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Abstract: A study has been made of the disturbances produced by a normal line load moving along the boundary 

surface of a perfectly conducting magnetoelastic semi-space. The displacement on the boundary has been 

obtained. The stress distribution shows how both the normal stress and tangential stress varies with depth, and 

with the increase in the magnetic field intensity. 
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I. Introduction 
The response of solid materials to moving loads and sources are of practical interest in the fields of geophysics, 

seismology and also engineering. The problems of steady state or transient responses of a half-space to a moving point or line 
load have been discussed by many authors. Sneddon [1] investigated the problem of a line load moving with a constant speed 
on the boundary of an elastic half-space. This problem was later expanded by Chakraborty [2], to include the case of transverse 
isotropy. Mitra [3] studied the disturbance produced in an elastic half-space by a transient pressure applied on a part of the 
boundary surface. 

Problems of loads moving subsonic, transonic and supersonic velocity in a half-space have been discussed among 
others, by Cole and Huth [4], Fung [5] and Fryba [6]. 

Payton[7] has considered the transient motion of an elastic half-space due to a moving line load, and also the problem 
of steady-state stresses in a transversely isotropic solid by a moving dislocation[8]. A study of steady-state response to moving 
loads in an elastic half-space with an overlying layer in infinite time was done by Nath and Sengupta [9]. 

The dynamical responses of perfectly conducting elastic media under the influence of a bias magnetic field has 
assumed interest in view of possible applications in geophysics, especially seismological wave motion in the earth’s mantle 
and core. A study of steady-state response to moving loads in a magneto-elastic initially stressed conducting medium was done 

by Roy and Sengupta [10]. Chattopadhyay and Maugin [11] have discussed the propagation of surface SAWS due to a 
momentary point source in a magnetoelastic half-space. Effect of point source on horizontally polarised shear waves in a 
self-reinforced magnetoelastic layer over a self reinforced heterogeneous half-space was studied by Chattopadhyay, Gupta, 
Sing and Sahu [12]. Recently, Singh, Kumar and Chattopadhyay have also studied the effect of a smooth moving punch in an 
initially stressed monoclinic magnetoelastic strip[13]. 

In the present paper, the authors have formulated a problem of plane strain for a normal line load moving with constant velocity on 

the surface of a semi-infinite perfectly conducting elastic medium, under the influence of a bias magnetic field perpendicular to the plane of 

motion. Following the method illustrated by Sneddon [1],the problem has been solved for the stresses produced in the medium for case of 

subsonic velocity of load. Displacements on the surface has been found. Numerical study of the stress distribution with depth has been done for 

different intensity of the magnetic fields.  

 

II. Formulation of the Problem 
We consider a moving normal line load on the surface z = 0 of a perfectly conducting semi-infinite elastic medium occupying 

the regions  x y z0). The problem is formulated as one of plane strain, where the displacement components 

are taken as u=(u(x,z,t) , 0, w(x,z,t)). We assume the existence of a bias magnetic field  H = (0, H2, 0), where H
2
 is a 

constant. 
 
The basic equations of for magnetoelastic disturbances are given by  
(I). Maxwell’s equations of the electromagnetic field are  

𝛁. 𝐃 = 0 , 𝛁 . 𝐁 =  0; 

                              𝛁 × 𝐇 = 𝐉 , 𝛁 × 𝐄 =  − 
𝛛𝐁

𝛛𝐭
 ;                             (1.1) 

(displacement current is neglected) 
where D is the electric displacement, B is the magnetic induction, H is the magnetic field, E  is electric field and J is current 
density. 
(II). The equations of motion are  

                     𝜏𝑖𝑗 ,𝑗 +  [ 𝐉 × 𝐁]i =  ρ 
𝜕2𝑢𝑖

∂𝑡2  ,  i, j = 1, 2, 3.                                  (1.2) 

where JB is the Lorenz force due to the electromagnetic field and 𝜏𝑖𝑗 being the usual elastic stress tensor in the medium . 

(III).The constitutive equations are  

                                        B=H;    D=E,                                                   (1.3) 
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with Ohm’s law as  

                     J=(E+u B),                                                       (1.4) 

where  is the electric conductivity, is the magnetic permeability, u  the particle velocity and  the permittivity. 

(IV). Elastic Stress-Strain relations  

                         τij =  λ uk,k  δi,j + 2G eij                                          (1.5) 

where e
ij

 are the strain components and  

                   2eij =  ui,j  + uj,i  , i, j = 1, 2, 3.                                (1.6) 
u
i
 being particle displacement and , G are Lame constants. 

(V). The electromagnetic boundary conditions  

                             n.|B|=0,   n|H|=0,   n|E+u B|=0.                                          (1.7) 

where n is normal to the interfaces or surface z = constant and |.| discontinuity jump across the boundary of the vector within. 
(VI). Stress continuity conditions across the boundaries z = constant are  

                      𝜏3𝑗 +  τ𝐸
3𝑗 +

−   𝜏3𝑗 +  τ𝐸
3𝑗 −

= 0, 𝑗 = 1,2,3.                                   (1.8) 

     where τ𝐸
3𝑗  are Maxwell’s stress tensor components due to a magnetic field given by                                                                                        

τE
3j = µ(Hihj + Hjhi  - Hkhkδi,j). 

Due to motion there will be a perturbation in the magnetic field H which is taken correct to first order in small quantities h
i
, as 

H+h=(h
1
,H

2
+h

2
,h

3
). 

For a perfectly conducting medium , we have  

 𝐮 
which leads to  

                           𝐡 = (0 , −H2
∂w

∂z
 −  H2

∂u

∂x
 , 0)                                            (1.9)

The components of Lorenz force are  

             (−µH2h2x
 , 0 , −µH2h2z

 )                                             (1.10)

correct to first order in small quantities. 
The equations of motion hence reduce to  

                      (𝛼2 + 𝑎2)𝑢𝑥𝑥  + 𝑏2𝑢𝑧𝑧  + (𝛼2 −  𝑏2 +  𝑎2)𝑤𝑥𝑧  =  𝑢𝑡𝑡                   (1.11) 

 

                      (𝛼2 −  𝑏2 +  𝑎2)𝑢𝑥𝑧  +  𝑏2𝑤𝑥𝑥  + (𝛼2 +  𝑎2)𝑤𝑧𝑧  =  𝑤𝑡𝑡                   (1.12) 



where        𝑎2 =  
µ𝐻2

2

𝜌
 ;  𝑏2 =  

𝐺

𝜌
 ;  𝛼2 =  

𝜆+2𝐺

𝜌
                                                     (1.13)    



a is Alfven wave velocity, 𝛼 is P-wave velocity and b is S-wave velocity. 

 

2.1.Stress-boundary conditions 
 

For a normal moving line load the boundary conditions are  

                                     𝜏31 = 0  at z = 0                                               (2.1)              

τ33 = −P𝛿(𝑥 − 𝑐𝑡)  at z = 0                                   (2.2)
where (x) stands for Dirac delta function of the argument x. 

 

III. Steady-State Solution 
The solution of the equations of motion are assumed in the form  

                          u x, z, t =   A e− kqz sin k
∞

0
 x − ct dk                                 (3.1)                                                                                                     

                          w x, z, t =   B e− kqz  cos k
∞

0
 x − ct dk                         (3.2)

where q is independent of k. 

Substituting (3.1) and (3.2) into (1.11) and (1.12) we get the two following equations for A and B  

                  A[c2 −  (α
2

+ a2) + q2b2 ] + B  α2 −  b2 + a2  q = 0                            (3.3)

               − A  α2 −  b2 + a2  q + B  c2 −  b2 + (α2 + a2) q2 = 0                            (3.4)

For a non-trivial solution for A and B, we must have  

             q4 −   1 −  
c2

b2 +  1 −  
c2

α2 + a2  𝑞2 +  1 −  
c2

b2
  1 −  

c2

α2+ a2
 = 0                (3.5)  

which is quadratic equation in q
2
, with roots 𝑞1

2 =  1 −  
c2

b2   and 𝑞2
2 =  1 −  

c2

α2 + a2 . 

We consider the subsonic case only i.e. q
2

1
>0 and q

2

2
>0 

In this case,q
1
 and q

2
 are real. So u(x,z,t) and w(x,z,t) can be written as  
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                  u x, z, t =   (A1  e− kq1z +  A2  e− kq2z)sin k
∞

0
 x − ct dk                  (3.6)

and 

                  w x, z, t =   (A1m1  e− kq1z +  A2m2 e− kq2 z)cos k
∞

0
 x − ct dk         (3.7) 



where     𝑚1,2 =  −
c2− (α2+ a2)+ 𝑞1,2

2b2

(α2− b2+ a2)𝑞1,2

                                                           (3.8)

Writing δ x − ct =
1

π
 cos k

∞

0
 x − ct dk and applying the boundary conditions (2.1)and (2.2) on (3.6) and (3.7) we 

have,  

                         A1 m1 +   q1 +  A2 m2 +   q2 =  0                                   (3.9)     

                         A1  α2 −  2b2 −  m1q
1
α2 + A2  α2 −  2b2 −  m2q

2
α2 =  −  

P

πρk
         (3.10)

Solving for A
1
 and A

2
 we get form (3.9) and (3.10)  

                                                A1 =  
D

ρk
                                            (3.11)

                                               A2 = −  
 m1+  q1 

 m2+  q2 
.

D

ρk
                                (3.12) 



where                D =  −  
P

π  [  α2− 2b2− m1q1α2 − 
 m 1+  q1 

 m 2+  q2 
.  ( α2− 2b2− m2q2α2)

                    (3.13)     

Substituting the values of A
1
 and A

2
 from (3.11) and (3.12) into (3.6) and (3.7) we have the displacement components  

                       u x, z, t =   
D

ρ
[ 

e− k q1z

k
−    

 m1+  q1 

 m2+  q2 
.

e− k q 2z

k
]sin k

∞

0
 x − ct dk            (3.14)

and  

                        w x, z, t =   
D

ρ
[m1 .

e− k q 1z

k
−   m2 .

 m1+  q1 

 m2+  q2 
.

e− k q 2z

k
]cos k

∞

0
 x − ct dk    (3.15)

Here q
1

, q
2
, m

1
, m

2
 do not depend on k. 

 
Using the value of u(x,z,t) and w(x,z,t), we have stress components at any point of the medium are given by  

                       τ31 = Db2  m1+  q1  x−ct (𝑞1
2− 𝑞2

2)𝑧2

{𝑞1
2𝑧2+  x−ct 2}{𝑞2

2𝑧2+  x−ct 2}
                                   (3.16) 

 

τ33 =  Dz [
  α2− 2b2− m1q1α2 q1

𝑞1
2𝑧2+  x−ct 2  −  

 m1+  q1 

 m2+  q2 
.

( α2− 2b2− m2q2α2)q2

𝑞2
2𝑧2+  x−ct 2 

  

In the particular case, when H
2

 = 0 i.e. for a = 0 this result agree with Sneddon [1]. The expression for 


 shows that in any 

plane parallel to the boundary surface the maximum normal stress happen along x = ct  i.e. directly below the load. So the 

point of maximum normal stress moves with velocity c along any plane z .=  𝑧0  ( ≠ 0). This also agree with the observation 

Chakraborty [2]. 

At z .=  𝑧0  ( ≠ 0), x = ct  

    [τ33 ]z .= 𝑧0  ( ≠0),x = ct =  
D

𝑧0  
[

  α2− 2b2− m1q1α2 

q1
 −   

 m1+  q1 

 m2+  q2 
.

  α2− 2b2− m2q2α2 

q2
]                 (3.18)

Hence the maximum normal stress in any plane parallel to the boundary varies inversely as the depth.  

 

IV. Numerical Result and Discussion 
Numerical study of the normal and shear stresses have been done for Poisson’s material only, with 

different physical parameters. It is seen that for a fixed intensity of the magnetic field, the maximum of the normal 

stress decrease with depth, and decreases with increase in the velocity load (Fig 1 and 2). However, the 

Alfven-wave velocity is increased, which implies an increase in the intensity of the bias field, the maximum 

normal stress increase with depth, although the tendency of the stresses is to ultimately decrease with increasing 

field at every surface z = constant(Fig 3). 
The normal stresses has also been calculated ahead of the source, i.e. for x - ct > 0, and we note that after some initial 

variations, all these stresses gradually approach a steady-state as z increase (Fig 4). We note that the maximum normal stress 
decreases in every layer if the velocity of the source is gradually increased (Fig 5) with the magnetic field, whereas, for a 
variable magnetic field, the normal stress ahead of the load on every surface z = constant increases and then approaches a 
steady-state (Fig 6). 

The shearing stresses are clearly symmetric about x = ct, and as once again approaches a steady value with increase 

in depth ahead of the load (Fig 7). However the shearing stress shows an oscillatory pattern on either side of the load line (Fig 
8) when the magnetic field is kept fixed. If the field is varied (Fig 9) we find that these stresses will decrease ahead of the load, 
but increase behind the load. The situation is shown also in Fig 10, with a fixed depth,(at x - ct = 0, these stresses vanish).  
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V. Conclusion 
It is seen that the effect of the magnetic field is to decrease both normal and shear stresses (ahead of the load).  

         
Fig 1:  Variation of maximum normal stress           Fig 2:  Variation of maximum normal stress  

       with depth (velocity of load fixed).                      with depth ( Alfven wave velocity  fixed). 

 

        
Fig3:  Variation of maximum normal stress with     Fig 4:  Variation of maximum normal stress with 

increasing Alfven wave velocity along fixed planes          depth ahead of the load( Alfven wave velocity  

parallel to the boundary  (velocity of load fixed).            and velocity of load are fixed). 

 
Fig5: Variation of maximum normal stress with      Fig6: Variation of maximum normal stress ahead 

increasing Alfven wave velocity (fixed depth).        of the load (fixed depth and velocity of load fixed). 
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Fig7:   Variation of maximum shear stress with      Fig8: Variation of maximum shear stress ahead 

   depth ahead of the load (Alfven wave velocity      of the load  (Alfven wave velocity and velocity 

   and velocity of load are fixed).                     of load are fixed). 

 
Fig9: Variation of maximum shear stress with          Fig10: Variation of maximum shear stress ahead 

increasing Alfven wave velocity ahead of the           of the load  (fixed depth and velocity of load ). 
 load (fixed depth and velocity of load). 
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