On a Finsler space with Binomial (α, β) - metrics

Ghanashyam Kr. Prajapati
(DST-Centre for Interdisciplinary Mathematical Sciences, Faculty of Science, Banaras Hindu University, Varanasi-221005, India)

> Abstract: In this paper, we study a class of (α, β)-Finsler metrics called Binomial (α, β)-metrics on an n -dimensional differential manifold M and get the conditions for such metrics to be Berwald, Douglas and Projectively flat. Further, we prove that a Binomial (α, β)-metric is of scalar flag curvature and isotropic S -curvature if and only if it is isotropic Berwald metric with almost isotropic flag curvature.

2010 Mathematics Subject Classifications: 53B40, 53C60.
Keywords: (α, β)-metric , Berwald space, Douglas space, Finsler space, projectively flat, scalar flag curvature.

I. Introduction

Let (M, F) is a Finsler manifold, where M is an n-dimensional differential manifold and F is a Finsler metric on M. The (α, β)-metrics are interesting examples of Finsler metric introduced by M. Matsumoto as a generalization of Randers metric $F=\alpha+\beta$, where $\alpha=\sqrt{a_{i j}(x) y^{i} y^{j}}$ is a Riemannian metric and $\beta=b_{i} y^{i}$ is a 1 -form. A Finsler metrics $F(\alpha, \beta)$ on a differential manifold M is called an (α, β)-metric, if F is a positively homogeneous of degree one in α and β. In the present paper we study a Finsler metric $F=\alpha \phi(s)$, where $s=\frac{\beta}{\alpha}$ and $\phi(s)=(1+s)^{m+1}$ that is,

$$
\begin{equation*}
F=\frac{(\alpha+\beta)^{m+1}}{\alpha^{m}} \tag{1.1}
\end{equation*}
$$

where m is an arbitrary real number and called $\operatorname{Binomial}(\alpha, \beta)$-metrics. This class of (α, β)-metrics contains Randers metric $F=\alpha+\beta$ for $m=0$; Riemannian metric $F=\alpha$ for $m=-1$; Matsumoto metric $F=\frac{\alpha^{2}}{(\alpha-\beta)}$, if we replace β by $-\beta$ and take $m=-2$ and Z. Shen's square metric $F=\frac{(\alpha+\beta)^{2}}{\alpha}$ for $m=1$. Z. Shen's square metric is interesting in the sense that the metric

$$
F(x, y)=\frac{\left(\sqrt{\left(1-|x|^{2}\right)|y|^{2}+\langle x, y\rangle^{2}}+\langle x, y\rangle\right)^{2}}{\left(1-|x|^{2}\right)^{2} \sqrt{\left(1-|x|^{2}\right)|y|^{2}+\langle x, y\rangle^{2}}},(x, y) \in T R^{n}
$$

constructed by L. Berwald in 1929, which is projectively flat on unit ball B^{n} with constant flag curvature $K=0$; can be written in form $F=\frac{(\alpha+\beta)^{2}}{\alpha}$ for some suitable α and β. Here $|\cdot|$ and \langle,$\rangle denote the$ standard Euclidean norm and inner product respectively on R^{n} and $T R^{n}$ is tangent space on R^{n}.
The flag curvature in Finsler geometry is a natural extension of the sectional curvature in Riemannian geometry, which is first introduced by L. Berwald. In general, for a tangent plane $P=\operatorname{span}(y, u), y$ and u are linearly independent vectors of tangent space $T_{x} M$ of M at point $x \in M$, the flag curvature $K=K(P, u)$ depends on plane P as well as vector $u \in P$. A Finsler metric F is of scalar flag curvature if for any non-zero vector $y \in T_{x} M, K=K(x, y)$ is independent of P containing $y \in T_{x} M . F$ is called of almost isotropic flag curvature if

$$
\begin{equation*}
K=\frac{3 c_{x^{m}} y^{m}}{F}+\sigma \tag{1.2}
\end{equation*}
$$

where $c=c(x)$ and $\sigma=\sigma(x)$ are some scalar functions on M.
The S-curvature $S=S(x, y)$ in Finsler geometry is introduced by Shen [1] as a non-Riemannian quantity, defined as:

$$
\begin{equation*}
S(x, y)=\frac{d}{d t}[\tau(\sigma(t), \dot{\sigma}(t))]_{t=0} \tag{1.3}
\end{equation*}
$$

where $\tau=\tau(x, y)$ is a scalar function on $T_{x} M \backslash\{0\}$, called distortion of F and $\sigma=\sigma(t)$ be the geodesic with $\sigma(0)=x$ and $\dot{\sigma}(0)=y$.
A Finsler metric F is called of isotropic S-curvature if

$$
\begin{equation*}
S=(n+1) c F \tag{1.4}
\end{equation*}
$$

for some scalar function $c=c(x)$ on M. One of the fundamental problems in Riemann-Finsler geometry is to study and characterize Finsler metrics of scalar flag curvature with isotropic S-curvature. In [2], it is proved that if a Finsler metric F, of scalar flag curvature is of isotropic S-curvature, then it has almost isotropic flag curvature. A geodesic curve $c=c(t)$ of a Finsler metric $F=F(x, y)$ on a smooth manifold M is given by $\ddot{c}^{i}(t)+2 G^{i}(c(t), \dot{c}(t))=0$, where the local functions $G^{i}=G^{i}(x, y)$ are called the spray coefficients given by $G^{i}=\frac{1}{4} g^{i l}\left\{\left[F^{2}\right]_{x^{k} y^{l}} y^{k}-\left[F^{2}\right]_{x^{l}}\right\}$. A Finsler metric is called Berwald metric, if G^{i} are quadratic in $y \in T_{x} M$ for any $x \in M$. The Berwald curvature tensor of a Finsler metric F is defined as $B:=B_{j k l}^{i} d x^{j} \otimes \partial_{i} \otimes d x^{k} \otimes d x^{l}$, where $B_{j k l}^{i}=\left[G^{i}\right]_{y^{j} y^{k} y^{\prime}}$. A Finsler metric F is said to be isotropic Berwald metric if its Berwald curvature is in the following form

$$
\begin{equation*}
B_{j k l}^{i}=c\left(F_{y^{j} y^{k}} \delta_{l}^{i}+F_{y^{k} y^{l}} \delta_{j}^{i}+F_{y^{l} y^{j}} \delta_{k}^{i}+F_{y^{j} y^{k} y^{l}} y^{i}\right) \tag{1.5}
\end{equation*}
$$

where $c=c(x)$ is a scalar function on M.
The E-curvature or mean Berwald curvature in Finsler geometry is defined as $E:=E_{i j} d x^{i} \otimes d x^{j}$, where $E_{i j}=\frac{1}{2} B_{m i j}^{m}=\frac{1}{2} S_{y^{i} y^{j}}(x, y)=\frac{1}{2} \frac{\partial^{2}}{\partial y^{i} \partial y^{j}}\left[\frac{\partial G^{m}}{\partial y^{m}}\right]$. A Finsler metric F is said to be isotropic mean Berwald metric if its mean curvature is in the following form $E_{i j}=\frac{n+1}{2 F} c h_{i j}$, where $c=c(x)$ is a scalar function on M and $h_{i j}$ is the angular metric tensor. The metric tensor $g_{i j}$ and Cartan tensor $C_{i j k}$ of a Finsler metric F is defined as $g_{i j}=\frac{1}{2} \frac{\partial^{2} F^{2}}{\partial y^{i} \partial y^{j}}$ and $C_{i j k}=\frac{1}{2} \frac{\partial g_{i j}}{\partial y^{k}}$. Also mean Cartan torsion I_{y} define by $I_{y}(u):=I_{i}(y) u^{i}$, where $I_{i}=g^{j k} C_{i j k}$. The horizontal covariant derivative of I along a vector $u \in T_{x} M$ gives rise to the mean Landsberg curvature $J_{y}(u):=J_{i}(y) u^{i}$, where $J_{i}=I_{i \mid s} y^{s}$.
In the present paper we prove the following theorems:
Theorem 1.1 A Finsler space with Binomial (α, β)-metric $F=\frac{(\alpha+\beta)^{m+1}}{\alpha^{m}}$ is a Berwald space if and only if $b_{i, j}=0$.

Theorem 1.2 A Finsler space with Binomial (α, β)-metric $F=\frac{(\alpha+\beta)^{m+1}}{\alpha^{m}}$ is a Douglas space if and only if
$b_{i, j}=0$, provided $m \neq 0, \pm 1$.
Remark: For $m=0$, the Bionomial (α, β)-metric (1.1) is a Randers metric $F=\alpha+\beta$. A Randers metric is Douglas if and only if β is closed [3]. For $m=1$, the Bionomial (α, β)-metric (1.1) reduces to a square metric $F=\frac{(\alpha+\beta)^{2}}{\alpha}$. The condition, for a square metric to be Douglas, has been studied in [4]. Finally for $m=-1$, the Bionomial (α, β)-metric (1.1) reduces to a Riemannian metric, which is trivially Douglas.
Theorem 1.3 A Finsler space with Binomial (α, β)-metric $F=\frac{(\alpha+\beta)^{m+1}}{\alpha^{m}}$ is locally projectively flat if and only if β is parallel with respect to α and α is locally projectively flat.

Theorem 1.4 Let $F=\frac{(\alpha+\beta)^{m+1}}{\alpha^{m}}$ be a Binomial (α, β)-metric on n-dimensional Finsler manifold M.
Then F is of scalar flag curvature with isotropic S-curvature if and only if it has isotropic Berwald curvature with almost isotropic flag curvature. In this case, F must be locally Minkowskian.

II. Preliminaries

Let $\alpha=\sqrt{a_{i j}(x) y^{i} y^{j}}$ is a Riemannian metric, $\beta=b_{i} y^{i}$ is a 1 -form and let $F=\alpha \phi(s), s=\frac{\beta}{\alpha}$, where $\phi=\phi(s)$ is a positive C^{∞} function defined in a neighbourhood of the origin $s=0$. It is well known that $F=\alpha \phi(s)$ is a Finsler metric for any α and β with $b=\|\beta\|_{\alpha}<b_{0}$ if and only if $\phi(s)>0, \phi(s)-s \phi^{\prime}(s)+\left(b^{2}-s^{2}\right) \phi^{\prime \prime}(s)>0,\left(|s| \leq b<b_{0}\right)$.
Let G^{i} and G_{α}^{i} denote the spray coefficients of F and α respectively, given by

$$
\begin{equation*}
G^{i}=\frac{1}{4} g^{i l}\left\{\left[F^{2}\right]_{x^{k} y^{k}} y^{k}-\left[F^{2}\right]_{x^{\prime}}\right\} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{\alpha}^{i}=\frac{1}{4} a^{i l}\left\{\left[\alpha^{2}\right]_{x^{k} y^{k}} y^{k}-\left[\alpha^{2}\right]_{x^{l}}\right\}, \tag{2.2}
\end{equation*}
$$

where $\left(a^{i j}\right)=\left(a_{i j}\right)^{-1}, F_{x^{k}}=\frac{\partial F}{\partial x^{k}}$ and $F_{y^{k}}=\frac{\partial F}{\partial y^{k}}$.
Consider the following notations [1]

$$
\begin{aligned}
& r_{i j}=\frac{1}{2}\left\{b_{i ; j}+b_{j ; i}\right\}, \quad r_{j}^{i}=a^{i h} r_{h j}, \quad r_{j}=b_{i} r_{j}^{i}, \\
& s_{i j}=\frac{1}{2}\left\{b_{i ; j}-b_{j ; i}\right\}, \quad s_{j}^{i}=a^{i h} s_{h j}, \quad s_{j}=b_{i} s_{j}^{i}, \\
& b^{i}=a^{i h} b_{h}, \quad b^{2}=b^{i} b_{i},
\end{aligned}
$$

where $b_{i, j}$ is covarient derivative of b_{i} with respect to Levi-Civita connection of α.
Lemma (2.1) [1] The spray coefficients G^{i} are related to G_{α}^{i} by

$$
\begin{equation*}
G^{i}=G_{\alpha}^{i}+\alpha Q s_{0}^{i}+J\left(-2 \alpha Q s_{0}+r_{00}\right) \frac{y^{i}}{\alpha}+H\left(-2 \alpha Q s_{0}+r_{00}\right)\left(b^{i}-\frac{y^{i}}{\alpha}\right) \tag{2.3}
\end{equation*}
$$

where $Q=\frac{\phi^{\prime}}{\phi-s \phi^{\prime}}, J=\frac{1}{2} \frac{\left(\phi-s \phi^{\prime}\right) \phi^{\prime}}{\phi\left(\left(\phi-s \phi^{\prime}\right)+\left(b^{2}-s^{2}\right) \phi^{\prime \prime}\right)}, \quad H=\frac{1}{2} \frac{\phi^{\prime \prime}}{\left(\left(\phi-s \phi^{\prime}\right)+\left(b^{2}-s^{2}\right) \phi^{\prime \prime}\right)}$
and subscript ' 0 ' represents contraction with y^{i}, for instance, $s_{0}=s_{i} y^{i}$.
A Finsler metric $F=F(x, y)$ on an open subset $U \subset \mathrm{R}^{n}$ is said to be projectively flat if all the geodesics are straight in U. In [5], it is shown that a Finsler metric $F=F(x, y)$ is projectively flat on an open subset $U \subset \mathrm{R}^{n}$ if and only if

$$
\begin{equation*}
F_{x^{k} y^{k}} y^{k}-F_{x^{l}}=0 . \tag{2.4}
\end{equation*}
$$

In view of equation (2.3) and (2.4), we have the following lemma [6]
Lemma (2.2) An (α, β)-metric $F=\phi(s)$, where $s=\frac{\beta}{\alpha}$ is projectively flat on an open subset $U \subset \mathrm{R}^{n}$ if and only if

$$
\begin{equation*}
\left(a_{m l} \alpha^{2}-y_{m} y_{l}\right) G_{\alpha}^{m}+\alpha^{3} Q s_{l 0}+H \alpha\left(-2 \alpha Q s_{0}+r_{00}\right)\left(b_{l} \alpha-s y_{l}\right)=0 . \tag{2.5}
\end{equation*}
$$

Lemma (2.3) [7] If $\left(a_{m l} \alpha^{2}-y_{m} y_{l}\right) G_{\alpha}^{m}=0$, then α is projectively flat.
In [8], for a Finsler metric $F=\frac{(\alpha+\beta)^{m+1}}{\alpha^{m}}$, C. H. Xiang and X. Y. Cheng investigated:
Proposition (2.1) The following conditions are equivalent for the (α, β)-metrics (1.1)
(i) F is of isotropic S-curvature, $S=(n+1) c F$;
(ii) F is of isotropic mean Berwald curvature, $E=\frac{n+1}{2} c F^{-1} h$;
(iii) β is a Killing 1-form with $\mathrm{b}=$ constant with respect to α, that is $r_{i j}=0, s_{i}=0$;
(iv) $S=0$;
(v) F is weakly-Berwald,that is $\mathrm{E}=0$;
where $c=c(x)$ is a scalar function on M.

III. Proof of theorem (1.1)

In view of the equation (2.3), the spray coefficients $G^{i}(x, y)$ of F^{n} with an (α, β)-metric can also be written in the following form [9],

$$
\begin{equation*}
G^{i}=G_{\alpha}^{i}+B^{i} \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
B^{i}=\frac{\alpha F_{\beta} s_{0}^{i}}{F_{\alpha}}+C^{*}\left\{\frac{\beta F_{\beta} y^{i}}{\alpha F}-\frac{\alpha F_{\alpha \alpha}}{F_{\alpha}}\left(\frac{y^{i}}{\alpha}-\frac{\alpha b^{i}}{\beta}\right)\right\}, \tag{3.2}
\end{equation*}
$$

$$
C^{*}=\frac{\alpha \beta\left(r_{00} F_{\alpha}-2 s_{0} \alpha F_{\beta}\right)}{2\left(\beta^{2} F_{\alpha}+\alpha \gamma^{2} F_{\alpha \alpha}\right)}
$$

$\gamma^{2}=b^{2} \alpha^{2}-\beta^{2}, F_{\alpha}=\frac{\partial F}{\partial \alpha}, F_{\beta}=\frac{\partial F}{\partial \beta}$ and $F_{\alpha \alpha}=\frac{\partial F_{\alpha}}{\partial \alpha}$, provided $\beta^{2} F_{\alpha}+\alpha \gamma^{2} F_{\alpha \alpha} \neq 0$. The vector $B^{i}(x, y)$ is called the difference vector. Differentiation of spray coefficients G^{i} with respect to y^{j} and y^{k} successively gives $G_{j}^{i}=\gamma_{0 j}^{i}+B_{j}^{i}$ and $G_{j k}^{i}=\gamma_{j k}^{i}+B_{j k}^{i}$ where $B_{j}^{i}=\dot{\partial}_{j} B^{i}$ and $B_{j k}^{i}=\dot{\partial}_{k} B_{j}^{i}$. Thus a Finsler space with an (α, β)-metric is a Berwald space if and only if $G_{j k}^{i}=G_{j k}^{i}(x)$ equivalently $B_{j k}^{i}=B_{j k}^{i}(x)$. Moreover on account of [10] B_{j}^{i} is determined by

$$
\begin{equation*}
F_{\alpha} B_{j i}^{t} y^{j} y_{t}+\alpha F_{\beta}\left(B_{j i}^{t} b_{t}-b_{j ; i}\right) y^{j}=0 \tag{3.3}
\end{equation*}
$$

where $\quad y_{k}=a_{i k} y^{i}$. For the $\operatorname{Binomial}(\alpha, \beta)$-metrics (1.1), we have

$$
\begin{align*}
& F_{\alpha}=(\alpha+\beta)^{m} \alpha^{-m-1}(\alpha-m \beta), F_{\alpha \alpha}=m(m+1)(\alpha+\beta)^{m-1} \alpha^{-m-2} \beta^{2} \\
& F_{\beta}=(m+1)(\alpha+\beta)^{m} \alpha^{-m} \quad \text { and } \quad F_{\beta \beta}=m(m+1)(\alpha+\beta)^{m-1} \alpha^{-m} \tag{3.4}
\end{align*}
$$

Substituting (3.4) in equation (3.3), we have

$$
\begin{equation*}
(\alpha-m \beta) B_{j i}^{t} y^{j} y_{t}+(m+1) \alpha^{2}\left(B_{j i}^{t} b_{t}-b_{j ; i}\right) y^{j}=0 \tag{3.5}
\end{equation*}
$$

Assume that F^{n} is a Berwald space, that is, $B_{j k}^{i}=B_{j k}^{i}(x)$. Separating equation (3.5) in rational and irrational terms of y^{i}, which yields two equations

$$
\begin{equation*}
-m \beta B_{j i}^{t} y^{j} y_{t}+(m+1) \alpha^{2}\left(B_{j i}^{t} b_{t}-b_{j, i}\right) y^{j}=0 \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha B_{j i}^{t} y^{j} y_{t}=0 \tag{3.7}
\end{equation*}
$$

Equation (3.7) yields $B_{j i}^{t} y^{j} y_{t}=0$, that is,

$$
\begin{equation*}
B_{j i}^{t} a_{t h}+B_{h i}^{t} a_{t j}=0 \quad \text { and } \quad B_{j i}^{t} b_{t}-b_{j ; i}=0 \tag{3.8}
\end{equation*}
$$

Thus we obtain $B_{j i}^{t}=0$ by Christoffel process, in the first part of equation (3.8) and from second part of equation (3.8), we have $b_{i ; j}=0$.
Conversely, if $b_{i ; j}=0$, then $B_{j i}^{t}=0$ are determined from equation (3.5).

IV. Proof of theorem (1.2)

A Douglas space is a generalization of Berwald space in the sense that a Finsler space F^{n} with an (α, β) -metric is a Douglas space if and only if $B^{i j}=B^{i} y^{j}-B^{j} y^{i}$ are positively homogeneous of degree 3 (in short we write $h p(3)$) [9]. In view of equation (3.2), the tensor $B^{i j}$ is written in the form

$$
\begin{equation*}
B^{i j}=\frac{\alpha F_{\beta}}{F_{\alpha}}\left(s_{0}^{i} y^{j}-s_{0}^{j} y^{i}\right)+\frac{\alpha^{2} F_{\alpha \alpha}}{\beta F_{\alpha}} C^{*}\left(b^{i} y^{j}-b^{j} y^{i}\right) \tag{4.1}
\end{equation*}
$$

Suppose that F^{n} is a Douglas space. From equations (3.4) and (4.1), we have

$$
\begin{align*}
& \left(-2 \alpha^{3}+4 m \alpha^{2} \beta-2 \alpha^{2} \beta+6 m \alpha \beta^{2}-4 m^{2} \beta^{3}-2 m^{2} b^{2} \alpha^{3}+m^{3} b^{2} \alpha^{2} \beta-2 m b^{2} \alpha^{3}+\right. \\
& \left.2 m^{2} b^{2} \alpha^{2} \beta-2 m^{3} \beta^{3}\right) B^{i j}=\left(-2 m \alpha^{4}-2 \alpha^{4}-2 \alpha^{3} \beta+2 m^{2} \alpha^{3} \beta+6 m^{2} \alpha^{2} \beta^{2}+\right. \\
& \left.4 m \alpha^{2} \beta^{2}-2 m^{3} b^{2} \alpha^{4}-4 m^{2} b^{2} \alpha^{4}-2 m b^{2} \alpha^{4}+2 m^{3} \alpha^{2} \beta^{2}\right)\left(s_{0}^{i} y^{j}-s_{0}^{j} y^{i}\right)+ \\
& \left(4 m^{2} \alpha^{4} s_{0}+2 m \alpha^{4} s_{0}+2 m^{3} \alpha^{4} s_{0}-m^{2} \alpha^{3} r_{00}-m \alpha^{3} r_{00}+m^{3} \alpha^{2} r_{00} \beta+\right. \\
& \left.m^{2} \alpha^{2} \beta r_{00}\right)\left(b^{i} y^{j}-b^{j} y^{i}\right) \tag{4.2}
\end{align*}
$$

Separating equation (4.2) in rational and irrational terms of y^{i}, we have the following two equations

$$
\begin{align*}
& \left(4 m \alpha^{2} \beta-2 \alpha^{2} \beta-4 m^{2} \beta^{3}+2 m^{3} b^{2} \alpha^{2} \beta+2 m^{2} b^{2} \alpha^{2} \beta-2 m^{3} \beta^{3}\right) B^{i j}=\left(-2 m \alpha^{4}-2 \alpha^{4}+\right. \\
& \left.6 m^{2} \alpha^{2} \beta^{2}+4 m \alpha^{2} \beta^{2}-2 m^{3} b^{2} \alpha^{4}-4 m^{2} b^{2} \alpha^{4}-2 m b^{2} \alpha^{4}+2 m^{3} \alpha^{2} \beta^{2}\right)\left(s_{0}{ }^{i} y^{j}-s_{0}^{j} y^{i}\right)+ \\
& \left(2 m \alpha^{4} s_{0}+4 m^{2} \alpha^{4} s_{0}+2 m^{3} \alpha^{4} s_{0}+m^{3} \alpha^{2} \beta r_{00}+m^{2} \alpha^{2} \beta r_{00}\right)\left(b^{i} y^{j}-b^{j} y^{i}\right) \tag{4.3}
\end{align*}
$$

and

$$
\begin{align*}
& \left(-2 \alpha^{2}+6 m \beta^{2}-2 m^{2} b^{2} \alpha^{2}-2 m b^{2} \alpha^{2}\right) B^{i j}=\left(-2 \alpha^{2} \beta+2 m^{2} \alpha^{2} \beta\right)\left(s_{0}{ }^{i} y^{j}-s_{0}^{j} y^{i}\right) \\
& +\left(-m \alpha^{2} r_{00}-m^{2} \alpha^{2} r_{00}\right)\left(b^{i} y^{j}-b^{j} y^{i}\right) \tag{4.4}
\end{align*}
$$

Eliminating $B^{i j}$ from equations (4.3) and (4.4), we obtain

$$
\begin{equation*}
A\left(s_{0}^{i} y^{j}-s_{0}^{j} y^{i}\right)-B\left(b^{i} y^{j}-b^{j} y^{i}\right)=0 \tag{4.5}
\end{equation*}
$$

where

$$
\begin{align*}
& A=\left[4 m \alpha^{4}+4 m^{5} \beta^{4}+4 \alpha^{4}+20 m^{4} \beta^{4}+32 m^{3} \beta^{4}-12 m^{3} \alpha^{2} \beta^{2}+12 m^{3} b^{4} \alpha^{4}-\right. \\
& 32 m^{4} b^{2} \alpha^{2} \beta^{2}-8 m^{5} b^{2} \alpha^{2} \beta^{2}-40 m^{3} b^{2} \alpha^{2} \beta^{2}+4 m^{2} b^{4} \alpha^{4}+16 m^{2} b^{2} \alpha^{4}+8 m^{3} b^{2} \alpha^{4}+ \\
& 8 m b^{2} \alpha^{4}+4 m^{5} b^{4} \alpha^{4}-20 m^{2} \alpha^{2} \beta^{2}-12 m \alpha^{2} \beta^{2}+16 m^{2} \beta^{4}+12 m^{4} b^{4} \alpha^{4}-4 \alpha^{2} \beta^{2}- \\
& \left.16 m^{2} b^{2} \alpha^{2} \beta^{2}\right] \tag{4.6}
\end{align*}
$$

and

$$
\begin{align*}
& B=\left[4 m \alpha^{4} s_{0}+4 m^{3} \alpha^{4} s_{0}+2 m^{5} \beta^{3} r_{00}+2 m \alpha^{2} \beta r_{00}+8 m^{2} \alpha^{4} s_{0}-2 m^{3} \beta^{3} r_{00}-\right. \\
& 2 m^{3} \alpha^{2} \beta r_{00}-12 m^{2} \alpha^{2} \beta^{2} s_{0}+12 m^{3} b^{2} \alpha^{4} s_{0}+4 m^{2} b^{2} \alpha^{4} s_{0}-24 m^{3} \alpha^{2} \beta^{2} s_{0}+ \\
& \left.12 m^{4} b^{2} \alpha^{4} s_{0}-12 m^{4} \alpha^{2} \beta^{2} s_{0}+4 m^{5} b^{2} \alpha^{4} s_{0}\right] \tag{4.7}
\end{align*}
$$

Transvecting equation (4.5) by $b_{i} y_{j}$, we get

$$
\begin{equation*}
A \alpha^{2} s_{0}+B\left(b^{2} \alpha^{2}-\beta^{2}\right)=0 \tag{4.8}
\end{equation*}
$$

The terms of equation (4.8), which does not contain α^{2} are $2 m^{3}\left(m^{2}-1\right) \beta^{5} r_{00}$. Hence there exists $h p(5): V_{5}$ such that

$$
\begin{equation*}
2 m^{3}\left(m^{2}-1\right) \beta^{5} r_{00}=\alpha^{2} V_{5} \tag{4.9}
\end{equation*}
$$

Now we consider the following two cases:
(i) $V_{5}=0$ and (ii) $V_{5} \neq 0$.

Case (i): Let $V_{5}=0$ then we have $r_{00}=0$, provided $m \neq 0, \pm 1$. Substituting $r_{00}=0$ into equation (4.8), we get

$$
\begin{equation*}
\left(A+B_{1} \gamma^{2}\right) s_{0}=0 \tag{4.10}
\end{equation*}
$$

where
$B_{1}=\left(4 m \alpha^{2}+4 m^{3} \alpha^{2}+8 m^{2} \alpha^{2}-12 m^{2} \beta^{2}+12 m^{3} b^{2} \alpha^{2}+4 m^{2} b^{2} \alpha^{2}-24 m^{3} \beta^{2}+12 m^{4} b^{2} \alpha^{2}-12 m^{4} \beta^{2}+4 m^{5} b^{2} \alpha^{2}\right)$
. If $\left(A+B_{1} \gamma^{2}\right)=0$, then the terms of $\left(A+B_{1} \gamma^{2}\right)$ which do not contain α^{2} are $-12 m^{2}\left(1+2 m+m^{2}\right) \beta^{2}$. Thus there exists $h p(2): V_{2}$ such that $-12 m^{2}\left(1+2 m+m^{2}\right) \beta^{2}=\alpha^{2} V_{2}$. Hence we have $V_{2}=0$, which is a contradiction. Therefore, we must have $\left(A+B_{1} \gamma^{2}\right) s_{0} \neq 0$. Therefore we have $s_{0}=0$ from equation (4.10). Substituting $s_{0}=0$ and $r_{00}=0$ into equation (4.5), we get

$$
\begin{equation*}
A\left(s_{0}{ }^{i} y^{j}-s_{0}{ }^{j} y^{i}\right)=0 \tag{4.11}
\end{equation*}
$$

If $A=0$, then from equation (4.6), we have

$$
\begin{align*}
& {\left[4 m \alpha^{4}+4 m^{5} \beta^{4}+4 \alpha^{4}+20 m^{4} \beta^{4}+32 m^{3} \beta^{4}-12 m^{3} \alpha^{2} \beta^{2}+12 m^{3} b^{4} \alpha^{4}-32 m^{4} b^{2} \alpha^{2} \beta^{2}-\right.} \\
& 8 m^{5} b^{2} \alpha^{2} \beta^{2}-40 m^{3} b^{2} \alpha^{2} \beta^{2}+4 m^{2} b^{4} \alpha^{4}+16 m^{2} b^{2} \alpha^{4}+8 m^{3} b^{2} \alpha^{4}+8 m b^{2} \alpha^{4}+4 m^{5} b^{4} \alpha^{4}- \\
& \left.20 m^{2} \alpha^{2} \beta^{2}-12 m \alpha^{2} \beta^{2}+16 m^{2} \beta^{4}+12 m^{4} b^{4} \alpha^{4}-4 \alpha^{2} \beta^{2}-16 m^{2} b^{2} \alpha^{2} \beta^{2}\right]=0 \tag{4.12}
\end{align*}
$$

The terms of equation (4.12), which do not contain α^{2} are $4 m^{2}\left(m^{3}+5 m^{2}+8 m+4\right) \beta^{4}$. Thus there exists $h p(2): V_{2}$ such that $4 m^{2}\left(m^{3}+5 m^{2}+8 m+4\right) \beta^{4}=\alpha^{2} V_{2}$. Therefore we have, $V_{2}=0$, which is a contradiction. Therefore we must have $A \neq 0$. Hence from equation (4.11), we have $\left(s_{0}{ }^{i} y^{j}-s_{0}{ }^{j} y^{i}\right)=0$. Transvecting the above equation by y_{j} gives $s_{0}^{i}=0$, which imply $s_{i j}=0$. Consequently, we have $r_{i j}=s_{i j}=0$. This implies $b_{i ; j}=0$.
Case (ii): If β divides α^{2} then we have a contradiction of positive definiteness of Riemannian metric α, so we assume $\alpha^{2} \neq 0(\bmod \beta)$. The equation (4.9) shows that there exists a function $k=k(x)$ such that $r_{00}=k(x) \alpha^{2}$. Thus we have the terms of equation (4.8) which do not contain α^{2}, are included in the terms $2 m^{3}\left(m^{2}-1\right) \beta^{5} r_{00}$. Hence we get $r_{00}=0$, provided $m \neq 0, \pm 1$. From equation (4.11), we have
$A\left(s_{0}^{i} y^{j}-s_{0}{ }^{j} y^{i}\right)=0$. If $A=0$, then it is a contradiction. Hence $A \neq 0$. Therefore we obtain $\left(s_{0}{ }^{i} y^{j}-s_{0}{ }^{j} y^{i}\right)=0$. Transvecting this equation by y_{j} we get $s_{j}^{i}=0$.
Hence from both cases (i) and (ii), we have $r_{i j}=s_{i j}=0$. This implies $b_{i, j}=0$
Conversely if $b_{i ; j}=0$, then F^{n} is a Berwald space, therefore F^{n} is a Douglas space.
Corollary: For $m \neq 0, \pm 1$ a Binomial (α, β)-metric is Douglas iff it is Berwald.

V. Proof of theorem (1.3)

Suppose the Binomial (α, β)-metrics $F=\frac{(\alpha+\beta)^{m+1}}{\alpha^{m}}$ is locally projectively flat. By Lemma (2.1), the spray coefficients G^{i} of F are given by equation (2.3) with

$$
\begin{align*}
& Q=\frac{m+1}{1-m s}, J=\frac{1}{2} \frac{(1-m s)(m+1)}{\left(1+s-m s-2 m s^{2}+m^{2} b^{2}+m b^{2}-m^{2} s^{2}\right)} \\
& H=\frac{1}{2} \frac{m(m+1)}{\left(1+s-m s-2 m s^{2}+m^{2} b^{2}+m b^{2}-m^{2} s^{2}\right)} \tag{5.1}
\end{align*}
$$

Substituting (5.1) into equation (2.3), we obtain

$$
\begin{align*}
& 2\left(a_{m l} \alpha^{2}-y_{m} y_{l}\right) G_{\alpha}^{m}\left(-\alpha^{3}-\alpha^{2} \beta+2 m \alpha^{2} \beta+3 m \alpha \beta^{2}-m^{2} b^{2} \alpha^{3}-m b^{2} \alpha^{3}-\right. \\
& \left.2 m^{2} \beta^{3}+m^{3} b^{2} \alpha^{2} \beta+m^{2} b^{2} \alpha^{2} \beta-m^{3} \beta^{3}\right)-2(m+1) \alpha^{4} s_{l 0}\left(\alpha^{2}+\alpha \beta-\right. \\
& \left.m \alpha \beta-2 m \beta^{2}+m^{2} b^{2} \alpha^{2}+m b^{2} \alpha^{2}-m^{2} \beta^{2}\right)+2 m(m+1)^{2} \alpha^{4} s_{0}\left(b_{l} \alpha^{2}-\beta y_{l}\right)+ \\
& m(m+1)(-\alpha+m \beta) \alpha^{2} r_{00}\left(b_{l} \alpha^{2}-\beta y_{l}\right)=0 \tag{5.2}
\end{align*}
$$

Separating the rational and irrational terms of y^{i} in equation (5.2), we have the following two equations

$$
\begin{align*}
& 2\left(a_{m l} \alpha^{2}-y_{m} y_{l}\right) G_{\alpha}^{m}\left(-\alpha^{2} \beta+2 m \alpha^{2} \beta-2 m^{2} \beta^{3}+m^{3} b^{2} \alpha^{2} \beta+m^{2} b^{2} \alpha^{2} \beta-\right. \\
& \left.m^{3} \beta^{3}\right)=2(m+1) \alpha^{4} s_{l 0}\left(\alpha^{2}-2 m \beta^{2}+m^{2} b^{2} \alpha^{2}+m b^{2} \alpha^{2}-m^{2} \beta^{2}\right)- \\
& 2 m(m+1)^{2} \alpha^{4} s_{0}\left(b_{l} \alpha^{2}-\beta y_{l}\right)-m^{2}(m+1) r_{00}\left(b_{l} \alpha^{2}-\beta y_{l}\right) \alpha^{2} \beta \tag{5.3}
\end{align*}
$$

and

$$
\begin{align*}
& 2\left(a_{m l} \alpha^{2}-y_{m} y_{l}\right) G_{\alpha}^{m}\left(-\alpha^{3}+3 m \alpha \beta^{2}-m^{2} b^{2} \alpha^{3}-m b^{2} \alpha^{3}\right)= \\
& 2(m+1) \alpha^{4} s_{l 0}(\alpha \beta-m \alpha \beta)+m(m+1) r_{o o}\left(b_{l} \alpha^{2}-\beta y_{l}\right) \alpha^{3} . \tag{5.4}
\end{align*}
$$

Contracting equations (5.3) and (5.4) with b^{l}, we get

$$
\begin{align*}
& 2\left(b_{m} \alpha^{2}-y_{m} \beta\right) G_{\alpha}^{m}\left(-\alpha^{2} \beta+2 m \alpha^{2} \beta-2 m^{2} \beta^{3}+m^{3} b^{2} \alpha^{2} \beta+m^{2} b^{2} \alpha^{2} \beta-m^{3} \beta^{3}\right)= \\
& 2(m+1) \alpha^{4} s_{0}\left(\alpha^{2}-2 m \beta^{2}+m^{2} b^{2} \alpha^{2}+m b^{2} \alpha^{2}-m^{2} \beta^{2}\right)-2 m(m+1)^{2} \alpha^{4} s_{0}\left(b^{2} \alpha^{2}-\right. \\
& \left.\beta^{2}\right)-m^{2}(m+1) r_{o o}\left(b^{2} \alpha^{2}-\beta^{2}\right) \alpha^{2} \beta \tag{5.5}
\end{align*}
$$

and

$$
\begin{align*}
& 2\left(b_{m} \alpha^{2}-y_{m} \beta\right) G_{\alpha}^{m}\left(-\alpha^{3}+3 m \alpha \beta^{2}-m^{2} b^{2} \alpha^{3}-m b^{2} \alpha^{3}\right)= \\
& 2(m+1) \alpha^{4} s_{0}(\alpha \beta-m \alpha \beta)+m(m+1) r_{o o}\left(b^{2} \alpha^{2}-\beta^{2}\right) \alpha^{3} \tag{5.6}
\end{align*}
$$

Multiplying equation (5.5) with α and equation (5.6) with $m \beta$, we have

$$
\begin{align*}
& \beta\left(b_{m} \alpha^{2}-y_{m} \beta\right) G_{\alpha}^{m}\left(-\alpha^{2}+3 \alpha^{2}-5 m^{2} \beta^{2}+2 m^{3} b^{2} \alpha^{2}+2 m^{2} b^{2} \alpha^{2}-m^{3} \beta^{2}\right)= \\
& (m+1) \alpha^{4}\left(\alpha^{2}-2 m \beta^{2}+m^{2} \beta^{2}\right) s_{0} . \tag{5.7}
\end{align*}
$$

Above equation shows that β must divides s_{0}. Therefore there exists a scalar function $\tau=\tau(x)$, such that $s_{0}=\tau \beta$. Thus we obtain $s_{i}-\tau b_{i}=0$. Which gives after contraction with $b^{i}, s_{i} b^{i}-\tau b_{i} b^{i}=0$. Therefore
we have $\tau=0$ and hence

$$
\begin{equation*}
s_{0}=0 \tag{5.8}
\end{equation*}
$$

Using equations (5.7) and (5.8), we have

$$
\begin{equation*}
\left(b_{m} \alpha^{2}-y_{m} \beta\right) G_{\alpha}^{m}=0 \tag{5.9}
\end{equation*}
$$

Then by equation (5.9) and Lemma (2.3), α is projectively flat. Also using equations (5.6), (5.8) and (5.9), we have

$$
\begin{equation*}
r_{00}=0 \tag{5.10}
\end{equation*}
$$

Substituting (5.9) and (5.10) in equation (5.4), we get

$$
\begin{equation*}
s_{l 0}=0 \tag{5.11}
\end{equation*}
$$

Thus using above two equations (5.10) and (5.11) $b_{i, j}=0$, that is β is parallel with respect to α.
Conversely, if β is parallel with respect to α and α is locally projectively flat, then by Lemma (2.2), F is locally projectively flat.

VI. Proof of theorem (1.4)

In view of equation (2.3), the spray coefficients G^{i} and G_{α}^{i} of F and α respectively, can be written as:

$$
\begin{equation*}
G^{i}=G_{\alpha}^{i}+\alpha Q s_{0}^{i}+\theta\left(2 Q \alpha s_{0}+r_{00}\right)\left[\frac{y^{i}}{\alpha}+\frac{Q^{\prime}}{Q-s Q^{\prime}} b^{i}\right] \tag{6.1}
\end{equation*}
$$

Further the mean Cartan torsion I_{i} [11] and the mean Landsberg curvature J_{i} [12] of an (α, β)-metrics are respectively given by

$$
\begin{equation*}
I_{i}=-\frac{\Phi\left(\phi-s \phi^{\prime}\right)}{2 \Delta \phi \alpha^{2}}\left(\alpha b_{i}-s y_{i}\right) \tag{6.2}
\end{equation*}
$$

and

$$
\begin{align*}
& J_{i}=-\frac{1}{2 \Delta \alpha^{4}}\left[\frac{2 \alpha^{2}}{b^{2}-s^{2}}\left[\frac{\Phi}{\Delta}+(n+1)\left(Q-s Q^{\prime}\right)\right]\left(r_{0}+s_{0}\right) h^{i}\right. \\
& +\frac{\alpha}{b^{2}-s^{2}}\left(\Psi_{1}+s \frac{\Phi}{\Delta}\right)\left(r_{00}-2 \alpha Q s_{0}\right) h_{i}+\alpha\left[-\alpha Q^{\prime} s_{0} h^{i}+\alpha Q\left(\alpha^{2} s_{i}-y_{i} s_{0}\right)+\right. \\
& \left.\left.\alpha^{2} \Delta s_{i 0}+\alpha^{2}\left(r_{i 0}-2 \alpha Q s_{i}\right)-\left(r_{00}-2 \alpha Q s_{0}\right) y_{i}\right] \frac{\Phi}{\Delta}\right], \tag{6.3}
\end{align*}
$$

where $\quad \Phi=-(n \Delta+1+s Q)\left(Q-s Q^{\prime}\right)-\left(b^{2}-s^{2}\right)(1+s Q) Q^{\prime \prime} \quad, \quad \Delta=1+s Q+\left(b^{2}-s^{2}\right) Q^{\prime}$ and $Q=\frac{\phi^{\prime}}{\phi-s \phi^{\prime}}$. Contracting equation (6.3) with $b^{i}=a^{i m} b_{m}$, we get

$$
\begin{equation*}
\bar{J}=J_{i} b^{i}=-\frac{1}{2 \Delta \alpha^{2}}\left[\Psi_{1}\left(r_{00}-2 \alpha Q s_{0}\right)+\alpha \Psi_{2}\left(r_{0}+s_{0}\right)\right], \tag{6.4}
\end{equation*}
$$

where $\Psi_{1}=\sqrt{\left(b^{2}-s^{2}\right)} \Delta^{\frac{1}{2}}\left[\frac{\sqrt{\left(b^{2}-s^{2}\right)} \Phi}{\Delta^{\frac{3}{2}}}\right], \Psi_{2}=2(n+1)\left(Q-s Q^{\prime}\right)+3 \frac{\Phi}{\Delta}$.
In view of equation (2.10) of the paper [13], we have

$$
\begin{align*}
& \bar{J}_{\mid m} y^{m}-J_{i} a^{i k}\left(r_{k 0}+s_{k 0}\right)-J_{l} \frac{\partial\left(G^{l}-\bar{G}^{l}\right)}{\partial y^{i}} b^{i}-2 \frac{\partial \bar{J}}{\partial y^{l}}\left(G^{l}-\bar{G}^{l}\right)+K \alpha^{2} \phi^{2} I_{m} b^{m} \\
& =-\frac{n+1}{3} \alpha^{2} \phi^{2} K_{. m} b^{m} . \tag{6.5}
\end{align*}
$$

Now let F is an isotropic Berwald metric with almost isotropic flag curvature. In [14], it is proved that every isotropic Berwald metric has isotropic S-curvature. Conversely, suppose that F is of isotropic S
-curvature with scalar flag curvature K. In [2], it is proved that every Finsler metric of isotropic S-curvature has almost isotropic flag curvature. Now our aim to proved that F is a Isotropic Berwald metric. In [15] it is proved that F is an isotropic Berwald metric if and only if it is a Douglas metric with isotropic mean Berwald curvature. Also every Finsler metric of isotropic S-curvature has isotropic mean Berwald curvature. Therefore, to complete the proof, we must show that F is a Douglas metric.
By proposition (2.1), we have $S=0$. By theorem (1.1) in [2], F must be of isotropic flag curvature $K=K(x)$. Also By Proposition (2.1), β is a killing 1-form with respect to α, that is $r_{i j}=0$ and $s_{j}=0$. Then equations (6.1), (6.3) and (6.4) reduce to

$$
\begin{equation*}
G^{i}-\bar{G}^{i}=\alpha Q s_{0}^{i}, \quad J_{i}=-\frac{\Phi s_{i 0}}{2 \alpha \Delta}, \quad \bar{J}=0 \tag{6.6}
\end{equation*}
$$

from equation (6.2), we have

$$
\begin{equation*}
I_{i} b^{i}=-\frac{\Phi}{2 \alpha \phi \Delta}\left(\phi-s \phi^{\prime}\right)\left(b^{2}-s^{2}\right) \tag{6.7}
\end{equation*}
$$

We consider two cases:
Case (i): Let $\operatorname{dim} M \geq 3$. In this case, by Schur Lemma F has constant flag curvature and equation (6.5) holds. Thus by equations (6.6) and (6.7), the equation (6.5) reduces to

$$
\frac{\Phi s_{i 0}}{2 \alpha \Delta} a^{i k} s_{k 0}+\frac{\Phi s_{l 0}}{2 \alpha \Delta}\left(\alpha Q s_{0}^{l}\right)_{. i} b^{i}-K F \frac{\Phi}{2 \Delta}\left(\phi-s \phi^{\prime}\right)\left(b^{2}-s^{2}\right)=0
$$

Assuming $\Phi \neq 0$, we have

$$
\begin{equation*}
s_{i 0} s_{0}^{i}+s_{l 0}\left(\alpha Q s_{0}^{l}\right)_{. i} b^{i}-K F \alpha\left(\phi-s \phi^{\prime}\right)\left(b^{2}-s^{2}\right)=0 \tag{6.8}
\end{equation*}
$$

Now
$\left(\alpha Q s_{0}^{l}\right)_{i} b^{i}=s Q s_{0}^{i}+Q^{\prime} s_{0}^{i}\left(b^{2}-s^{2}\right)$.
Then equation (6.8) can be written as follows

$$
\begin{equation*}
s_{i 0} s_{0}^{i} \Delta-K \alpha^{2} \phi\left(\phi-s \phi^{\prime}\right)\left(b^{2}-s^{2}\right)=0 \tag{6.9}
\end{equation*}
$$

Therefore for $F=\frac{(\alpha+\beta)^{m+1}}{\alpha^{m}}$, we get $\Delta=\frac{1-m s-m^{2} s^{2}+s-2 m s^{2}+m^{2} b^{2}+m b^{2}}{(-1+m s)^{2}}$.
Hence equation (6.9) becomes

$$
\begin{aligned}
& s_{i 0} s_{0}^{i}\left(1-m s-m^{2} s^{2}+s-2 m s^{2}+m^{2} b^{2}+m b^{2}\right)-K \alpha^{2}(1+s)^{2 m+1}\left(b^{2}-\right. \\
& \left.s^{2}-3 m s b^{2}+3 m s^{3}+3 m^{2} s^{2} b^{2}-3 m^{2} s^{4}-m^{3} s^{3} b^{2}+m^{3} s^{5}\right)=0
\end{aligned}
$$

that is

$$
\begin{align*}
& s_{i 0} s_{0}{ }^{i} \alpha^{2+2 m}\left(\alpha^{2}-m \alpha \beta-m^{2} \beta^{2}+\alpha \beta-2 m \beta^{2}+m^{2} b^{2} \alpha^{2}+m b^{2} \alpha^{2}\right)- \\
& K\left[\sum_{k=0}^{m}\binom{2 m}{2 k} \beta^{2 m-2 k} \alpha^{2 k}+\sum_{k=0}^{m-1}\binom{2 m}{2 k+1} \beta^{2 m-2 k-1} \alpha^{2 k+1}\right]\left(-b^{2} \alpha^{6}+\right. \\
& \alpha^{4} \beta^{2}+3 m b^{2} \alpha^{5} \beta-3 m \alpha^{3} \beta^{3}-3 m^{2} b^{2} \alpha^{4} \beta^{2}+3 m^{2} \alpha^{2} \beta^{4}+m^{3} b^{2} \alpha^{3} \beta^{3}- \\
& m^{3} \alpha \beta^{5}-b^{2} \alpha^{5} \beta+\alpha^{3} \beta^{3}+3 m b^{2} \alpha^{4} \beta^{2}-3 m \alpha^{2} \beta^{4}-3 m^{2} b^{2} \alpha^{3} \beta^{3}+ \\
& \left.3 m^{2} \alpha \beta^{5}+m^{3} b^{2} \alpha^{2} \beta^{4}-m^{3} \beta^{6}\right)=0 . \tag{6.10}
\end{align*}
$$

Above equation can also be written as: $A+\alpha B=0$, where

$$
\begin{aligned}
& A=s_{i 0} s_{0}^{i} \alpha^{2+2 m}\left(\alpha^{2}-m^{2} \beta^{2}-2 m \beta^{2}+m^{2} b^{2} \alpha^{2}+m b^{2} \alpha^{2}\right)-K \sum_{k=0}^{m}\binom{2 m}{2 k} \beta^{2 m-2 k} \times \\
& \alpha^{2 k}\left(-b^{2} \alpha^{6}+\alpha^{4} \beta^{2}-3 m^{2} b^{2} \alpha^{4} \beta^{2}+3 m^{2} \alpha^{2} \beta^{4}+3 m b^{2} \alpha^{4} \beta^{2}-3 m \alpha^{2} \beta^{4}+m^{3} b^{2} \alpha^{2} \beta^{4}-\right. \\
& \left.m^{3} \beta^{6}\right)-\sum_{k=0}^{m-1}\left(\begin{array} { c }
{ 2 m + 1 } \\
{ 2 k + 1 }
\end{array} \beta ^ { 2 m - 2 k - 1 } \alpha ^ { 2 k + 1 } \left(3 m b^{2} \alpha^{5} \beta-\beta m \alpha^{3} \beta^{3}+m^{3} b^{2} \alpha^{3} \beta^{3}-m^{3} \alpha \beta^{5}-\right.\right. \\
& \left.b^{2} \alpha^{5} \beta+\alpha^{3} \beta^{3}-3 m^{2} b^{2} \alpha^{3} \beta^{3}+3 m^{2} \alpha \beta^{5}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& B=s_{i 0} s_{0}{ }^{i} \alpha^{2+2 m}(-m \beta+\beta)-K \sum_{k=0}^{m}\binom{2 m}{2 k} \beta^{2 m-2 k} \alpha^{2 k}\left(3 m b^{2} \alpha^{4} \beta-3 m \alpha^{2} \beta^{3}+\right. \\
& \left.m^{3} b^{2} \alpha^{2} \beta^{3}-m^{3} \beta^{5}-b^{2} \alpha^{4} \beta+\alpha^{2} \beta^{3}-3 m^{2} b^{2} \alpha^{2} \beta^{3}+3 m^{2} \beta^{5}\right)-\sum_{k=0}^{m-1}\binom{2 m}{2 k+1} \beta^{2 m-2 k-1} \times \\
& \alpha^{2 k}\left(-b^{2} \alpha^{6}+\alpha^{4} \beta^{2}-3 m^{2} b^{2} \alpha^{4} \beta^{2}+3 m^{2} \alpha^{2} \beta^{4}+3 m b^{2} \alpha^{4} \beta^{2}-3 m \alpha^{2} \beta^{4}+m^{3} b^{2} \alpha^{2} \beta^{4}-\right. \\
& \left.m^{3} \beta^{6}\right) .
\end{aligned}
$$

Thus we have $A=0$ and $B=0$.
When $A=0$, the term which do not contain α^{2} is $K^{3} \beta^{2 m+6}$. This implies $\beta^{2 m+6}$ is not divisible by α^{2} . Therefore $K=0$, hence equation (6.10) reduces to $s_{i 0} s_{0}^{i}=a_{i j} s_{0}^{j} s_{0}^{i}=0$. Thus we have $s_{0}^{i}=0$. That is β is closed. By $r_{00}=0$ and $s_{0}=0$. it follows that β is parallel with respect to α. Then $F=\frac{(\alpha+\beta)^{m+1}}{\alpha^{m}}$ is a Berwald metric. Hence F must be locally Minkowskian.
Case (ii): Let $\operatorname{dim} M=2$. Suppose that F has isotropic Berwald curvature. In [14], it is proved that every isotropic Berwald metric has isotropic S-curvature $S=(n+1) c F$. By proposition (2.1), $c=0$. Then by equation (1.5), F reduces to a Berwald metric. Since F is a non Riemannian, then by Szabó's rigidity theorem for Berwald surface [16] F must be locally Minkowskian.

References

[1]. Z. Shen and S. S. Chern, Riemann-Finsler Geometry, (Nankai Tracts in Mathematics, World Scientific, 2004).
[2]. B.Najafi, Z.Shen and A.Tayebi, Finsler metrics of scalar flag curvature with special non-Riemannian curvature properties, Geom. Dedicata., 131, 2008, 87-97.
[3]. S.Bacso and M.Matsumoto, On Finsler spaces of Douglas type, A generalization of the notion of Berwald space, Publ. Math. Debrecen., 51, 1997, 385-406.
[4]. B.Li, Y.Shen and Z.Shen, On a class of Douglas metrics, Studia Sci. Math. Hungarica, 46(3), 2009, 355-365.
[5]. G.Hamel, Uber die Geometrien in denen die Geraden die Kurzesten sind, Math. Ann., 57, 1903, 231-264.
[6]. Z.Shen and G.Civi Yildirim, On a Class of Projectively Flat metrics with Constant Flag Curvature, Canadian Journal of Mathematics., 60, 2008, 443-456.
[7]. Y.Yu, Projectively flat exponential Finsler metrics, J. of Zhejiang Univ. Science A., 6, 2006, 1068-1076.
[8]. C.H.Xiang and X.Cheng, On a class of weakly-Berwald (α, β)-metrics, J. Math. Res. Expos., 29(2), 2009, 227-236.
[9]. I.Y.Lee and H. S.Park, Finsler spaces with infinite series (α, β)-metrics, J. Korean Math. Soc., 41(3), 2004, 567-589.
[10]. M.Matsumoto, The Berwald connection of a Finsler space with an (α, β)-metric, Tensor, N. S., 50, 1991, 18-21.
[11]. A.Tayebi, T.Tabatabaeifar and E.Peyghan, On the second approximate Matsumoto metric, Bull. Korean Math. Soc., 51(1), 2014, 115-128.
[12]. B.Li and Z.Shen, On a class of weak Landsberg metrics, Sci. China Ser. A., 50(1), 2007, 75-85.
[13]. X.Y.Cheng, On (α, β)-metrics of scalar Flag curvature with constant S-curvature, Acta Mathematica Sinica, English series., Vol. 26(9), 2010, 1701-1708.
[14]. A.Tayebi and M.R.Rad, S-curvature of isotropic Berwald metrics, Sci. China Ser. A., 51(2), 2008, 227-236.
[15]. X.Chen and Z.Shen, On Douglas metric, Publ. Math. Debrecen. 66, 2005, 503-512.
[16]. D.Bao, S.S.Chern and Z.Shen, An introduction to Riemann-Finsler Geometry, (Springer-Verlag, 2000).

