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Abstract: In this paper, we introduced a new model called the geometric inverse burr distribution. Statistical
measures and their properties are derived and discussed. In particular, explicit expression for the density, rth
moment and entropy are obtained. The method of maximum likelihood estimator is used to obtain the estimate
values of the parameters and provide the information matrix. Simulation studies are performed for different
parameter values and sample sizes to assess the finite sample behavior of the MLEs.
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I. Introduction
Burr (1942) introduced the system of distributions that comprises the Burr XII as the most useful of these
distributions. If the random variable X has the Burr XII distribution, then the inverse of X has the Burr 111
distribution. The cdf of the inverse Burr is given by

w® \”
F.s=[— where
o, 3 (1 n “.n)

a = (), 7 = 0 are shape parameters.

While the pdf of the imverse burr 1s given by
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The inverse Burr distribution is been used in various fields of sciences. In the actuarial literature it is known as
the Burr 111 distribution (see, e.g., Klugman et al., 1998) and as the kappa distribution in the meteorological
literature (Mielke, 1973; Mielke and Johnson, 1973). It has also been used in finance, environmental studies,
and survival analysis and reliability theory (see

,Sherrick et al., 1996; Lindsay et al., 1996; Al-Dayian, 1999; Shao, 2000; Hose, 2005; Mokhlis

Gove et al., 2008). Further, Shao et al. (2008) proposed an extended inverse Burr distribution in ;2005
Low-flow frequency analysis where its lower tail is of main interest. A bivariate extension of the

.(Inverse Burr distribution had been given by Rodriguez 1980)

Several authors proposed a new distribution in the literature to model lifetime data by combining
geometric and other well known distributions. Adamidis and Loukas (1998) introduced the two-
parameter exponential-geometric  (EG) distribution with  decreasing failure rate. Kus (2007)
introduced the exponential-Poisson distribution (following the same idea of the EG distribution) with
decreasing failure rate and discussed several of its properties. Marshall and Olkin (1997) presented a
method for adding a parameter to a family of distributions with application to the exponential and
Weibull families. Adamidis et al. (2005) proposed the extended exponential-geometric (EEG)
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distribution which generalizes the EG distribution and discussed several of its statistical properties
along with its reliability features. The hazard function of the EEG distribution can be monotone
decreasing, increasing or constant. Wagner et al. (2008) proposed the weibull geometric distribution.
In this paper, we introduced a new distribution by combining geometric and inverse burr distribution

.to form geometric inverse burr distribution (GIB)

The rest of the paper is organized as follows. Section 2, provides the new distribution. Statistical properties of
this class of distribution are given in section 3. Statistical inferences and entropy are given in Sections 4 and 5
respectively. Section 6 gives the simulation studies for different parameter values and sample sizes. Conclusion
of the paper is given in Section 7

II. The geometric inverse burr distribution
In this section, we introduce the new class of distribution call the geometric inverse burr distribution (GIB). The
pdf of the class is a decreasing and unimodal, while the hazard rate function is decreasing, increasing and a
bathtube shape depending on the parameter values. Figures 1 and 2 below have clearly shown the shape of the
.pdf and the hazard rate function

Let z be a geometric random variable with pmf P(z,p) = (1—p)p* ! for z € Nand p € (0, 1).
Define X = min(wy,...,w.). The marginal pdf of X is

‘13“ - j.?}.r_“-‘_“ (1+ .i'_""}_""j"'”

(z:p, a, B) = § — x>0 (1)
.. 1—p(1— [l—l—.r‘”‘\,l‘-’]]'} :
which defines the pdf of the GIB. The cdf for the GIB becomes
) . * \7 | ) ) gy —1
Foglzp,a,3) = (l I) l—p(1—(1+277) 1]] r >0 (2)
4 7 L

The hazard rate function of the GIB 1s

aB(l—p)z @1 + 7o) B+ [1 —p(1 — (1 + .r_”’]_‘j)]_l

(z,p, 0, ) = - : — = k
hiz.p,a, ) T p(l— (e ) —(Arza) " x>0 (3)
The survival function of the GIB 1s

- ™ g r ; —ay—y1—1 - !
s(z.pa,B)=1— [T 1—p(l—(1+2z*)")]  z>0 (4)

Proposition 2.1
The Pdf of the GIB is decreasing for 0<o<1 and unimodal for o>1.

Proposition 2.2
The limiting behaviour of the hazard rate function of the GIB is as follows
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Figure 1: pdf of the GIB for different parameter values
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Figure 2: hazard rate function of the class for different parameter values

Proposition 2.3
The hazard rate function is decreasing for 0 < a <1 and for a > 1 it can take different forms.

Now, for IzI < 1 and p > 0, the power series expansion is given by
o0 = y
., T(p+7) .
(1—2)*=) ——— :; (7)
= T

We use (7) for the derivation of the properties of the geometric inverse burr (GIB) distribution. Using (7) in (1)
and thereafter applying binomial expansion we obtain the following

flz:p,e, 8) = (1—p) Z{ 1) 1—1}_LZ(J+]}}J()f},li|;+||{? (8)

i=0
by letting m; = (1 —p)(—1)'(i + 1) 2272,(7 + 1)p’ (7). equation (8) becomes
f TP, BJ Z”.'Irf(t Bli +1|{‘?JI [El]
i=0

where f, g1y (x) is the pdf of the inverse burr.

I11. Statistical properties
In this section, we discuss some of the statistical properties of the GIB among which include the following

3.1 moments
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Theorem 3.1 If Z ~ IB(«,3), the (r,n)™ probability weighted moment (pwm) of Z be-
COTRES
m(r,n) =aBla(n+1)+ L, 1 - L).

where o = 3
Proof: see appendix Ai
Theorem 3.2 If Xy ~ GI B(p.a, B), the " moment (pwm) of X; is given by
E(X")=aY. " mi(i + 1)Bla(i + 1) + L1-1).
where a = 3

Proof: see appendix Aii

3.2 mean and variance

, = . . 1 1
E(X) = ri; m;(i + 1)Bla(i +1) + a.l - ;]
E(X") = CLZ mi(i+1)Blali+ 1)+ —,1—=)

— o x

. 2
P DU N (NN I
I—ar[.‘(]—-:LZmi{_:.—l—l]B{a[:.—l-l]—i-a_._l t“_]' {Q-Zm,,{z—l-l]B{a-LL—I—l]—I—H._l )}

i=0 i=0 @
3.3 Quatile and median

by inverting the cdf of the class we obtained the quantile function (for 0 < g < 1) as

1 —(=)
o 1—pg \? -
;a.q_{(iq{l_p)) —1} (10)

(10) is used for the simulation of the class. Therefore, we can have the median as

1 -()
2—p B ) :
N {(“ p)) } { )

IVV. Statistical inference
In this section, we discuss the estimation problem about the unknown parameters of the proposed model. For the
estimation problem, we discuss the most popular method of estimation used in statistical science namely, the
method of maximum likelihood estimators (MLES). This is because the MLEs possesses under fairly regular
condition of some optimal properties
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4.1 estimation
Let Xy.....X,, be a random sample with observed values xy....,z,, from the class with parame-

ters p, @, 3. Let © = (p, o, 3)" be the parameter vector.The log likelihood function is given
by

n
1(#) = log af(1—p)—(a+1) Zlogj x;—(8+1) Zlog,(l—l—.r QZIOg (1—pll—(1+27%))
i=1 i=1
(14)
The log-likelihood can be maximized either directly or by solving the nonlinear likelihood
equation obtained by differentiating I(x; p, o, 3) above. The components of the score vector

Bl 8l BT .o\ o .
= (3p Ba’ +5) are given by

(x+1) ,—(841)

q - :
T_I:_ n —QZ 1+ afx; fi (15)
ap I—p i1 ('l —p[l - t;g])
a7l n Z )i —tc: 1) i -fﬂ+1l' ¢, (B+1) )
,—:__ log z; + a3+ 1 - — 2af8p - (16
dox p— () p— (1 —p[l — t;ﬁ])

) n —(a+1),—(8+1)
Al o

5 ——I——Zloﬂt + 20 fpz (Jl”*'_p“t*_t ) (17)

where t; = (1 + ;%)

Theorem 4.1 The mazimum likelihood estimators (p, &, 3) are consistent estimators, and

. T
Vvn (33 —p,a—a, 3 — j) is asymptotically normal with mean vector o and the variance

R i T=1 where T — 1 dI3 ()
covariance matriz I, where I = ——F ( 30507

The 3 x 3 observed information matrix is given by

Jep Jpa  Jps
J= J&,ﬁ‘ Jcm JI’.':P
Jap  Jsa  Jss

where the expressions for the elements of J are given in Appendix B

V. Entropy
Statistical entropy is a probabilistic measure of uncertainty about the outcome of a random experiment and is a
measure of a reduction in that uncertainty. Numerous entropy and information indices, among them the Renyi
entropy have been developed and used in various disciplines and contexts. Information theoretic principles and
methods have become integral parts of probability and statistics and have been applied in various branches of
,statistics and related fields.
Entropy has been used in various situations in science and Engineering. The entropy of a random variable X is a
.measure of variation of the uncertainty. Renyi entropy is defined by
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Inp(r) = - ! log L[ f"{.l']d.l} (18)
1—r R

where r =0 and r # 1
Now,

— — B rl" r+7)
f r)dr = (af5(1 —p)) E= }E: (i+1) ]u._ ézru{ ()f Japirn (2
where

= 1 v+ 1)(r—1) v+ 1)(r+1)
f fapusnlr)=—-B (rafi+-rj|+r'—1 (et Dl =1+ (a+1)G 'I)
0 ) [

[ ¥

Consequentlty,

LD2r+ 1
In(r) = 7—log [ af(1-p)) ZZ'H_ 2 f‘f’)i J-J'l)p) (‘:)H

=0 =i

. (a+1)(r—1 (@ +1) 1)
xB(a(f’+r‘j+r—l—'n+ -1, ot )T+ )}
0 i}
The shannon entropy is defined as E[— log f(x)]. Therefore, by taking the negative log
of the pdf of the GIB, we obatain

El—log flz))=—logaf(l —p)+ (a+ 1)E(logz) + (F+ 1) E(log(1l + %))
+2E{log (1 —pll — (1 +27)]) }.

VI. Simulation
In this section, we assess the finite sample performance of the MLEs of 8 = (p; a; B). The results are obtained
from generating N samples from GIB. For each replication, a random sample of size n=50,100, 200 and 300 is
drawn from GIB and the parameters are then estimated by using the method of maximum likelihood. The GIB
random generation number was performed by using equation 10. We used four different true parameter values.
The number of replication is set to be N = 10000; four different true parameter values are used in the data
simulation process. Table 1 reports the average MLEs for the three parameters of the proposed model along with
mean squared error. The result reported in Table 1, from the Table, we can see that there are convergences and
consistency and this emphasize the numerical stability of the MLE method. Also, as the sample size increases,
.the mean squared error decreases
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Table 1: The average of 10000 MLEs and standard error simulated from GIB

AE SD
il (p, e, B) P i Ji; sd(p) sd(a) sd(F)
50 (0.5,0.5,2) | 0.582 0.761 4.485 | 0.291 0.857 5.528
(1.0, 2.0, 1.0) | 1.581 2.085 1.779 | 0.543 1.451 3.795
(3.0, 2.0, 1.0) | 4.599 4.403 1.257 | 8.604 2.671 1475
(3.0, 3.0, 3.0) | 3.152 4.503 3.429 1.625 2.045 3.205
100 | (0.5,0.5,2) | 0504 0.702 3.722 | 0171 0.834 4.473
(1.0, 2.0, 1.0) | 1.072 2.033 1.685 | 0358 1.3290 2.722
(3.0, 2.0, 1.0) | 4.380 4.372 1.112 | 6.426 2.572 1.452
(3.0, 3.0, 3.0) | 3.068 3.784 3.311 1.037 1.032 3.007
200 [ (0.5,05,2) | 0498 0.711 3.579 | 0101 0.204 3.875
(1.0, 2.0, 1.0) | 1.032 2.022 1.369 | 0.248 0.588 1.407
(3.0, 2.0, 1.0) | 3.358 4.112 1.063 | 2996 2275 1.393
(3.0, 3.0, 3.0) | 2.809 3.779 3.612 | 0.835 1.931 3.001
300 [ (0.5,05,2) | 0488 0.701 2.459 | 0.084 0.105 1.902
(1.0, 2.0, 1.0) | 1.004 2,006 1.264 | 0196 0.577 1.203
(3.0, 2.0, 1.0) | 3.070 4.003 0.999 1.311 2177 0.976
(3.0, 3.0, 3.0) | 2778 3.767 3.054 | 0.644 1.922 1.940
VII. Conclusion

We introduce a new class of lifetime distributions called the geometric inverse burr distribution (GIB), which is
obtained by compounding the geometric distribution (GD) and inverse burr (1B) distribution. The ability of the
new proposed model is in covering five possible hazard rate function i.e., increasing, decreasing, upside-down
bathtub (unimodal), bathtub and increasing-decreasing-increasing shaped. Several properties of the GIB
distributions such as moments, maximum likelihood estimation procedure and inference for a large sample, are
discussed in this paper. In order to show the flexibility and potentiality of the new distributions, Simulation
studies are performed for different parameter values and sample sizes to assess the finite sample behaviour of

.the MLEs

.this paper
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Appendix A
i Proof.
m(r,n) = E[X"F"(z)]
— [ fasta) P

— ﬂj/ —fct+1}lfl_|_l. nj] B(n+1)— ld.'r
S0

let k= (1 + 2 (@) =An+1-1 gfter some algebra, we abtain

"j’ 1 1 = 1 1 -
F - ~ Fin+1)+1 ~—Fn41)—1 S ~ Fin41)+1 [ fr
mir,n) = g ]+1,[g (a +:+) k=R (1 (ﬁ. ¥ ) )dk

1
Transforming let u = EF=+0F7 consequently

m(r,n) =aB(a(n+1) + %.1 — ?—)

o
i
ii Proof.

p = E[X7]

_ /x 2" f(z)da

= m nSf —f“+1,' 1_|_ .—in:]] _3|;n+]j—1d-£_

after some algebra, we obtain

E(X") = fizme[z’—k 1)Bla(i+1) + 5,1_ :_l_'}

i=0
Prhere a =5
Appendix B

let {, = (1 +x,7)

—  (1—1)"®)

mn
C ()Y (1-pl1 -t

i=1
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