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Abstract: In order to look into the transient behavior of vibrating systems, the Krylov-Bogoliubov-Mitropolskii 

(KBM) method is extensively used. The method was initially devised to obtain the periodic solutions of second 

order nonlinear differential systems with small nonlinearities. In this article, the method has been modified to 

investigate the solutions of fifth order more critically damped nonlinear systems. A fifth order more critically 

damped nonlinear differential system is considered and asymptotic solutions are studied when the triply 

eigenvalues are small and the other two equal eigenvalues are large. The results obtained by the presented 

modified KBM method agree with those obtained by the fourth order Runge-Kuttamethod satisfactorily. 
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I. Introduction 
The Krylov-Bogoliubov-Mitropolskii (KBM) ([1],[2]) method is devised to obtain the approximate 

solutions of weakly nonlinear systems. Popov [3] extended the method to damped oscillatory nonlinear systems 

despite the fact that it was initially designed for approximating periodic solutions of second order nonlinear 

differential systems with small nonlinearities. Murty and Deekshatulu [4] examined over-damped nonlinear 

systems using Bogoliubov’s method. Sattar [5] found an asymptotic solution of a second order critically damped 

nonlinear system. Shamsul [6] suggested a technique for obtaining approximate solutions of second order over-

damped and critically damped nonlinear systems. Osiniskii [7] studied solution of third order nonlinear systems 

by bogoliubov’s method imposing some restrictions on the parameters. As a result, the solution was over-
simplified and presented incorrect results. Mulholland [8] removed these restrictions imposed by Osiniskii and 

obtained desired solutions. Bojadziv [9] considered solutions of nonlinear systems by transforming it to a three 

dimensional differential system. Shamsul and Sattar [10] presented a unified KBM method for solving third 

order nonlinear system. Sattar [11] investigated solutions of third order over-damped nonlinear systems. 

Shamsul [12] proposed solutions of third order over-damped systems whose unequal eigenvalues are integral 

multiple. Shamsul and Sattar [13] presented a unified KBM method for obtaining approximate solutions of third 

order damped and over-damped nonlinear systems. Kawser and Ali Akbar [14] explored an asymptotic solution 

for the third order critically damped nonlinear system in the case for equal eigenvalues. Kawser and Sattar [15] 

propounded an asymptotic solution of a fourth order critically damped nonlinear system with pair wise equal 

eigenvalues. Akbar and Tanzer [16] extended the KBM method for solving the fifth order over-damped 

nonlinear systems with cubic nonlinearity. 

     In this study, we have investigated the solution of fifth order more critically damped systems in the 
case of smaller triply repeated roots. For different sets of initial conditions as well as for different sets of 

eigenvalues the solutions show excellent coincident with the numerical solutions. 

 

II. The Method 
Consider a fifth order weakly nonlinear ordinary differential system 

 (1) 

Where denotes the fifth derivative,  denotes the fourth derivative of x and over dots are used to denote the 

first, second and third derivatives of x with respect to t; k1, k2, k3, k4, k5 are characteristic parameters, ε is a small 

parameter and f (x) is the given nonlinear function. As the equation is fifth order, so there are five real negative 

Eigen values, and three of the Eigen values are equal (for more critically damped). Suppose the Eigen values are 

–λ, -λ, -λ, -μ, - μ. When 0  , the equation (1) becomes linear and the solution of the corresponding linear 

equation is 

  (2) 

Where , , , , are constants of integration. 

Where 0   following Shamsul [17] an asymptotic solution of the equation (1) is sought in the form 

1 2 3 4 5 ( , , , , )v iv ivx k x k x k x k x k x f x x x x x           
vx ivx
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  (3) 

Where a, b, c, d, are the functions of t and satisfy the first order differential equations 

 

 

     (4) 

 

 

Now differentiating (3) five times with respect to t, substituting the value of x and the derivatives , , , 

,  in the original equation (1) utilizing the relations presented in (4) and finally extracting the coefficients of 

ε, we obtain 

  (5) 

 

where   

We have expanded the function  in the Taylor’s series (Sattar [5], Shamsul [18], Shamsul and Sattar [13]) 

about the origin in power of t. Therefore, we obtain: 

 

     (6) 

 

Thus, using (6), the equation (5) becomes 

 

Following the KBM method, Murty and Deekshatulu [4], Sattar [5], Shamsul and Sattar ([10], [13]) imposed the 

condition that  does not contain the fundamental terms of f (0). Therefore, equation (7) can be separated for 

unknown functions A1, B1, C1, D1, H1 and u1 in the following way: 
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And  

   (9) 

Now equating the coefficients of  from equation (8), we obtain 

 

 (10) 

(11) 

 (12) 

Here, we have only three equations (10), (11) and (12) for determining the unknown functions A1, B1, C1 , D1 

and H1  Thus, to obtain the unknown functions A1, B1, C1, D1 and H1 we need to impose some conditions 

(Shamsul[19], [20], [21]) between the eigenvalues. Different authors imposed different conditions according to 

the behavior of the systems; such as Shamsul [12] imposed the condition 

. In this study, we have investigated solutions for 

the case μ >> λ. Therefore, we shall be able to separate the equation (12) for unknown functions C1 and solving 

them for B1 and H1 substituting the values of C1 into the equation (11) and applying the condition μ >> λ: we 

can separate the equation (11) for two unknown functions B1 and H1; and solving them for A1 and D1. Since 

are proportional to small parameter, they are slowly varying functions of time t and for first 

approximate solution, we may consider them as constants in the right hand side. This assumption was first made 

by Murty and Deekshatulu [22]. Thus the solutions of the equation (4) become  

 

 

      (13) 

 

 
 

Equation (9) is a non-homogeneous linear ordinary differential equation; therefore, it can be solved by 

the well-known operator method. Substituting the values of a, b, c,d,h and  in the equation (3), we shall get 

the complete solution of (1). Therefore, the determination of the first approximate solution is complete. 

 

III. Example 
As an example of the above method, we have considered the Duffing type equation of fifth order 

weakly-nonlinear oscillatory system: 
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     (14) 

Comparing (13) and (1), we obtain  
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Solution of equation (18) is  
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Where , , ,  

Now differentiating equation (20) with respect to  and putting the value of  in equation (17) and solving 

B1 and H1 imposing the condition μ >> λ, we get  
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Where , , , , 

, . 

Again, putting the value , C1 and H1 in Eq. (10) and solving A1 and D1 and imposing the condition μ >> λ 

we get  
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The solution of the equation (19) for u1 is 
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Substituting the values of A1, B1, C1, D1 and H1 and from equation (23), (21), (20), (24) and (22) into equation 
(4), we obtain: 
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Here all of the equation of (26) have no exact solutions, but since  are proportional to the small 

parameter , so they are slowly varying functions of time t. Consequently, it is possible to replace a, b, c, d, h 

by their respective values obtained in linear case (i.e., the values of a, b, c, d, h obtained when = 0) in the right 

hand side of equation (26). This type of replacement was first introduced by Murty and Deekshatulu ([4], [22]) 

to solve similar type of nonlinear equations. 

 

Therefore, the solution of (26) is: 
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Hence, we obtain the first approximate solution of the equation (14) as: 

(28)
 

wherea, b, c,d and h are given by the equation (27) and is given by (25). 

 

IV. Figures and Tables 
In order to test the accuracy of an approximate solution obtained by a certain perturbation method, we 

have compared the approximate solution to the numerical solution.We have computed  using (28), in 

which a, b, c,d and h are obtained from (27) and  is calculated from equation (25). The result obtained from 
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(28) for various values of t, and the corresponding numerical solution obtained by a fourth order Runge-Kutta 

method is presented in the followingFig.1,Fig.2,Fig.3 and Fig.4respectively. 

 

 
Figure 1: Comparison between perturbation and numerical results for and 0.1   

with the initial conditions  

 

 

 
Figure 2: Comparison between perturbation and numerical results for and 0.1   

with the initial conditions 0 0 0 00.35, 0.10, 0.25, 0.20.b c d h     
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Figure 3: Comparison between perturbation and numerical results for 3.2,  0.8  and 0.1   

with the initial conditions 0 0.40,a  0 0 0 00.30, 0.10, 0.25, 0.15.b c d h     

 

 

 

 

 
Figure  4: Comparison between perturbation and numerical results for 3,  0.7  and 0.1   

with the initial conditions 0 0.35,a  0 0 0 00.35, 0.10, 0.15, 0.15.b c d h     

 

 

 

For various values of t, the corresponding perturbation andnumerical results are shown in the following Table 1, 

Table 2, Table 3andTable 4 respectively. 
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Table 1:Comparison between perturbation andTable 2:Comparison between perturbation and 
numeicalresults                                                       numerical results 

 
 

Table 3:Comparison between perturbation andTable 4:Comparison between perturbation and 

numerical results                                                        numerical results 

 
 

V. Conclusion 
In this study, we have carried out the modification of the KBM method and successfully applied the 

modified method to the fifth order more critically damped nonlinear systems. Based on the modified KBM 

method transient responses of nonlinear differential systems have been investigated. For fifth order more 

critically damped systems the solutions are looked for such circumstances where in the triply eigenvalues are 

small and the two eigenvalues are large. For different sets of initial conditions of the modified KBM method, the 

results provide solutions which show well agreement with the numerical solutions 
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