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I. Introduction 
Distributive lattices do have some special properties to characterize ideals in them. Corollary 4 in 

section 3 of chapter 2 in [1] implies that any ideal in a distributive lattice is a congruence class, and a study of 

congruence relations in distributive lattices leads to fruitful results( cf:[2]). So, a completion for a class of 

distributive lattices is constructed through ideals in this article, and an extension of a congruence relation to 
completion is also discussed. Let us use the following definitions for this purpose. 

 

Definition 1.1 Let us say that a sublattice (L1, , ) of a lattice (L2, , ) is dense in L2, if any element x in L2 is 
either a supremum of a collection of elements in L1 or an infimum of a collection of elements in L1. 

 

Definition 1.2 If (L1,, ) is dense in (L2, , ), then let us say that (L2, ,) is a completion of (L1,, ),  if L2 
is a complete lattice. 

An extension of a congruence relation to completion is also to be discussed, and the following definition is 

applicable for this purpose. 

 

Definition 1.3 Let (L2, ,) be a completion of (L1, ,). A congruence relation ’ on L2 is said to be a 

complete extension of a congruence relation  on L1, if the restriction of  ' to L1 is   , and if  iI  x i iI yi 

(mod   ') in L2, whenever xi  yi (mod  ), i  I, in L1  and the suprema exist in L2,and if iI xi iI yi (mod 

 ') in L2, whenever, xi yi (mod   ), i  I, in L1 and the infima exist in L2, for collections (xi)iI and (yi)iI in 
L1. 

 

Definition 1.4  A congruence relation  on a lattice (L, ,) is complete,if (xi)iI    L, (yi)iI   L and xi   yi 

(mod ) , i  I imply iI xi   iI yi (mod  ) and  iI xiiI yi (mod ), whenever these suprema and infima 
exist. 

 

II. Lattice Completion 
Let us recall that if L is the cartesian product of a collection of lattices ((Li, i,i))iI , then ‘join’ and ‘meet’ 

operations can be defined pointwisely on L by (xi)iI  (yi)iI = (xi i yi)iI and (xi)iI  (yi)iI = (xi i yi)iI . 
These operations are to be considered in this article for sublattices of a cartesian product lattice. 
 

Definition 2.1 Let (L,,) be a lattice. To each aL, let (a] denote the (ideal) sublattice (a] = {x  L : x≤a}. Let 

us now define the inverse limit L* as a subset of the cartesian product lattice of the collection of lattices ((a])aL 

by L* = {(xa)aL : xa  (a]; a L, and xa = xb  a, whenever a≤ b in L}. 

 

Lemma 2.2 Suppose (xa)aL  L* . Then xa = cL (xc  a), aL . 

Proof: Given a,c L, there exists b L such that b ≥a, b≥ c, xc = xb  c, and such that xc  a = (xb c)  a = (xb  

a)  c = xa  c≤ xa = xa a.  This proves that xa=iI(xc a). 

 

Lemma 2.3 Let L and L* be as in the definition 2.1. Then, to each x L, we have (x  a)aL  L *. 

Proof: Fix x L. To each a L, we have x  a  (a] . If a ≤b in L, then (x  b)  a = x  (b  a) = x  a. So, (x  

a)aL  L . 
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Lemma 2.4 Suppose L given definition 2.1 is distributive so that (x y) z = (x z)  (y  z); x,y,z  L . 

Then the inverse limit L* given in definition 2.1 is a sublattice of the product lattice of the collection ((a])aL . 

Proof: Let (xa)aL, (ya)aL  L . Then (xa)aL  (ya)aL = (xa  ya)aL and (xa)aL (ya)aL = (xa ya)aL . Also, if a≤ 

b in L, then (xbyb)a = (xb  a)  (yb a) = xa ya; and (xb yb) a = (xb  a)  (yb  a) = xa  ya. So, (xa)aL 

(ya)aL  L and (xa)aL (ya)aL  L so that L* is a lattice. 

 

Lemma 2.5 Suppose (a] is a complete lattice for each a  L, and suppose 

z (  iIxi) = iI(z xi), whenever xi  (a]; i I, for any  fixed a  L, and 

z  (a]. Then L* given in the definition 2.1 is a complete lattice. 

Proof: If x, y, z  L, then there is a c  L such that x ≤c, y≤ c, z ≤ c so that x, y, z (c] and hence (xy) z = (x 

z) (yz). So, by the previous lemma, L* is a lattice. 

Let ((xa
(i))aL)iI be a collection of elements in L*.  If a≤b in L, then (iI xb

(i))a= iI(xb
(i)a)= iIxa(i) (a], 

xb
(i) a(a], and xb

(i) (b], iI, and when (a] and (b] are complete.  Thus iI(xa
(i))aL exists in L*. If a≤b in L, 

then (iI xb
(i))a=iI(xb

(i)a)=iIxa
(i). This proves that L* is a complete lattice. 

 

Lemma 2.6 Suppose L satisfies the hypothesis of lemma 2.4. If T : L  L * is defined by T (x) = (x  a)aL, x 

 L, then T is an injective lattice homomorphism. 

Proof: By lemma 2.3, T (x)  L*, x L. If T (x) = T (y), then xa = ya, a  L, and hence x = xx = yx = 

xy = y y = y. This proves that T is 1-1. Let x, y  L. Then T (xy) = ((xy)a)aL = ((xa)(ya))aL = (x 

a)aL  (y  a)aL = T (x)  T (y), and T (x y) = ((x y)  a)aL = ((x  a) (y  a))aL = (x  a)aL (y  a)aL 

= T (x)  T (y). This proves the lemma. 
So, if L is a distributive lattice, then we can identify L as the sublattice T (L) of L*. 

 

Lemma 2.7 If L and T are as in lemma 2.6, then T (L) is dense in L* in the sense of definition 1.1. 

Proof: Let (xa)aL  L . To each fixed c L, define x(c)  (c] L by x(c) = xc. To each a  L, let  a denote the 

coordinate projection of the product lattice defined by ((c])cL onto (a]. Then a(T (x(c))) = xc  a,c  L and 

a  L. Therefore, by lemma 2.2, we have xa=cL(xca)= cLa(T(x(c))=a(cL(T(x(c)),  aL. This proves 

that (xa)aL= cL T(x(c)), when T(x(c))  T(L). This proves the lemma. 

 

Theorem 2.8 Suppose L satisfies the hypostheses of lemma 2.5. Then L* is a completion of L in the sense of 

definition 1.2. 

Proof: Let us identify L with T (L), and then T (L) is dense in L* and L is complete. So, L* can be considered as 

a completion of L. 

 

Remark 2.9 Since L is distributive, by the proof of the lemma 2.5, L* of the previous theorem 2.8 is also 

distributive. 

 

III. Extension of a congruence relation 
Let   be a congruence relation on a lattice L. When x and y are related by in L, let us write xy(mod  

). Define a relation * on the product lattice of the collection ((a])aL by (xa)aL (ya)aL (mod * ) if and only if 

xa ya (mod  ), a  L. Since  is a congruence relation, * is also a congruence relation. Let us use the same 
notation for its restriction to L* and for its restriction to T (L) for T of lemma 2.6, when L is distributive. Let us 

assume in this section that L is distributive. 

 

Lemma 3.1 x   y (mod   ) in L if and only if T (x)   T (y) (mod *). 

Proof: If x y (mod   ), then x a y  a (mod  ), a  L, and hence 

T (x) T (y)(mod * ). 

Suppose T (x) T (y) (mod *), for some x, y  L so that x  a y  a 

(mod  ), a  L. Then 

x  x   y x(mod  ) 

 x  y (mod  ) 

y y(mod  ) so that x  y (mod ). This proves the lemma. 

By this lemma, *on L can be considered as an extension of on L. With this identification, we can state the 

following theorem 3.2. 

 

Theorem 3.2 Let  ' be a congruence relation on L
*
 which is a complete extension of  to L

*
 . Then 

*
≤ ' on L

*
. 

Proof: Suppose (xa)aL  L* , (ya)aL  L*  and (xa)aL   (ya)aL (mod *) ).  Then xaya(mod  ),  aL.  Hence 
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x(c)y(c) (mod  ), when x(c) = xc and y(c) = yc, c  L. Then by our identification of L with T(L), we have  

T (x(c))   T (y(c)) (mod  '), c  L. So, cL T(x(c))  cL T(y(c)) (mod ’), 

or (xa)aL  (ya)aL (mod ’) in view of the proof of the lemma 2.7.   

*≤ ’ on L*. 

 

Theorem 3.3 Suppose (a] is complete and   is complete on (a], a  L. Then * is also complete on L* . 

Proof: Suppose ((x(
a
i))aL)iI , ((ya

(i))aL)iI are subcollections of L*  such that (x(
a
i))aL   (ya

(i))aL (mod * ), 

 i  I. Then iI x
(
a
i)  iI ya

(i) (mod  ) and  iI x
(
a
i)     iI ya

(i) (mod  ), because the suprema and the 

infima exist in the complete lattice (a], a  L.So, iI(xa
(i))aL  iI(ya

(i))aL (mod *) and iI(xa
(i))aL  

iI(ya
(i))aL (mod *). Thus * is also complete on L*. 

 

Remark 3.4 If the conditions of lemma 2.5 and theorem 3.3 are satisfied, then L* is a completion of L and  *on 

L is a complete extension of  on  L. 
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