(M, N)-Jordan Left Derivation on Matrix Ring

Rajaa C. Shaheen* \& A. H. Majeed**
* Department of Mathematics, College of Education ,Al-Qadisiyah university. *Department of Mathematics,College of Science,Baghdad university.*

Abstract

In this paper, we introduced a new definition which is the definition of (m,n)-Jordan left derivation and we prove that any (m, n)-Jordan left derivation on the full matrix ring is identically zero also we describe the structure of (m, n)-Jordan left derivation on the upper triangular matrix ring .

Keywords: Left derivation, Jordan Left Derivation.

I. Introduction

Throughout this paper , R will represent an associative ring with center $\mathrm{Z}(\mathrm{R})$. A ring R is n -Torsion free where $n>1$ is an integer , in case $n x=0$, $x \in R$ implies $x=0$. Let R be a ring and let M be a left R-module .An additive mapping $\mathrm{D}: \mathrm{R} \rightarrow \mathrm{M}$ is said to be left derivation (resp.Jordan left derivation $)$ if $\mathrm{D}(\mathrm{xy})=\mathrm{xD}(\mathrm{y})+\mathrm{yD}(\mathrm{x})$ holds $\forall x, y \in R$. (if $D\left(x^{2}\right)=2 x D(x) \forall x \in R$).obviously any left derivation is a Jordan left derivation but in general the converse is not true (see [11] ,example 1.1).the concepts of left derivation and Jordan left derivation were introduced by Bresar and Vukman [1],one can easly prove that the existence of a non-zero left derivation $\mathrm{D}: \mathrm{R} \rightarrow \mathrm{R}$, where R is prime ring of $\mathrm{ChR}=2$,forces the ring R to be commutative .Moreover , any Jordan derivation which maps a non-commutative prime ring R of $C h R \neq 2$ into it self is zero. this result was first proved by Bresar and Vukman in [1] under the additional assumption that R is also of $\mathrm{Ch} \mathrm{R} \neq 3$. Later Deng[2] removed the assumption that R is of $\mathrm{ChR} \neq 3$.(see also [6]). In [10]Vukman introduced the definition of (m, n)-Jordan derivation and study it on prime ring with $\operatorname{char}(\mathrm{R}) \neq 2 m n(m+n)$.Recently ,Vukman [9] has proved that , in case $D: R \rightarrow R$ is a Jordan left derivation, where R is 2-torsion free semi-prime ring ,then D is a derivation which maps R into $Z(R)$.In [3] authors prove that if R is a 2 -torsion free ring with identity ,then any Jordan left derivation (hence, any left derivation)on the full matrix ring $M_{n}(R), n \geq 2$ is identically zero . In this paper, we give a new definitions which is definition of (m, n)-Jordan left derivation and we prove that any (m, n)-Jordan left derivation on the full matrix ring is identically zero also we describe the structure of (m, n)-Jordan left derivation on the upper triangular matrix ring .

II. Main Result And Proofs

In this section, after we proof the main results we introduced a new definition which is definition of (m,n)-Jordan left derivation

Definition 2.1:- Let $m \geq 0, n \geq 0$ be some fixed integers with $m+n \neq 0$.An additive map $D: R \rightarrow R$ is called (m, n)-Jordan left derivation if the following condition
$(\mathrm{m}+\mathrm{n}) \mathrm{D}\left(\mathrm{x}^{2}\right)=2 \mathrm{mxD}(\mathrm{x})+2 \mathrm{nxD}(\mathrm{x}) \quad \forall \mathrm{x} \in \mathrm{R}$ holds
It is easy to see that $(1,0)$ - Jordan left derivation and $(0,1)$ - Jordan left derivation be an ordinary Jordan left derivation.

Now we shall prove the main results in this paper .
Theorem2.2:- Let R be a $2(m+n)$-torsion free ring with identity and let $n \geq 2$.Then any (m, n)-Jordan left derivation D on the ring $M_{n}(R)$ is identically zero .

Proof:- Since $(m+n) D\left(x^{2}\right)=2 m x D(x)+2 n x D(x) \quad \forall x \in R$
Replace x by $x+y$
$(m+n) D\left((x+y)^{2}\right)=2(m+n)(x+y) D(x+y)$

$$
=2(\mathrm{~m}+\mathrm{n})(\mathrm{xD}(\mathrm{x})+\mathrm{yD}(\mathrm{y})+\mathrm{xD}(\mathrm{y})+\mathrm{yD}(\mathrm{x}))
$$

On the other hand
$(m+n) D\left((x+y)^{2}\right)=(m+n) D\left(x^{2}\right)+(m+n) D(x y+y x)+(m+n) D\left(y^{2}\right)$
Then by comparing these two expression we get
$(m+n) D(x y+y x)=2(m+n) x D(y)+2(m+n) y D(x)$
$\forall x, y \in R$

If $\left(a_{r s}\right) \in M_{n_{n}}(R)$ the following conclusion holds
$\operatorname{If}(\mathrm{m}+\mathrm{n})\left(\mathrm{a}_{\mathrm{rs}}\right)=2(m+n) \mathrm{E}_{\mathrm{ii}}\left(\mathrm{a}_{\mathrm{rs}}\right)$ then $\left(\mathrm{a}_{\mathrm{rs}}\right)=0$

Fix $i \in N$,Since $\mathrm{E}_{\mathrm{ii}}^{2}=\mathrm{E}_{\mathrm{ii}}$
$(m+n) D\left(E_{i i}^{2}\right)=2(m+n) E_{i i} D\left(E_{i i}\right)$
$(m+n) D\left(E_{i i}\right)=2(m+n) E_{i i} D\left(E_{i i}\right)$
Then by (3), we have
$\mathrm{D}\left(\mathrm{E}_{\mathrm{ii}}\right)=0 \quad \forall 1 \leq \mathrm{i} \leq \mathrm{n}$
Now, fix $\mathrm{i} \neq \mathrm{j} \quad$ in N . from
$(m+n) E_{i j}=(m+n)\left(E_{i j} E_{i j}+E_{j j} E_{i j}\right)$
$(m+n) D\left(E_{i j}\right)=(m+n) D\left(E_{i j} E_{j j}+E_{i j} E_{i j}\right)$

$$
=2(m+n)\left(E_{i j} D\left(E_{\mathrm{ij}}\right)+\mathrm{E}_{\mathrm{ij}} \mathrm{D}\left(\mathrm{E}_{\mathrm{ij}}\right)\right)
$$

$$
\begin{equation*}
=2(m+n) E_{\mathrm{ij}} D\left(\mathrm{E}_{\mathrm{ij}}\right) \tag{5}
\end{equation*}
$$

Then by (3), we have
$D\left(\mathrm{E}_{\mathrm{ij}}\right)=0 \forall 1 \leq \mathrm{i}, \mathrm{j} \leq n ́$ \qquad
Next, we show that $\forall r \in R, i \neq j$ in $N, D\left(r E_{i j}\right)=0$
$(\mathrm{m}+\mathrm{n}) \mathrm{rE}_{\mathrm{ij}}=(\mathrm{m}+\mathrm{n})\left(\mathrm{rE}_{\mathrm{ij}} \mathrm{E}_{\mathrm{jj}}+\mathrm{E}_{\mathrm{ij}} \mathrm{rE}_{\mathrm{ij}}\right)$
$(m+n) D\left(\mathrm{rE}_{\mathrm{ij}}\right)=2(m+n) r E_{i j} D\left(E_{\mathrm{ij}}\right)+2(m+n) \mathrm{E}_{\mathrm{ij}} \mathrm{D}\left(\mathrm{rE}_{\mathrm{ij}}\right)$
$(m+n) D\left(\mathrm{rE}_{\mathrm{ij}}\right)=2(\mathrm{~m}+\mathrm{n}) \mathrm{E}_{\mathrm{jj}} \mathrm{D}\left(\mathrm{rE}_{\mathrm{ij}}\right)$
Then by (3), we have
$\mathrm{D}\left(\mathrm{rE}_{\mathrm{ij}}\right)=0 \forall \mathrm{r} \in \mathrm{R}, \mathrm{i} \neq \mathrm{j}$ in N
In the next step ,we show that for any $r \in R$ and $i \in N, D\left(r E_{i i}\right)=0$
Fix $\mathrm{i} \neq \mathrm{j}$ in N . and set
$\mathrm{E}=\mathrm{E}_{\mathrm{ii}}+\mathrm{E}_{\mathrm{jj}}$
$(m+n) D(r E)=(m+n) D\left(E_{i i}+\mathrm{rE}_{\mathrm{ij}}\right)$
$=(\mathrm{m}+\mathrm{n})\left(\mathrm{D}\left(\left(\mathrm{r} \mathrm{E}_{\mathrm{ij}}\right) \mathrm{E}_{\mathrm{ji}}+\mathrm{E}_{\mathrm{ji}}\left(\mathrm{rE}_{\mathrm{ij}}\right)\right)\right)$
$\left.=2(m+n)\left(r E_{i j}\right) D\left(E_{j i}\right)+2(m+n) E_{j i} D\left(r E_{i j}\right)\right)$
Then (m+n)D(rE)=0
$2(m+n) r E_{i i}=2(m+n) r E E_{i i}=(m+n)\left(r E E_{i i}+E_{i i}(r E)\right)$
$2(m+n) D\left(\mathrm{rE}_{\mathrm{ii}}\right)=2(\mathrm{~m}+\mathrm{n})\left(\mathrm{rED}\left(\mathrm{E}_{\mathrm{ii}}\right)+\mathrm{E}_{\mathrm{ii}} \mathrm{D}(\mathrm{rE})\right)$
$\mathrm{D}\left(\mathrm{rE}_{\mathrm{ii}}\right)=0$ \qquad

Then $\mathrm{D}=0$ on $\mathrm{M}_{\mathfrak{n}}(\mathrm{R})$
Let R and S be a $2(\mathrm{~m}+\mathrm{n})$-torsion free ring with identity , M be a $2(\mathrm{~m}+\mathrm{n})$-torsion free (R, S)-bimodule , and T be the upper triangular matrix ring $\left[\begin{array}{cc}\mathrm{R} & \mathrm{M} \\ 0 & \mathrm{~S}\end{array}\right]$ with the usual addition and multiplication of matrices .the following theorem describes the structure of (m, n)-Jordan left derivation of T .

Theorem 2.3:- Let the ring T be as above , and let $\mathrm{D}: \mathrm{T} \rightarrow \mathrm{T}$ be a (m,n)-Jordan left derivation .then there exist (m, n)-Jordan left derivations $\delta: \mathrm{R} \rightarrow \mathrm{R}, \lambda: \mathrm{R} \rightarrow \mathrm{M} . \gamma: \mathrm{S} \rightarrow \mathrm{S}$ such that $\mathrm{M} \gamma(S)=0$ and
$\mathrm{D}\left[\begin{array}{cc}r & \dot{m} \\ 0 & s\end{array}\right]=\left[\begin{array}{cc}\delta(r) & \lambda(r) \\ 0 & \gamma(s)\end{array}\right]$
Proof:-Linearizing $(\mathrm{m}+\mathrm{n}) D\left(x^{2}\right)=2 m x D(x)+2 n x D(x)$
$(\mathrm{m}+\mathrm{n}) \mathrm{D}(\mathrm{xy}+\mathrm{yx})=2(\mathrm{~m}+\mathrm{n}) \mathrm{xD}(\mathrm{y})+2(\mathrm{~m}+\mathrm{n}) \mathrm{yD}(\mathrm{x})$
Applying D on $I^{2}=I$ and $E_{i i}^{2}=E_{i i} \quad(i=1,2)$
$D\left(E_{11}\right)=D\left(E_{22}\right)=D(I)=0$
Let $\dot{m} \in M$.from
$\dot{m} E_{12}=E_{11}\left(\dot{m} E_{12}\right)+\left(\dot{m} E_{12}\right) E_{11}$
$(\mathrm{m}+\mathrm{n}) \mathrm{D}\left(\dot{m} E_{12}\right)=(m+n) D\left(E_{11}\left(\dot{m} E_{12}\right)+\left(\dot{m} E_{12}\right) E_{11}\right)$
$\mathrm{D}\left(\dot{m} E_{12}\right)=2(m+n) E_{11} D\left(\dot{m} E_{12}\right)+2(m+n) \dot{m} E_{12} \mathrm{D}\left(E_{11}\right)$
By (3), we have
$\mathrm{D}\left(\dot{m} E_{12}\right)=0 \forall m \in M$ \qquad
Now ,let se S and suppose that
$\mathrm{D}\left(\mathrm{s} E_{22}\right)=\left(a_{i j}\right) \in T$

```
\(2(\mathrm{~m}+\mathrm{n}) \mathrm{s} E_{22}=(m+n)\left(\left(s E_{22}\right) E_{22}+E_{22}\left(s E_{22}\right)\right)\)
\(2(\mathrm{~m}+\mathrm{n}) \mathrm{D}\left(\mathrm{s} E_{22}\right)=2(m+n)\left(s E_{22}\right) D\left(E_{22}\right)+2(m+n) E_{22} D\left(s E_{22}\right)\)
\(2(\mathrm{~m}+\mathrm{n}) \mathrm{D}\left(\mathrm{s} E_{22}\right)=2(m+n) E_{22} D\left(s E_{22}\right)\)
Since \(2(\mathrm{~m}+\mathrm{n}) a_{11}=0=2(m+n) a_{12}\) then \(a_{11}=a_{12}=0\).
And so D induced a map \(\gamma: S \rightarrow S\)
\(\mathrm{D}\left(\mathrm{s} E_{22}\right)=\gamma(s) E_{22} \forall s \in S\)
```

\qquad

Since D is additive ,so is γ.
Since $s^{2} E_{22}=\left(s E_{22}\right)^{2}$
$(\mathrm{m}+\mathrm{n}) s^{2} E_{22}=(m+n)\left(s E_{22}\right)^{2}$
$(\mathrm{m}+\mathrm{n}) D\left(s^{2} E_{22}\right)=2(\mathrm{~m}+\mathrm{n}) s E_{22} D\left(s E_{22}\right)$
$(\mathrm{m}+\mathrm{n}) D\left(s^{2} E_{22}\right)=2(\mathrm{~m}+\mathrm{n}) s E_{22} \gamma(s) E_{22}$
$(\mathrm{m}+\mathrm{n}) \gamma\left(s^{2}\right) E_{22}=2(\mathrm{~m}+\mathrm{n}) s \gamma(s) E_{22}$
$(\mathrm{m}+\mathrm{n}) \gamma\left(s^{2}\right)=2(\mathrm{~m}+\mathrm{n}) s \gamma(\mathrm{~s})$
Proving that γ is $(m, n)-$ Jordan left derivation on S.
Next, let $\mathrm{r} \in R$ and assume that
$\mathrm{D}\left(\mathrm{r} E_{11}\right)=\left(b_{i j}\right) \in T$.
$2(\mathrm{~m}+\mathrm{n}) \mathrm{r} E_{11}=(m+n)\left(r E_{11} \cdot E_{11}+E_{11} \cdot r E_{11}\right)$
$2(\mathrm{~m}+\mathrm{n}) \mathrm{D}\left(\mathrm{r} E_{11}\right)=2(m+n) r E_{11} \cdot D\left(E_{11}\right)+2(m+n) E_{11} \cdot D\left(r E_{11}\right)$
$2(\mathrm{~m}+\mathrm{n}) \mathrm{D}\left(\mathrm{r} E_{11}\right)=2(m+n) E_{11} \cdot D\left(r E_{11}\right)$
$b_{22}=0$ then D induced $\delta: R \rightarrow R, \lambda: R \rightarrow M$.
$\mathrm{D}\left(\mathrm{r} E_{11}\right)=\delta(r) E_{11}+\lambda(r) E_{12}$
By similar argument as above, one can show that δ and λ are also (m,n)-Jordan left derivation .Now , in view of (8),(9) and (10) for every $\left[\begin{array}{cc}r & m \\ 0 & s\end{array}\right]$ in T, we have
$\mathrm{D}\left[\begin{array}{cc}r & \dot{m} \\ 0 & s\end{array}\right]=\mathrm{D}\left(\mathrm{r} E_{11}\right)+\mathrm{D}\left(\dot{m} E_{12}\right)+\mathrm{D}\left(\mathrm{s} E_{22}\right)$
$=\delta(r) E_{11}+\lambda(r) E_{12}+\gamma(s) E_{22}$
$=\left[\begin{array}{cc}\delta(r) & \lambda(r) \\ 0 & \gamma(s)\end{array}\right]$
Since $\dot{m} s E_{12}=\left(\dot{m} E_{12}\right)\left(s E_{22}\right)+\left(s E_{22}\right) \dot{m} E_{12}$
$(\mathrm{m}+\mathrm{n}) \mathrm{D}\left(\dot{m} \mathrm{~s} E_{12}\right)=2(\mathrm{~m}+\mathrm{n})\left(\dot{m} E_{12}\right) D\left(s E_{22}\right)+2(\mathrm{~m}+\mathrm{n})\left(s E_{22}\right) D\left(\dot{m} E_{12}\right)$
$0=2(\mathrm{~m}+\mathrm{n})\left(\dot{m} E_{12}\right)\left(\gamma(s) E_{22}\right)$
and since M is $2(\mathrm{~m}+\mathrm{n})$-torsion free module, then
$0=\dot{m} \gamma(s) E_{12} E_{22}$ and so $\dot{m} \gamma(s) E_{12}=0$ then
$\dot{m} \gamma(s)=0$

Corollary2.4 :- Let T and D as above and assume that M is a faithful right S-module then $\gamma=0$.

References

[1]. M.Bresar and J.Vukman ,On left derivation and related mappings, Proc.Amer .Math. Soc.110(1990),no.1,7-16.
[2]. Q.Deng,On Jordan left derivation ,Math.J.Okayama Univ.34(1992)145-147.
[3]. N.M.Ghosseire,On Jordan left derivations and generalized Jordan left derivations of matrix rings,Bulletin of the Iranian mathematical society vol. 38 no.3(2012),pp 689-698.
[4]. B.Hvala.Generalized derivation in rings,Comm.Algebra26(1998),no.4,1147-1166.
[5]. W.Jingand S.Lu,Generalized Jordan derivations on prime rings and standard operator algebras,Taiwanese J.Math.7(2003),no.4,605613.
[6]. K.W.Jun and B.D.Kim,Anote on Jordan left derivations,Bull.Korean Math.Soc.33(1996),no.2,221-228.
[7]. J.Vukman, An identity related to centralizers in semiprime rings, Comment.Math.Univ.Carolin.40(1999),no.3,447-456.
[8]. J.Vukman,Jordan left derivation on semiprime rings,Math.J.Okayama univ.39(1997)1-6.
[9]. J.Vukman,On left derivations of rings and Banach algebras,Aequationes Math75(2008),no.3,260-266.
[10]. J.Vukman,On (m,n)-Jordan Derivations and Commutativity of Prime rings,Demonstratio Mathematica ,Vol.XLI,(2008)No. 4.
[11]. S.M.A.Zaidi,M.Ashraf and S.Ali,On Jordan ideals and left (θ, θ)-derivations in prime rings,Int.J.Math.Sci.37(2004)1957-1964.

