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I. Introduction 

We know that the smallest positive integer f such that af 1 mod m is called the exponent of ‘a’ modulo 

m and is denoted by expma. We say that ‘a’ is a semi-primitive root mod m if expma =
2

)(m
. We proved that 

there exists a semi-primitive root for mod m when m = p, 2 p(for2), 22.p and  2if 3. Also it was 
established that there exists a semi-primitive root for mod m when m = p1p2 where p1 and p2 are distinct odd 

primes and at least one prime is of the form 4n+3.In this paper we discuss the existence of semi primitive root 

mod pαwhenever it exists for mod p. we have If ‘a’   is a semi primitive root mod p2 then 
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a ≠ 1 modp2.Hence the relation 2

1p

a ≠ 1 modp2 is a necessary condition 

for a semi primitive root a mod p to be a semi primitive root mod p2. Conversely we prove that when ‘a’ is a 

semi primitive root mod p then a is also a semi primitive root mod pα for α ≥ 2 if 2

1p

a ≠ 1 modp2. 

To prove the main result we prove the following lemma. 

 

Lemma: Let ‘a’ be a semi primitive root mod p such that 
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a ≠ 1 modp2.Then 12
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 p

a mod pαfor α ≥ 2.  

Proof: We prove the lemma by induction on α. 

If α = 2 then 2

1p

a ≠ 1 modp2.i.e the result is true for α = 2 

Suppose that the result is true for α then  
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a mod pα-1 …………………………..(1) 

By Euler’s theorem we have  
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a mod pα-1. 
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Rising to the powers of p on both sides we get   
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If possible suppose that 12
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a (mod p
α+1

)  

 

Then  kp1  1(Mod p
α+1

) p
α+1

 divides 2kp  p divides 2kp
 

 p divides k.p
α
 and p divides 2kp  p divides 2 which is a contradiction. 

Therefore 12

)(



 p

a (Mod p
α+1

) . Hence the result is true for α+1. 

Thus by induction the result is true for all α≥2. 
Theorem: Let p be an odd prime, then we have  

(i) 
If a is a semi primitive root mod p , then a is also a primitive root mod p

α
 for every α ≥ 2if and 

only if
2

1p

a ≠ 1 modp
2
. 

(ii) There is at least one semi primitive root mod p such that 2

1p

a ≠ 1 modp
2
. 

 
Proof: Suppose a is a semi primitive root mod p. 

If a is a semi primitive root mod p
α
 for every α≥2 then in particular it is semi primitive root mod p

2
. 

And hence  

2

1p

a ≠ 1 modp
2
. 

Conversely suppose 2

1p

a ≠ 1 modp
2
. 

Now we show that ‘a’ is a semi primitive root for mod p
α
. 

Suppose ta
p

exp  

We prove that 
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Since a
t 
 1 (mod p

α
) we have a

t 
 1 (mod p) 

Therefore 
2

)( p
 divides t. t  = q. 

2

)( p
 

Now t divides 
2

)(  p
 q. 

2

)( p
divides 

2

)(  p
 

 q. 
2

1p
divides 

2

)1(1  pp
 q divides 

1p  q= p
β-1 

where β ≤ α-1. 

Now it is sufficient to prove β = α-1. 

Suppose β < α-1. Then β ≤ α-2. 

Now 
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a mod p
α
 which is a contradiction by above lemma. 
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Therefore p = α-1. Hence 
2
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Thus a is a semi primitive root mod p
α
. 

Proof of (ii):  If 
2

1p

a ≠ 1 modp
2 
then by (i) a is a semi primitive root mod p

α
. 

Suppose  12
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a  modp
2
 

Let x be any other semi primitive root satisfying 12
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x  modp
2
 

And x = a + p 
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Therefore  x 2

1p

a  - 2

3

.
2

p

a
p

mod p
2
. 

If 2

3

.
2

p

a
p

 0 mod p
2 

then 2

3p

a  0 mod p
2
which is a contradiction since ‘a’ is a semi primitive 

root mod p.  

Therefore 12

1



p

x  modp
2
 

 

Hence there exists at least one semi primitive root mod p
α
 for α≥2. 

 
Theorem: If ‘a’ is a primitive root mod p ad p = 4n +3 then –a is a semi primitive root mod p. 

Proof: a is a primitive root mod p  11 pa mod p 

 1)( 1  pa mod p 

11 pa mod p  



)1)(1( 2

1

2

1 pp

aa 0 mod p 
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a mod p Since a  is a primitive root mod p. 
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a  mod p since 12
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p
 is odd. 

Let fap  )(exp  Then f 
2

1p
. 

If f <
2

1p
 then 2f < p-1 

Since fap  )(exp  we have 1)( 2  fa mod p. 12 fa mod p.This is a contradiction since a  

is a primitive root mod p. 

Therefore  f =
2

1p
. 

Hence -a is a semi primitive root mod p. 
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 Also it is clear that if ‘a’ is a semi primitive root mod p then 
4

1
)(exp




p
ap where p is a prime 

of the form 4n +1 and n is odd. 
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