are the shearing forces between adjacent 

vortex lines of the filament whose limiting case is the line vortex. 

      ij  being a symmetric matrix can be diagonalized . Choosing the principal axis OX1 in the 

direction of vorticity we get: 

                                     =

 
 
 
 
 
ω2

2
0 0

0
−ω2

2
0

0 0
−ω2

2  
 
 
 
 

ij          (6) 

 

Thus the principal stress tensor constitutes a tension 
1

2
ω2along the line vortex and an equal pressure 

normal to it.  

 
We can rewrite this tensor as: 

                        
 ij
 
ω2 0 0
0 0 0
0 0 0

 +

 
 
 
 
 
−ω2

2
0 0

0
−ω2

2
0

0 0
−ω2

2  
 
 
 
 

                                                                       (7) 

 

where the first matrix gives the effect of the force 𝐅 and the second matrix represents the static pressure. 

The above expressions for the vorticity stress tensor can be compared to the magnetic stress tensor as 

discussed by Steirstadt and Liu (2014)[17]. So the figures given by them apply to vortex stress tensor also. They 

consider electromagnetic stress tensor (EMST) and discuss magnetic stress tensor. What we find here is that a 

similar stress tensor exists in the case of vortex fields. 

 In the context of magneto hydrodynamics the analogy between the induction equation: 
∂𝐁

∂t
= ∇ ×  𝛝 × 𝐁 + λ∇2𝐁                     ∇ ∙ 𝐁 = 0      (8) 

 

and the vorticity equation:  

                   
 ∂𝛚

∂t
= ∇ ×  𝛝 × 𝛚 + ν∇2𝛚                    ∇ ∙ 𝛚 = 0                        (9)       

  

for barotropic flow of a fluid was first pointed out by Elsasser (1946)[18].  In this equation λ is the 

magnetic diffusivity of the fluid and ν is the kinematic viscosity. As pointed out by Moffat[19] the analogy has 

limitations as 𝛝 and 𝐁 are not related. This analogy has been the basis of many studies on vorticity especially 
vortex knots. 

 

III. Conclusion 

While computing the force on a surface, the surface over which the stress tensor is integrated need not 

correspond to a physical surface. This leads to the question of how the electromagnetic force is transmitted to 

the physical matter inside the surface. The answer given is, via the electromagnetic field that enter into the stress 

tensor. In the days of Maxwell, more explanations that are physical were considered necessary which led to the 
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concept of ether, whose velocity acts as the vector potential for magnetic induction. This explanation perhaps 

applies more to the vorticity stress tensor, since the origin of vorticity is velocity. 

It is difficult to take into account the stretching of vortex lines in three dimensions. Most of these 
studies make use of local induction approximation (LIA) or perturbation methods. But the stress tensor 

associated with vorticity can be made use of in such studies. 
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