Area and side measurement relation of two right angled triangle (Relation All Mathematics)

Deshmukh Sachin Sandipan
Corps of Signal (Indian Army), India.

Abstract

In this research paper, two right angled triangle relation explained with the help of formulas. This relation explained in two part i.e. Area relation and Sidemeasurement relation.Right angled triangle can be narrowed in segment and as like right angled triangle called Seg-right angled triangle.Seg-right angled triangle always become in zero area. Very feamas Pyathagoras theoram proof with the help of Relation All Mathematics methode. also we are given proof of DGP theorem i.e. "In a right angled triangle ,the square of hypoténuse is equal to the subtract of the square of the sidemeasurement and four times the area". We are trying to give a new concept "Relation All Mathematics" to the world .I am sure that this concept will be helpful in Agricultural, Engineering, Mathematical world etc.

Keywords: Area, Perimeter, Relation, Seg-right angled triangle , B-Sidemeasurement

I. Introduction

Relation All Mathematics is a new field and the various relations shown in this research, "Area and sidemeasurement relation of two right angled triangle" is a $2^{\text {nd }}$ research paper of Relation All Mathematics. and in future ,the research related to this concept, that must be part of " Relation Mathematics " subject. Here ,we have studied and shown new variables ,letters, concepts, relations , and theorems.. Inside the research paper cleared that relation between two right angled triangle in two parts. i.e. i) Basic theorem of area relation of isosceles right angled triangle and scalene right angled triangle ii) Basic theorem of sidemeasurement relation of isosceles right angled triangle-scalene right angled triangle.. Sidemeasurement is a explained new concept which is very important related to this paper and Relation Mathematics subject.

In this "Relation All Mathematics" we have proved the relation between rectangle-square and two right angled triangles with the help of formula. This relation is explained in two parts i)Area relation and ii) Sidemeasurement relation. Also we have proved ,the Theorem of right angled triangle whose height is zero i.e. Seg-right angled triangle theorem and along with the theorem of seg-right angled triangles ratio . In this research paper proof that Pythagoras theorem with the help of Relation All Mathematics method. Also we have proved DGP theorem i.e. In a right angled triangle, the square of hypotenuse is equal to the subtract of the squares of the side-measurement and four times the area. This "Relation All Mathematics" research work is near by 300 pages . This research is done considering the Agricultural sector mainly, but I am sure that it will also be helpful in other sector also.

II. Basic concept of two right angled triangle

2.1. Sidemeasurement (\mathbf{B}) :-If sides of any geometrical figure are in right angle with each other, then those sides or considering one of the parallel and equal sides after adding them, the addition is the sidemeasurement .side-measurement indicated with letter ' B '
Sidemeasurement is a one of the most important concept and maximum base of the Relation All Mathematics depend apoun this concept.

Sidemeasurement of right angled triangle - B ($\triangle P Q R$) $=b+h$
In $\triangle P Q R$,sides $P Q$ and $Q R$ are right angle, performed to each other .

Sidemeasurement of rectangle- $B(\square P Q R S)=l_{1}+b_{1}$

In $\square \mathrm{PQRS}$, opposite sides PQ and RS are similar to each other and $\mathrm{m}<\mathrm{Q}=90^{\circ}$. here side PQ and QR are right angle performed to each other.

Sidemeasurement of cuboid- $E_{B}(\square P Q R S)=l_{1}+b_{1}+h_{1}$
In E($\square \mathrm{PQRS}$), opposite sides are parallel to each other and QM are right angle performed to each other. Sidemeasurement of cuboid written as $=\mathrm{E}_{\mathrm{B}}(\square \mathrm{PQRS})$

2.2)Important points of square-rectangle relation :-

I) For explanation of square and rectangle relation following variables are used
i) Area

- A
ii) Perimeter -P
iii) Sidemeasurement - B
II) For explanation of square and rectangle relation following letters are used
i) Area of square ABCD
- A ($\square \mathrm{ABCD})$
ii) Perimeter of square ABCD
- P (ロABCD)
iii) Sidemeasurement of square ABCD
- B (ロABCD)
iv) Area of rectangle PQRS
- A (םPQRS)
v) Perimeter of rectangle $P Q R S$
- P (■PQRS)
vi) Sidemeasurement of rectangle PQRS
- B ($\square \mathrm{PQRS}$)
II) For explanation of two right angled triangle relation, following letters are used
> In isosceles right angled triangle $\triangle \mathrm{ABC}\left[45^{\circ}-45^{\circ}-90^{\circ}\right]$, side is assumed as ' 1 ' and hypotenuse as ' X '
$>$ In scalene right angled triangle $\triangle \mathrm{PQR}\left[\boldsymbol{\theta}_{1}-\boldsymbol{\theta}_{1}\right.$ ' $\left.-90^{\circ}\right]$ it's base ' b_{1} ' height ' h_{1} ' and hypotenuse assumed as ' Y '
$>$ In scalene right angled triangle $\Delta \mathrm{LMN}\left[\boldsymbol{\theta}_{2}-\boldsymbol{\theta}_{2}{ }^{\prime}-90^{\circ}\right]$ it's base ' b_{2} ' height ' h_{2} 'an hypotenuse assumed as ' Z '
i) Area of isosceles right angled triangle ABC
ii) Side-measurement of isosceles right angled triangle ABC
iii) Area of scalene right angled triangle PQR
vi) Sidemeasurement of scalene right angled triangle $P Q R$
- $\mathrm{A}(\triangle \mathrm{ABC})$
- B ($\triangle \mathrm{ABC})$
- A ($\triangle \mathrm{PQR}$)
- B ($\triangle \mathrm{PQR})$

2.3) Important Reference theorem of previous paper which used in this paper:-

Theorem : Basic theorem of area relation of square and rectangle
Perimeter of square and rectangle is same then area of square is more than area of rectangle, at that time area of square is equal to sum of the, area of rectangle and Relation area formula of square-rectangle(K) .

Figure I: Area relation of square and rectangle
Proof formula :- $\mathrm{A}(\square \mathrm{ABCD})=\mathrm{A}(\square \mathrm{PQRS})+\left[\frac{\left(l_{1}+b_{1}\right)}{2}-b_{1}\right]^{2}$
[Note :- The proof of this formula given in previous paper and that available in reference]
Theorem :- Basic theorem of perimeter relation of square-rectangle
Area of square and rectangle is same then perimeter of rectangle is more than perimeter of square, at that time perimeter of rectangle is equal to product of the, perimeter of square and Relation perimeter formula of squarerectangle(V).

Figure II : Perimeter relation of square-rectangle

Proof formula :- $\mathrm{P}(\square \mathrm{PQRS})=\mathrm{P}(\square \mathrm{ABCD}) \mathrm{x} \frac{1}{2}\left[\frac{\left(n^{2}+1\right)}{n}\right]$
[Note :- The proof of this formula given in previous paper and that available in reference]
Theorem -1: Basic theorem of area relation of isosceles right angled triangle and scalene right angled triangle. The Sidemeasurement of isosceles right angled triangle and scalene right angled triangle is same then area of isosceles right angled triangle is more than area of scalene right angled triangle, at that time area of isosceles right angled triangle is equal to sum of the, area of scalene right angled triangle and Relation area formula of isosceles right angled triangle - scalene right angled triangle(K^{\prime}) .

Given :-Hypotenuse AC divided square ($\square \mathrm{ABCD}$) in two part, $\triangle \mathrm{ABC}=\triangle \mathrm{ADC}$ and in $\triangle \mathrm{ABC}, \mathrm{m} \angle \mathrm{B}=90^{\circ}$ as well as,
Hypotenuse PR divided rectangle ($\square \mathrm{PQRS}$) in two part, $\triangle \mathrm{PQR}=\triangle \mathrm{RSP}$
and in $\triangle \mathrm{PQR}, \mathrm{m} \angle \mathrm{Q}=90^{\circ}$
here, $\mathrm{B}(\Delta \mathrm{ABC})=\mathrm{B}(\Delta \mathrm{PQR})$
$21=\left(\mathrm{b}_{1}+\mathrm{h}_{1}\right), \quad \mathrm{b}_{1}>1$

Figure III : Area relation of isosceles right angled triangle and scalene right angled triangle
To prove :- $\mathrm{A}(\triangle \mathrm{ABC})=\mathrm{A}(\Delta \mathrm{PQR})+\frac{1}{2}\left[\frac{\left(b_{1}+h_{1}\right)}{2}-h_{1}\right]^{2}$
Proof :- In $\square A B C D$ and $\square \mathrm{PQRS}$,

$$
\begin{equation*}
\mathrm{A}(\square \mathrm{ABCD})=\mathrm{A}(\square \mathrm{PQRS})+\left[\frac{\left(b_{1}+h_{1}\right)}{2}-h_{1}\right]^{2} \tag{i}
\end{equation*}
$$

(Basic theorem of area relation of square and rectangle)
Divided both sides of eq ${ }^{\mathrm{n}}$ (i) with 2

$$
\begin{array}{ll}
\frac{\mathrm{A}(\square \mathrm{ABCD})}{2}=\frac{\mathrm{A}(\square \mathrm{PQRS})}{2}+\frac{\mathrm{K}}{2} & \ldots(\text { K-Relation area formula of square and rectangle }) \\
\mathbf{A}(\mathbf{\Delta A B C})=\mathbf{A}(\mathbf{\Delta P Q R})+\frac{\mathbf{1}}{\mathbf{2}}\left[\frac{\left(\boldsymbol{b}_{\mathbf{1}}+\boldsymbol{h}_{\mathbf{1}}\right)}{2}-\boldsymbol{h}_{\mathbf{1}}\right]^{2} \quad \ldots \text { here, } \quad \mathrm{K}^{\prime}=\frac{K}{2}=\frac{1}{2}\left[\frac{\left(b_{1}+h_{1}\right)}{2}-h_{1}\right]^{2}
\end{array}
$$

- (Relation area formula of isosceles right angled triangle - scalene right angled triangle(K^{\prime})
$\mathrm{A}(\Delta \mathrm{ABC})=\mathrm{A}(\Delta \mathrm{PQR})+\frac{1}{2}\left[\frac{\left(\boldsymbol{b}_{\mathbf{1}}-\boldsymbol{h}_{\mathbf{1}}\right.}{2}\right]^{2}$
Hence Basic theorem of area relation of isosceles right angled triangle and scalene right angled triangle is proved.

Example:-

		$\Delta \mathrm{ABC}$	$\Delta \mathrm{PQR}$	$+\mathrm{K}^{\prime}$	REMARKS
Given	Base	10	14		
	Height	10	6		
Explanation	Sidemeasurement	20	20		
	area	LHS	RHS	RHS	
	Answer	50	42	8	Equal
				50	LHS=RHS

Theorem-2 : Theorem of area relation of two scalene right angled triangles.
If sidemeasurement of two scalene right angled triangle is same then scalene right angled triangle whose base is smaller, its area also is more than another scalene right angled triangle.
Given :- In $\triangle \mathrm{ABC}, \triangle \mathrm{PQR}$ and $\triangle \mathrm{LMN}$,

$$
\begin{aligned}
& \mathrm{B}(\triangle \mathrm{ABC})=\mathrm{B}(\Delta \mathrm{PQR})=\mathrm{B}(\Delta \mathrm{LMN}) \\
& 2 \mathrm{l}=\mathrm{b}_{1}+\mathrm{h}_{1}=\mathrm{b}_{2}+\mathrm{h}_{2} \quad \ldots \quad \mathrm{~b}_{1}<\mathrm{b}_{2}
\end{aligned}
$$

Figure IV: Area relation of two scalene right angled triangles
To prove :- $\mathrm{A}(\triangle \mathrm{PQR})=\mathrm{A}(\Delta \mathrm{LMN})+\frac{1}{2}\left(\mathrm{~h}_{1}-\mathrm{h}_{2}\right) .\left[\left(\mathrm{b}_{1}+\mathrm{h}_{1}\right)-\left(\mathrm{h}_{1}+\mathrm{h}_{2}\right)\right]$
Proof :- In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$,

$$
\begin{equation*}
\mathrm{A}(\Delta \mathrm{ABC})=\mathrm{A}(\Delta \mathrm{PQR})+\frac{1}{2}\left[\frac{\left(b_{1}+h_{1}\right)}{2}-h_{1}\right]^{2} \tag{i}
\end{equation*}
$$

... (Basic theorem of area relation of isosceles right angled triangle and scalene right angled triangle) In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{LMN}$,

$$
\begin{equation*}
\mathrm{A}(\triangle \mathrm{ABC})=\mathrm{A}(\Delta \mathrm{LMN})+\frac{1}{2}\left[\frac{\left(b_{2}+h_{2}\right)}{2}-h_{2}\right]^{2} \tag{ii}
\end{equation*}
$$

... (Basic theorem of area relation of isosceles right angled triangle and scalene right angled triangle)

$$
\begin{aligned}
& \mathrm{A}(\Delta \mathrm{PQR})+\frac{1}{2}\left[\frac{\left(b_{1}+h_{1}\right)}{2}-h_{1}\right]^{2}=\mathrm{A}(\Delta \mathrm{LMN})+\frac{1}{2}\left[\frac{\left(b_{2}+h_{2}\right)}{2}-h_{2}\right]^{2} \quad \text {...From equation no.(i) and (ii) } \\
& \mathrm{A}(\Delta \mathrm{PQR})=\mathrm{A}(\Delta \mathrm{LMN})+\frac{1}{2}\left[\frac{\left(b_{2}+h_{2}\right)}{2}-h_{2}\right]^{2}-\frac{1}{2}\left[\frac{\left(b_{1}+h_{1}\right)}{2}-h_{1}\right]^{2} \\
& =\mathrm{A}(\Delta \mathrm{LMN})+\frac{1}{2}\left[\frac{\left(b_{2}+h_{2}\right)}{2}-h_{2}+\frac{\left(b_{1}+h_{1}\right)}{2}-h_{1}\right] \mathrm{x}\left[\frac{\left[b_{2}+h_{2}\right)}{2}-h_{2}-\frac{\left(b_{1}+h_{1}\right)}{2}+h_{1}\right] \\
& \\
& \ldots\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)=(\mathrm{a}+\mathrm{b}) .(\mathrm{a}-\mathrm{b}), \mathrm{b}_{1}+\mathrm{h}_{1}=\mathrm{b}_{2}+\mathrm{h}_{2} \quad \ldots \text { (Given) }
\end{aligned}
$$

$A(\Delta P Q R)=A(\Delta L M N)+\frac{1}{2}\left(h_{1}-h_{2}\right) \cdot\left[\left(b_{1}+h_{1}\right)-\left(h_{1}+h_{2}\right)\right]$
.Hence, Theorem of area relation of two scalene right angled triangles is proved.
Theorem-3:Basic theorem of sidemeasurement relation of isosceles right angled triangle and scalene right angled triangle.
Area of isosceles right angled triangle and scalene right angled triangle is same then sidemeasurement of scalene right angled triangle is more than sidemeasurement of isosceles right angled triangle , at that time sidemeasurement of scalene right angled triangle is equal to product of the, sidemeasurement of isosceles right angled triangle and Relation sidemeasurement formula of isosceles right angled triangle-scalene right angled triangle(V^{\prime}).

Given :- Hypotenuse AC divided square ($\square \mathrm{ABCD}$) in two part, $\triangle \mathrm{ABC}=\triangle \mathrm{ADC}$ and in $\triangle \mathrm{ABC}, \mathrm{m} \angle \mathrm{B}=90^{\circ}$ as will as,
Hypotenuse PR divided rectangle($\square \mathrm{PQRS}$) in two part, $\triangle \mathrm{PQR}=\triangle \mathrm{RSP}$
and in $\triangle \mathrm{PQR}, \mathrm{m} \angle \mathrm{Q}=900$
here, $\mathrm{A}(\triangle \mathrm{ABC})=\mathrm{A}(\Delta \mathrm{PQR})$
$1^{2}=\mathrm{b}_{1} \times \mathrm{h}_{1} \quad, \quad \mathrm{~b}_{1}>1$

Figure V: Sidemeasurement relation of isosceles right angled triangle-scalene right angled triangle

To prove :- $\mathrm{B}(\triangle \mathrm{PQR})=\mathrm{B}(\Delta \mathrm{ABC}) \times \frac{1}{2}\left[\frac{\left(n^{2}+1\right)}{n}\right]$
Proof :- In $\square A B C D$ and $\square P Q R S$,
$\mathrm{P}(\square \mathrm{PQRS})=\frac{1}{2} \mathrm{P}(\square \mathrm{ABCD}) \times\left[\frac{\left(n^{2}+1\right)}{n}\right] \ldots$ (i) Basic theorem of perimeter relation of square-rectangle)
Divided both sides of eq ${ }^{\mathrm{n}}$ (i) with 2

$$
\begin{aligned}
& \frac{\mathrm{P}(\triangle \mathrm{PQRS})}{2}=\frac{\mathrm{P}(\square A B C D)}{2} \times \frac{\mathrm{v}}{2} \quad \ldots \mathrm{~V}-(\text { relation perimeter formula of square and rectangle }) \\
& \mathrm{B}(\triangle \mathrm{PQR})=\mathrm{B}(\triangle \mathrm{ABC}) \times \frac{\mathrm{v}}{2} \\
& \mathrm{~B}(\triangle \mathrm{PQR})=\mathrm{B}(\triangle \mathrm{ABC}) \times \mathrm{V}^{\prime} \\
& \mathrm{B}(\triangle \mathrm{PQR})=\frac{1}{2} \mathrm{~B}(\triangle \mathrm{ABC}) \times\left[\frac{\left(\mathrm{n}^{2}+1\right)}{\mathrm{n}}\right]
\end{aligned}
$$

Hence, Basic theorem of sidemeasurement relation of isosceles right angled triangle-scalene right angled triangle is proved.

Example:-

		$\Delta P Q R$	$\Delta A B C$	$\mathbf{x ~ V}$,	REMARKS
Given	Base	20	10		
	Height	5	10		
		LHS	RHS	RHS	
Explanation	Area	50	50		Equal
	Sidemeasurement	25	20	$\frac{2.5}{2}$	
	Answer	25		25	LHS=RHS

Theorem-4 : Theorem of sidemeasurement relation between two scalene right angled triangles
If area of two scalene right angled triangle is same then scalene right angled triangle whose length is more, its sidemeasurement also is more than another scalene right angled triangle.

Given :- In $\triangle \mathrm{ABC}, \triangle \mathrm{PQR}$ and $\triangle \mathrm{LMN}$,
$\mathrm{A}(\triangle \mathrm{ABC})=\mathrm{A}(\Delta \mathrm{PQR})=\mathrm{A}(\Delta \mathrm{LMN})$
Here, $\mathrm{b}_{1} \times \mathrm{h}_{1}=\mathrm{b}_{2} \times \mathrm{h}_{2} \quad \ldots \mathrm{~b}_{1}<\mathrm{b}_{2}$

Figure VI: Sidemeasurement relation between two scalene right angled triangles
To prove :- $\mathrm{P}(\Delta \mathrm{PQR})=\mathrm{P}(\Delta \mathrm{LMN}) \times\left[\frac{n_{2}}{n_{1}} \cdot \frac{\left(n_{1}^{2}+1\right)}{\left(n_{2}^{2}+1\right)}\right]$
Proof :- In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$,

$$
\begin{equation*}
\mathrm{B}(\triangle \mathrm{ABC})=\mathrm{B}(\triangle \mathrm{PQR}) \times 2\left[\frac{n_{1}}{\left(n_{1}^{2}+\mathbf{1}\right)}\right] \tag{i}
\end{equation*}
$$

\ldots...Basic theorem of sidemeasurement relation of isosceles right angled triangle-scalene right angled triangle) In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$,

$$
\begin{equation*}
\mathrm{B}(\Delta \mathrm{ABC})=\mathrm{B}(\Delta \mathrm{LMN}) \times 2 \cdot\left[\frac{n_{2}}{\left(n_{2}{ }^{2}+1\right)}\right] \tag{ii}
\end{equation*}
$$

\ldots (Basic theorem of sidemeasurement relation of isosceles right angled triangle-scalene right angled triangle) $\mathrm{B}(\Delta \mathrm{PQR}) \times 2\left[\frac{n_{1}}{\left(n_{1}{ }^{2}+\mathbf{1}\right)}\right]=\mathrm{B}(\Delta \mathrm{LMN}) \times 2 \cdot\left[\frac{n_{2}}{\left(n_{2}{ }^{2}+\mathbf{1}\right)}\right] \quad \ldots$ From equation no. (i) and (ii)

$$
\begin{aligned}
& \mathrm{B}(\Delta \mathrm{PQR})=\mathrm{B}(\Delta \mathrm{LMN}) \times\left[\frac{\left(n_{1}^{2}+\mathbf{1}\right)}{n_{1}}\right] \cdot\left[\frac{n_{2}}{\left(n_{2}^{2}+\mathbf{1}\right)}\right] \\
& \mathrm{B}(\Delta \mathrm{PQR})=\mathrm{B}(\Delta \mathrm{LMN}) \times\left[\frac{n_{2}}{n_{1}} \cdot \frac{\left(n_{1}^{2}+\mathbf{1}\right)}{\left(n_{2}^{2}+1\right)}\right]
\end{aligned}
$$

Hence, Theorem of sidemeasurement relation between two scalene right angled triangles is proved.

Theorem-5 : Seg- right angled triangle theorem.
If sidemeasurement of right angled triangle is kept constant and base is increased till height become zero ,then become Segment is Seg-right angled triangle.

Given :- In $\triangle \mathrm{ABC}$
$\mathrm{B}(\triangle \mathrm{ABC})=\left(\mathrm{b}_{1}+\mathrm{h}_{1}\right)=\mathrm{B}($ Seg $\mathrm{AB}-\mathrm{CD})$
Now in $\triangle \mathrm{AB}-\mathrm{C}$, become a base $=21 \ldots($ height $=0)$

Figure VII: Segment AB-C is Seg-right angled triangle
To prove :- Seg AB-C is Seg- right angled triangle
Proof :- In $\triangle \mathrm{ABC}$,

$$
\begin{equation*}
\mathrm{A}(\triangle \mathrm{ABC})=\frac{1}{2} 1^{2} \tag{i}
\end{equation*}
$$

In Segment AB-C, $\mathrm{h}_{1}=0$
Suppose, Segment AB-C is right angled triangle
Now, In Seg AB-C,
$\mathrm{A}($ Seg $\mathrm{AB}-\mathrm{C})=0$
...(ii) $\quad\left(h_{1}=0\right) \ldots$ Given
$\mathrm{A}(\triangle \mathrm{ABC})=\mathrm{A}(\operatorname{Seg} \mathrm{AB}-\mathrm{C})+\frac{1}{2}\left[\frac{\left(b_{1}+h_{1}\right)}{2}-h_{1}\right]^{2}$
\ldots (Basic theorem of relation of area of isosceles right angled triangle and scalene right angled triangle)

$$
\begin{aligned}
& =21 \times 0+\frac{1}{2}\left[\frac{(2 l+0)}{2}-0\right]^{2} \\
& =0+\frac{1}{2}\left[\frac{2 l}{2}\right]^{2} \\
\mathrm{~A}(\triangle \mathrm{ABC}) & =\frac{1}{2} 1^{2}
\end{aligned}
$$

But this equation is satisfied with Basic theorem of area relation of isosceles right angled triangle and scalene right angled triangle.
Hence, Seg- right angled triangle theorem is proved.
(Seg AB-C is Seg-scalene right angled triangle, and it can be written as $\Delta \mathrm{AB}-\mathrm{C}$)
Theorem- 6: Theorem of Seg- right angled triangles ratio
The sidemeasurement of two seg-right angled triangle is equal to the ratio of base of that seg -right angled triangle..

Given :- In $\triangle \mathrm{PQ}-\mathrm{R}$ and $\triangle \mathrm{LM}-\mathrm{N}$,

$$
\mathrm{h}_{1}=\mathrm{h}_{2}=0,[\mathrm{~A}(\Delta \mathrm{PQ}-\mathrm{R})=\mathrm{A}(\Delta \mathrm{LM}-\mathrm{N})=0]
$$

Figure VIII: Seg- right angled triangles ratio
To prove :- $B(\Delta P Q-R): B(\Delta L M-N)=b_{1}: b_{2}$
Proof :- In $\triangle \mathrm{PQ}-\mathrm{R}$ and $\Delta \mathrm{LM}-\mathrm{N}$,

$$
\mathrm{P}(\Delta \mathrm{PQ}-\mathrm{R})=\mathrm{P}(\Delta \mathrm{LM}-\mathrm{N}) \times\left[\frac{n_{2}}{n_{1}} \cdot \frac{\left(n_{1}^{2}+1\right)}{\left(n_{2}^{2}+1\right)}\right] \ldots \text { (Theorem of sidemeasurement relation between two right }
$$ angled triangles)

$$
\mathrm{P}(\Delta \mathrm{PQ}-\mathrm{R})=\mathrm{P}(\Delta \mathrm{LM}-\mathrm{N}) \times\left[\begin{array}{ll}
\frac{b_{2}}{b_{1}} & \frac{\left(b_{1}^{2}+l^{2}\right.}{\left(b_{2}^{2}+l^{2}\right)}
\end{array}\right] \quad \ldots \mathrm{l}^{2}=1_{1 .} \mathrm{h}_{1}
$$

$$
\mathrm{P}(\Delta \mathrm{PQR})=\mathrm{P}(\Delta \mathrm{LMN}) \times\left[\begin{array}{ll}
\frac{b_{2}}{b_{1}} & \frac{\left(b_{1}^{2}\right)}{\left(b_{2}^{2}\right)}
\end{array}\right]
$$

$$
\ldots\left(\mathrm{h}_{1}=\mathrm{h}_{2}=0 \text {, Given }\right)
$$

$$
\mathrm{P}(\Delta \mathrm{PQR})=\mathrm{P}(\Delta \mathrm{LMN}) \times \frac{b_{1}}{b_{2}}
$$

$$
\frac{\mathrm{P}(\Delta \mathrm{PQR})}{\mathrm{P}(\Delta \mathrm{LMN})}=\frac{b_{1}}{b_{2}}
$$

$\mathrm{P}(\Delta \mathrm{PQR}): \mathrm{P}(\Delta \mathrm{LMN})=\mathrm{b}_{1}: \mathrm{b}_{2}$
Hence, Theorem of Seg- right angled triangle ratio is proved.
Theorem- 7: Proof of Pythagoras theorem with the help of Relation All Mathematics Method:
The square of the hypotenuse of a right angled triangle is equal to the sum of the squares of the other two sides.
Given :- $\operatorname{In} \triangle \mathrm{PQR}, \mathrm{M} \angle \mathrm{PQR}=90^{\circ}$, base $(\mathrm{QR})=\mathrm{b}_{1}$, height $(\mathrm{PQ})=\mathrm{h}_{1}$, And hypotenuse $(\mathrm{PR})=\mathrm{x}$

Figure IX: Pythagoras theorem with Relation All Mathematics
Construction :- Draw a parallelogram on hypotenuse (PR) as a,

$$
\begin{aligned}
& \mathrm{y}=2 \mathrm{~h}_{1}, \mathrm{Seg} \mathrm{PG} \perp \mathrm{Seg} \mathrm{RS} \\
& \text { so that }, \mathrm{A}(\square \mathrm{PRST})=4 . \mathrm{A}(\Delta \mathrm{PQR})
\end{aligned}
$$

as shown in fig(I)
To proof :- $\mathrm{x}^{2}=b_{1}^{2}+h_{1}^{2}$
Proof :- In \square PRST
$\mathrm{A}(\square \mathrm{PRST})=\mathrm{PG} \mathrm{X}$ RS
$=b_{1} \times 2 h_{1}$

$$
\begin{equation*}
=2 \mathrm{~b}_{1 . \mathrm{h}} \mathrm{~h}_{1} \tag{i}
\end{equation*}
$$

$\mathrm{A}(\square \mathrm{PRST})=4 . \mathrm{A}(\triangle \mathrm{PQR})=2 \mathrm{~b}_{1 .} \mathrm{h}_{1}$
Now we are draw square \square PKAR with side PR , and parallelogram \square PRST put on square \square PKAR , which explained as bellow,
In fig -(I)
$\mathrm{A}(\square \mathrm{RBCV})=\mathrm{A}\left(\square \mathrm{KDR}^{\prime} \mathrm{B}^{\prime}\right)$
Now in \square PRST and \square PVR` \({ }^{\prime}\), \(\mathrm{PV}=\mathrm{PG} \& \mathrm{~PB}=\mathrm{RS}\) \(\mathrm{A}(\square \mathrm{PRST})=\mathrm{A}\left(\square \mathrm{PVR}{ }^{\prime} \mathrm{B}^{\prime}\right)\) In \(\square\) PKAR, \(\mathrm{A}(\square \mathrm{PKAR})=\mathrm{x}^{2}\) \(\mathrm{A}(\square \mathrm{PKAR})=\mathrm{A}\left(\square \mathrm{PVR}^{`} \mathrm{~B}^{`}\right)+\mathrm{A}(\square \mathrm{ABCD})\)

$$
\begin{equation*}
x^{2}=2 b_{1} h_{1}+A(\square A B C D) \tag{iii}
\end{equation*}
$$

In fig -2
In $\triangle \mathrm{PQR}$,
Draw as ,A square $\square \mathrm{QWZR}$ and $\square \mathrm{POMQ}$ with base (QR) and height (PQ) respectively
New square $\square \mathrm{POMQ}$ put on square $\square \mathrm{QWZR}$ as explained as bellow.
$\mathrm{A}(\square \mathrm{POMQ})=\mathrm{A}\left(\square \mathrm{QEFA}{ }^{\prime}\right)$
As will as $\triangle \mathrm{PQR}$ set on square $\square \mathrm{QWZR}$ as bellow
$\mathrm{A}(\triangle \mathrm{PQR}) \quad=\mathrm{A}\left(\square \mathrm{EWZH}+\mathrm{A}\left(\square \mathrm{FHC}{ }^{\prime} \mathrm{B}^{\prime}\right)\right.$
Now in $A(\square Q W Z R)$
$\mathrm{A}(\square \mathrm{QWZR})=\mathrm{A}(\square \mathrm{QEFA})+\mathrm{A}(\square E W Z H)+\mathrm{A}\left(\square \mathrm{FHC}{ }^{\prime} \mathrm{B}^{\prime}\right)+\mathrm{A}\left(\square \mathrm{A}^{`} \mathrm{~B}^{\prime} \mathrm{C}^{\prime} \mathrm{R}\right)$

$$
\begin{equation*}
b_{1}^{2}=h_{1}^{2}+\mathrm{A}(\Delta \mathrm{PQR})+\mathrm{A}\left(\square \mathrm{~A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{R}\right) \tag{iv}
\end{equation*}
$$

$\mathrm{A}\left(\square \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{R}\right)=b_{1}^{2}-h_{1}^{2}-\frac{b_{1} \cdot h_{1}}{2}$
But the fig - 1 and 2
$\mathrm{A}(\square \mathrm{ABCD})=\mathrm{A}\left(\square \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{R}\right)$
Now in fig -2 draw a $\square L M Q N$ as
$\mathrm{A}(\square \mathrm{LMQN})=2 . \mathrm{A}(\square \mathrm{POMQ})$

$$
=2 \cdot \mathrm{~h}_{1}^{2}
$$

But,
$\mathrm{A}(\square \mathrm{LMQN})=3 . \mathrm{A}(\triangle \mathrm{PQR})$
$2 h_{1}{ }^{2}=3 \cdot \frac{b_{1}, h_{1}}{2}$
Now, value of equation -(iv) put on equation no. -(iii)
$x^{2}=2 b_{1} h_{1}+A(\square A B C D)$
$x^{2}=2 b_{1} h_{1}+A\left(\square A^{\prime} B^{\prime} C^{\prime} R\right) \quad \ldots A(\square A B C D)=A\left(\square A^{\prime} B^{\prime} C^{\prime} R\right)$
$=2 \mathrm{~b}_{1} \mathrm{~h}_{1}+\mathrm{b}_{1}{ }^{2}-\mathrm{h}_{1}{ }^{2}-\frac{b_{1} \cdot h_{1}}{2}$
...From eq ${ }^{\text {n }}$ no. (iv)
$=\mathrm{b}_{1}{ }^{2}+\mathrm{h}_{1}{ }^{2}-\mathrm{h}_{1}{ }^{2}-\mathrm{h}_{1}{ }^{2}+2 \mathrm{~b}_{1} \mathrm{~h}_{1}-\frac{b_{1} \cdot h_{1}}{2}$
$=\mathrm{b}_{1}{ }^{2}+\mathrm{h}_{1}{ }^{2}-2 \mathrm{~h}_{1}{ }^{2}+3 \frac{b_{1} \cdot h_{1}}{2}$
$=\mathrm{b}_{1}{ }^{2}+\mathrm{h}_{1}{ }^{2}-3 \frac{b_{1} \cdot h_{1}}{2}+3 \frac{b_{1} \cdot h_{1}}{2} \quad \ldots(\mathrm{vi})\left[2 \mathrm{~h}_{1}{ }^{2}=3 \cdot \frac{b_{1} \cdot h_{1}}{2}\right]$
$\mathrm{x}^{2}=\mathrm{b}_{1}{ }^{2}+\mathrm{h}_{1}{ }^{2}$
Hence proof, the square of the hypotenuse of a right angled triangle is equal to the sum of the squares of the other two sides.

Theorem- 8: Theorem of proof of hypotenuse through the sidemeasurement and area. [This theorem is also called DGP THEOREM]
In a right angled triangle, the square of hypotenuse is equal to the subtract of the squares of the sidemeasurement and four times the area.
Given :- In $\triangle \mathrm{PQR}, \mathrm{M} \angle \mathrm{PQR}=90^{\circ}$
base $(\mathrm{QR})=\mathrm{b}_{1}$, height $(\mathrm{PQ})=\mathrm{h}_{1}$
And hypotenuse (PR) $=\mathrm{Y}$

Figure (X) : DGP Theorem

To proof :- $\mathrm{Y}^{2}=\mathrm{B}(\Delta \mathrm{PQR})^{2}-4 . \mathrm{A}(\Delta \mathrm{PQR})$
Proof :- \quad In $\triangle P Q R$,
$\mathrm{Y}^{2}=\mathrm{b}_{1}^{2}+\mathrm{h}_{1}^{2} \quad \ldots$ (Pythagoras theorem)
$Y^{2}=b_{1}{ }^{2}+h_{1}^{2}+2 b_{1} h_{1}-2 b_{1} h_{1}$
$Y^{2}=\left(b_{1}+h_{1}\right)^{2}-2 b_{1} h_{1} \quad \ldots(a+b)^{2}=a^{2}+b^{2}+2 a b$
$\mathrm{Y}^{2}=\left(\mathrm{b}_{1}+\mathrm{h}_{1}\right)^{2}-4 .\left(\frac{1}{2} \cdot \mathrm{~b}_{1} \mathrm{~h}_{1}\right)$
$\mathrm{Y}^{2}=\mathrm{B}(\triangle \mathrm{PQR})^{2}-4 . \mathrm{A}(\triangle \mathrm{PQR})$
Hence, we are proof that DGP theorem.
[Note-DGP is a name of my Grandfather ,Dhanaji Ganapati Patil]

Example of DGP theorem:-

In $\triangle \mathrm{PQR}, \mathrm{M} \angle \mathrm{PQR}=90^{\circ}$, Base $(\mathrm{QR})=4$, Height $(\mathrm{PQ})=3$, And Hypotenuse $(\mathrm{PR})=5$ then give proof of DGP theorem ?
ANS:-
Given-In $\triangle \mathrm{PQR}, \mathrm{M} \angle \mathrm{Q}=90^{\circ}, \mathrm{b}_{1}(\mathrm{QR})=4, \mathrm{~h}_{1}(\mathrm{PQ})=3$
And $Y(P R)=5$ then proof LHS $=$ RHS.
$B(\triangle P Q R)=b_{1}+h_{1}$

$$
=4+3
$$

Sidemeasurement of $\triangle \mathrm{PQR}$ is 7
$\mathrm{A}(\triangle \mathrm{PQR})=\frac{1}{2} \cdot \mathrm{~b}_{1} \mathrm{~h}_{1}$

$$
\begin{aligned}
& =\frac{1}{2} \cdot x 4 \times 3 \\
& =6
\end{aligned}
$$

Area of $\triangle \mathrm{PQR}$ is 6
$\mathrm{Y}^{2}=\mathrm{B}(\triangle \mathrm{PQR})^{2}-4 . \mathrm{A}(\triangle \mathrm{PQR}) \quad \ldots(\mathrm{DGP}$ Theorem $)$
$5^{2}=7^{2}-(4 \times 6)$
$25=49-24$
$25=25$
LHS=RHS
So ,here this example given proof of DGP theorem .

Theorem- 8-i): Proof of base through the side-measurement and area.
In $\triangle \mathrm{PQR}, \mathrm{M} \angle \mathrm{PQR}=90^{\circ}$
base $(\mathrm{QR})=\mathrm{b}_{1}$, height $(\mathrm{PQ})=\mathrm{h}_{1}$
And hypotenuse (PR) = Y
Now ,in Fig.- (X)
we are know that,
$\mathrm{Y}^{2}=\mathrm{B}(\triangle \mathrm{PQR})^{2}-4 . \mathrm{A}(\triangle \mathrm{PQR}) \quad \ldots(\mathrm{DGP}$ theorem)
$\mathrm{b}_{1}{ }^{2} \sec ^{2} \boldsymbol{\theta}=\mathrm{B}(\Delta \mathrm{PQR})^{2}-4 \mathrm{~A}(\Delta \mathrm{PQR})$
$\mathrm{b}_{1}{ }^{2}=\frac{\left[\mathrm{B}(\triangle \mathrm{PQR})^{2}-4 . \mathrm{A}(\Delta \mathrm{PQR})\right]}{\sec ^{2} \boldsymbol{\theta}}$
Theorem- 8-ii): Proof of height through the side-measurement and area.
In $\triangle \mathrm{PQR}, \mathrm{M} \angle \mathrm{PQR}=90^{\circ}$
base $(Q R)=b_{1}$,height $(P Q)=h_{1}$
And hypotenuse (PR) = Y
Now ,in Fig. - (X)
We are know that,
$\mathrm{Y}^{2}=\mathrm{B}(\triangle \mathrm{PQR})^{2}-4 . \mathrm{A}(\triangle \mathrm{PQR}) \quad \ldots(\mathrm{DGP}$ theorem)
$\mathrm{h}_{1}{ }^{2} \operatorname{cosec}^{2} \boldsymbol{\theta}=\mathrm{B}(\triangle \mathrm{PQR})^{2}-4 . \mathrm{A}(\Delta \mathrm{PQR})$
$\mathrm{h}_{1}{ }^{2}=\frac{\left[\mathrm{B}(\Delta \mathrm{PQR})^{2}-4 . \mathrm{A}(\Delta \mathrm{PQR})\right]}{\operatorname{cosec}^{2} \boldsymbol{\theta}}$

References

[1]. Surrounding agricultural life.
[2]. Answers.yahoo.com (www.answers.yahoo.com)
[3]. Wikipedia, Google and other search engines. (www.wikipedia.org)
[4]. This paper is next part of previous paper "Area and perimeter relation of square and rectangle(Relation All Mathematics)" DOI:10.9790/5728-10660107 , [http://iosrjournals.org/iosr-jm/pages/v10(6)Version-6.html]

