# Existence of Semi Primitive Root Mod $\mathbf{P}^{\boldsymbol{\alpha}}$ 

Dr. K.Vijayalakshmi, Loyola Academy Degree \& P.G.College, Old Alwal, Secunderabad, Telengana, India.

## I. Introduction

We know that the smallest positive integer $f$ such that $\mathrm{a}^{f} \equiv 1 \mathrm{mod} \mathrm{m}$ is called the exponent of ' a ' modulo m and is denoted by $\exp _{\mathrm{m}} \mathrm{a}$. We say that ' a ' is a semi-primitive root mod m if $\exp _{\mathrm{m}} \mathrm{a}=\frac{\phi(m)}{2}$. We proved that there exists a semi-primitive root for mod $m$ when $m=p^{\alpha}, 2 p^{\alpha}$ (for $\alpha>2$ ), $2^{2} \cdot p^{\alpha}$ and $2^{\alpha}$ if $\alpha>3$. Also it was established that there exists a semi-primitive root for $\bmod m$ when $m=p_{1} p_{2}$ where $p_{1}$ and $p_{2}$ are distinct odd primes and at least one prime is of the form $4 \mathrm{n}+3$. In this paper we discuss the existence of semi primitive root $\bmod \mathrm{p}^{\alpha}$ whenever it exists for $\bmod \mathrm{p}$. we have If ' a ' is a semi primitive root mod $\mathrm{p}^{2}$ then $\frac{\phi\left(p^{2}\right)}{2}=\frac{p(p-1)}{2} \geq \frac{p-1}{2} \Rightarrow a^{\frac{p-1}{2}} \neq 1 \operatorname{modp}^{2}$. Hence the relation $a^{\frac{p-1}{2}} \neq 1 \operatorname{modp}^{2}$ is a necessary condition for a semi primitive root a $\bmod p$ to be a semi primitive root $\bmod p^{2}$. Conversely we prove that when ' $a$ ' is a semi primitive root $\bmod \mathrm{p}$ then a is also a semi primitive root $\bmod \mathrm{p}^{\alpha}$ for $\alpha \geq 2$ if $a^{\frac{p-1}{2}} \neq 1 \operatorname{modp}{ }^{2}$.
To prove the main result we prove the following lemma.
Lemma: Let ' $a$ ' be a semi primitive root mod $p$ such that
$a^{\frac{p-1}{2}} \neq 1 \operatorname{modp}{ }^{2}$.Then $a^{\frac{\phi\left(p^{\alpha-1}\right)}{2}} \neq 1 \bmod \mathrm{p}^{\alpha}$ for $\alpha \geq 2$.
Proof: We prove the lemma by induction on $\alpha$.
If $\alpha=2$ then $a^{\frac{p-1}{2}} \neq 1 \operatorname{modp}^{2}$.i.e the result is true for $\alpha=2$
Suppose that the result is true for $\alpha$ then
$a^{\frac{\phi\left(p^{\alpha-1}\right)}{2}} \neq 1 \bmod \mathrm{p}^{\alpha-1}$
By Euler's theorem we have
$a^{\phi\left(p^{\alpha-1}\right)} \equiv 1\left(\bmod \mathrm{p}^{\alpha-1}\right) \Rightarrow\left(a^{\frac{\phi\left(p^{\alpha-1}\right)}{2}}\right)^{2} \equiv 1\left(\bmod \mathrm{p}^{\alpha-1}\right)$
$\Rightarrow\left(a^{\frac{\phi\left(p^{\alpha-1}\right)}{2}}+1\right)\left(a^{\frac{\phi\left(p^{\alpha-1}\right)}{2}}-1\right) \equiv 0\left(\bmod \mathrm{p}^{\alpha-1}\right)$
$\Rightarrow a^{\frac{\phi\left(p^{\alpha-1}\right)}{2}} \equiv-1\left(\bmod \mathrm{p}^{\alpha-1}\right)$ since $a^{\frac{\phi\left(p^{\alpha-1}\right)}{2}} \neq 1 \bmod \mathrm{p}^{\alpha-1}$.
$\Rightarrow \mathrm{p}^{\alpha-1} \left\lvert\,\left(a^{\frac{\phi\left(p^{\alpha-1}\right)}{2}}+1\right)\right.$
$\Rightarrow a^{\frac{\phi\left(p^{\alpha-1}\right)}{2}}=-1+k p^{\alpha-1}$
Rising to the powers of p on both sides we get
$a^{\frac{p . \phi\left(p^{\alpha-1}\right)}{2}}=\left(-1+k p^{\alpha-1}\right)^{p}$
$\Rightarrow a^{\frac{\phi\left(p^{\alpha}\right)}{2}}=(-1)^{p}+k p^{\alpha}+k^{2} \frac{p(p-1)}{2} p^{2(\alpha-1)}+$ $\qquad$
$\Rightarrow a^{\frac{\phi\left(p^{\alpha}\right)}{2}} \equiv\left(-1+k p^{\alpha}\right)\left(\operatorname{Mod~p}^{\alpha+1}\right)$
If possible suppose that $a^{\frac{\phi\left(p^{\alpha}\right)}{2}} \equiv 1\left(\bmod \mathrm{p}^{\alpha+1}\right)$
Then $-1+k p^{\alpha} \equiv 1\left(\operatorname{Mod} \mathrm{p}^{\alpha+1}\right) \Rightarrow \mathrm{p}^{\alpha+1}$ divides $k p^{\alpha}-2 \Rightarrow \mathrm{p}$ divides $k p^{\alpha}-2$
$\Rightarrow \mathrm{p}$ divides $\mathrm{k} . \mathrm{p}^{\alpha}$ and p divides $k p^{\alpha}-2 \Rightarrow \mathrm{p}$ divides 2 which is a contradiction.
Therefore $a^{\frac{\phi\left(p^{\alpha}\right)}{2}} \neq 1\left(\operatorname{Mod~p}^{\alpha+1}\right) \quad$. Hence the result is true for $\alpha+1$.
Thus by induction the result is true for all $\alpha \geq 2$.
Theorem: Let p be an odd prime, then we have
(i) If a is a semi primitive root mod $p$, then a is also a primitive root mod $p^{\alpha}$ for every $\alpha \geq 2$ if and only if $a^{\frac{p-1}{2}} \neq 1 \operatorname{modp}^{2}$.
(ii) There is at least one semi primitive root mod p such that $a^{\frac{p-1}{2}} \neq 1$ modp ${ }^{2}$.

Proof: Suppose a is a semi primitive root $\bmod p$.
If $a$ is a semi primitive root $\bmod p^{\alpha}$ for every $\alpha \geq 2$ then in particular it is semi primitive root $\bmod p^{2}$.
And hence
$a^{\frac{p-1}{2}} \neq 1 \operatorname{modp}^{2}$.
Conversely suppose $a^{\frac{p-1}{2}} \neq 1$ modp $^{2}$.
Now we show that ' $a$ ' is a semi primitive root for mod $p^{\alpha}$.
Suppose $\exp _{p^{\alpha}} a=t$
We prove that $t=\frac{\phi\left(p^{\alpha}\right)}{2}=\frac{p^{\alpha-1}(p-1)}{2}$
Since $\mathrm{a}^{\mathrm{t}} \equiv 1\left(\bmod \mathrm{p}^{\alpha}\right)$ we have $\mathrm{a}^{\mathrm{t}} \equiv 1(\bmod \mathrm{p})$
Therefore $\frac{\phi(p)}{2}$ divides $\mathrm{t} . \Rightarrow \mathrm{t}=\mathrm{q} \cdot \frac{\phi(p)}{2}$
Now t divides $\frac{\phi\left(p^{\alpha}\right)}{2} \Rightarrow \mathrm{q} \cdot \frac{\phi(p)}{2}$ divides $\frac{\phi\left(p^{\alpha}\right)}{2}$
$\Rightarrow$ q. $\frac{p-1}{2}$ divides $\frac{p^{\alpha-1}(p-1)}{2} \Rightarrow \mathrm{q}$ divides $p^{\alpha-1} \Rightarrow \mathrm{q}=\mathrm{p}^{\beta-1}$ where $\beta \leq \alpha-1$.
Now it is sufficient to prove $\beta=\alpha-1$.
Suppose $\beta<\alpha-1$. Then $\beta \leq \alpha-2$.
Now $t=\frac{p^{\beta}(p-1)}{2}\left|\frac{p^{\alpha-2}(p-1)}{2} \Rightarrow t=\frac{p^{\beta}(p-1)}{2}\right| \frac{\phi\left(p^{\alpha-1}\right)}{2}$
$a^{\frac{\phi\left(p^{\alpha-1}\right)}{2}} \equiv 1 \bmod \mathrm{p}^{\alpha}$ which is a contradiction by above lemma.

Therefore $\mathrm{p}=\alpha$-1. Hence $t=\frac{\phi\left(p^{\alpha}\right)}{2}=\frac{p^{\alpha-1}(p-1)}{2}$
Thus a is a semi primitive root $\bmod \mathrm{p}^{\alpha}$.
Proof of (ii): If $a^{\frac{p-1}{2}} \neq 1 \operatorname{modp}^{2}$ then by (i) a is a semi primitive root $\bmod \mathrm{p}^{\alpha}$.
Suppose $a^{\frac{p-1}{2}} \equiv 1 \operatorname{modp}^{2}$
Let $x$ be any other semi primitive root satisfying $x^{\frac{p-1}{2}} \neq 1 \operatorname{modp}^{2}$
And $x=\mathrm{a}+\mathrm{p}$
$x^{\frac{p-1}{2}}=(a+p)^{\frac{p-1}{2}}=a^{\frac{p-1}{2}}+\frac{p-1}{2} \cdot a^{\frac{p-3}{2}} \cdot p+\frac{p-1}{2} \cdot \frac{p-3}{2} a^{\frac{p-5}{2}} \cdot p^{2}+\ldots \ldots \ldots .$.
Therefore $x \equiv a^{\frac{p-1}{2}}-\frac{p}{2} . a^{\frac{p-3}{2}} \bmod \mathrm{p}^{2}$.
If $\frac{p}{2} \cdot a^{\frac{p-3}{2}} \equiv 0 \bmod \mathrm{p}^{2}$ then $a^{\frac{p-3}{2}} \equiv 0 \bmod \mathrm{p}^{2}$ which is a contradiction since ' a ' is a semi primitive root $\bmod \mathrm{p}$.
Therefore $x^{\frac{p-1}{2}} \neq 1$ modp $^{2}$
Hence there exists at least one semi primitive root $\bmod \mathrm{p}^{\alpha}$ for $\alpha \geq 2$.
Theorem: If ' a ' is a primitive root $\bmod \mathrm{p}$ ad $\mathrm{p}=4 \mathrm{n}+3$ then -a is a semi primitive root $\bmod \mathrm{p}$.
Proof: a is a primitive root $\bmod \mathrm{p} \Rightarrow a^{p-1} \equiv 1 \bmod \mathrm{p}$
$\Rightarrow(-a)^{p-1} \equiv 1 \bmod \mathrm{p}$
$a^{p-1} \equiv 1 \bmod \mathrm{p} \Rightarrow\left(a^{\frac{p-1}{2}}-1\right)\left(a^{\frac{p-1}{2}}+1\right) \equiv 0 \bmod \mathrm{p}$
$\Rightarrow a^{\frac{p-1}{2}} \equiv-1 \bmod \mathrm{p}$ Since a is a primitive root $\bmod \mathrm{p}$.
$\Rightarrow(-a)^{\frac{p-1}{2}} \equiv 1 \bmod \mathrm{p}$ since $\frac{p-1}{2}=2 n+1$ is odd.
Let $\exp _{p}(-a)=f$ Then $f \left\lvert\, \frac{p-1}{2}\right.$.
If $f<\frac{p-1}{2}$ then $2 f<\mathrm{p}-1$
Since $\exp _{p}(-a)=f$ we have $(-a)^{2 f} \equiv 1 \bmod \mathrm{p} . \Rightarrow a^{2 f} \equiv 1 \bmod \mathrm{p}$. This is a contradiction since a is a primitive root $\bmod p$.
Therefore $f=\frac{p-1}{2}$.
Hence -a is a semi primitive root $\bmod \mathrm{p}$.

Also it is clear that if ' a ' is a semi primitive root $\bmod \mathrm{p}$ then $\exp _{p}(-a)=\frac{p-1}{4}$ where p is a prime of the form $4 \mathrm{n}+1$ and n is odd.

## References

[1]. Introduction to Analytic Number Theory, Springer International Student Edition.
[2]. An Introduction to Theory of Numbers by Ivan Niven, Herbert S. Zuckerman - Wiley Eastern Limited.
[3]. Elementary Number theory by David M .Burton.

