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Abstract: The objective of this paper to generalize certain Tauberian results proved by Gehring  [3] for 

summability ( 𝐶, 𝑘; 𝛼) of sequences to functions. In  [1] A. V. Boyd generalized the Tauberian theorem for 𝛼 

convergence of Ces𝑎 ro means of sequences. In this paper ,we obtain some Tauberian theorems for (𝐶, 𝛼, 𝛽) 

convergence of  Ces𝑎 ro means of order k of functions and investigate some of its properties . 

Keywords: Tauberian theorem, Absolute and Cesàro summability , Lebesgue Integral, Convergence.  

 

I. Introduction 
The notation is similar that are in  [3],with the following additional definitions: If 𝑘 > −1 then 𝐴𝑛

𝑘 , 𝐵𝑛
𝑘  

denote the n-th Ces𝑎 ro sums of order k for the series  𝑎𝑛  ,
∞
𝑛=0  𝑏𝑛  

∞
𝑛=0  where 𝑏𝑛 = 𝑛𝑎𝑛 . 𝐴𝑛

−1 , 𝐵𝑛
−1 denote the 

𝑎𝑛 , 𝑏𝑛 . Summability ( 𝐶, −1; 𝛼) of  𝑎𝑛  will b( 𝐶, 0; 𝛼) of  𝑎𝑛 . Mishra and Srivastava [6] introduced the 

Summability method ),,( C  for functions by generalizing ),( C  summability method. In this paper, we 

discuss some Tauberian theorems for (𝐶, 𝛼, 𝛽) convergence of  Ces𝑎 ro means of order k of functions and 

investigate some of its properties . 

 

II. Definitions and Some Preliminaries 

 
We  would like to first  introduce  Summability method. Summability method  is more  general than  that  of  

ordinary  convergence. If  we  are  given  a  sequence   𝑠𝑛  ,  we  can  construct  a generalized sequence  

  𝜎𝑛  ,  the  arithmetic  mean of    𝑠𝑛   by   this sequence   𝑠𝑛  . If   𝜎𝑛    is convergent in ordinary sense for all 

𝑛 > 0, then we say that   𝑠𝑛   is summable (𝐶, 1) to the sum 𝑠 . This (𝐶, 1) is called Cesaro mean of first order. 

If 𝑠𝑛 → 𝑠 ⇒  𝜎𝑛 =
𝑠0+𝑠1+⋯…………….+𝑠𝑛

𝑛+1
 → 𝑠, ie  if a sequence is convergent, it is summable by method of  

arithmetic   mean. Also a series 1 − 1 + 1 + 1 + ⋯ …… is not convergent , but is summable to the sum 
1

2
 . The 

space of summable sequences is larger than space of convergent sequences.  If 𝜎𝑛 → 𝑠 as 𝑛 → ∞,  then we say 

that sequence   𝑠𝑛   is summable by  method of arithmetic mean.  

For example : Consider the series         𝑢𝑛 = 𝑢0 + 𝑢1 + ⋯ …… . .∞
𝑛=0            (1) 

And let 𝜎𝑛 =
𝑠0+𝑠1+⋯…………….+𝑠𝑛

𝑛+1
 , It may happen that whereas (1) diverges , the quantities ( the arithmetic mean 

of  partial sum of  series) converges to a definite limit as 𝑛 → ∞. For example 1 − 1 + 1 + 1 + ⋯… … diverges, 

but in this case 𝑠0 = 1,    𝑠1 = 1 − 1 = 0,      𝑠2 = 1 − 1 + 1 = 1,     𝑠3 = 0 … ………… ……   (𝑠𝑛 ) =

(1,0,1,0,1 …… . . ) . Since 𝑠𝑛 =
1+(−1)𝑛

2
 ,      

 𝜎𝑛 =
𝑠0 +𝑠1+⋯…………….+𝑠𝑛

𝑛+1
   

       = 
1+(−1)0

2
+

1+(−1)1

2
+

1+(−1)2

2
+ ⋯ ……… … . . +

1+ −1 𝑛

2
/(𝑛 + 1) 

       = 
(𝑛+1)

2
+  

1

2
   1 − 1 + 1 − ⋯… …… 𝑛 + 1 𝑡𝑒𝑟𝑚𝑠  /(𝑛 + 1) 
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        = 
1

2
+  

1+(−1)𝑛

4(𝑛+1)
 , If n is even then 𝜎𝑛 =

1

2
+

1

2(𝑛+1)
 →

1

2
 as 𝑛 → ∞ and if n is odd then 𝜎𝑛 =

1

2
 . So in either 

case lim𝑛→∞ 𝜎𝑛 =
1

2
 , ∴  𝑠𝑛  ∉ 𝐶 𝑏𝑢𝑡 𝑠𝑛𝜖 𝑆 .  Therefore space of summable sequences is larger than thar of space 

of convergent sequences . 

Let )(xf be any function which is Lebesgue-measurable, and that f : [0, + ) ,R  and integrable in (0, x ) 

for any finite x  and which is bounded in some right hand neighbourhood of origin. Integrals of the form 


0

 are 

throughout to be taken as 


x

x 0

lim , 
x

0

being a Lebesgue integral. 

      Let .0k If, for ,0t  the integral  

                     dxxf
tx

x
kttgtg

k

k
k )(

)(
)()(

0

1

1
)(









      ,               (2.1) 

exists and if stg )(  as t , we say that function )(xf  is summable ),( kD  to the sum s  and we 

write ),()( kDsxf  as x . 

We note that, for any fixed ,0t  ,0k  it is necessary and sufficient for convergence of (2.1) that 




1

2

)(
dx

x

xf
, should converge .                                                                                  (2.2)   

The ),,( C transform of )(xf , which we denote by )(, x  is given by 

 )(xf  )0(           

 dyyfyyx
x

x

)()(
1

)1()(

)1(

0

1 














,  )1,0(            (2.3)      

If this exists for 0x  and )(, x  tends to a limit s as x , we say that )(xf  is summable 

),,( C to s , and we write ),,()( Csxf  . We also write                       

dxx
tx

x
kttU

k

k

k )(
)(

)(
0

,1

1

,, 









  ,                                             (2.4) 

 if this exists, and tends to a limit s  as t , we say that the function )(xf  is summable ),,)(,( CkD  

to s . 

When  0 , ),,)(,( CkD   and ),)(,( CkD  denote the same method. Here we give some Gehrings 

generalized Tauberian theorems. 

Theorem 2.1: Suppose that 0 ≤ 𝛼 ≤ 1 and that 𝑓(𝑥) is summable (𝐴, 𝛼) to s, then 𝑓 𝑥  is (𝐶, 𝛼, 𝛽) convergent 

to s if and only if the function  𝑓 𝑥 ,  𝜕𝛼 ,𝛽 (𝑥)  is (𝐶, 𝛼, 𝛽) convergent to 0.  

Theorem 2.2: Suppose that 0 ≤ 𝛼 ≤ 1 and that 𝑓(𝑥) is (𝐶, 𝛼, 𝛽) convergent. If the  function 𝑥 𝜕𝛼 ,𝛽 (𝑥) is 

(𝐶, 𝛼, 𝛽) convergent to 0,then 𝑓(𝑥) is summable (𝐶, 𝑘, 𝛼) to its sum for every 𝑘 > −1.  
 

III. Now we shall prove the following theorem 
Theorem 3.1: Suppose that 0 ≤ 𝛼 ≤ 1 and that 𝑓(𝑥) is summable (𝐴, 𝛼) to s. Then for 𝑟 ≥ −1, 𝑓 𝑥 is 

summable (𝐶, 𝑟, 𝛼) to s if and only if the function 
𝑓(𝑥)

𝜕𝛼 ,𝛽 (𝑥)
 is (𝐶, 𝛼, 𝛽) to 0.  

Proof : Necessary Condition: If 𝑟 = −1,the theorem immediate follows from the summability of (𝐶, −1, 𝛼). If 

𝑟 > −1, then by consistency theorem for (𝐶, 𝑟, 𝛼) summability ( Gehring [3,theorem 4.2.1]) it follows that both 

the functions 𝑓 𝑥  and  𝜕𝛼 ,𝛽 (𝑥) are (𝐶, 𝛼, 𝛽) convergent to s. By Hardy [1, Equation (6.1.6)], 𝑆𝑟
𝑛 = 𝑆𝑟+1  

𝑛 +
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1

𝑟+1
 

𝑓(𝑥)

 𝜕𝛼 ,𝛽 (𝑥)
, and the result follows since a linear combination of functions summable (𝐶, 𝑘, 𝛼) to itself. The 

sufficient conditions to prove the theorem are : 

If 𝑟 > −1, it may be shown as in Sz𝑎𝑠𝑧  [ 4 (1) ] , that  
1

𝑦+1
  𝜕𝛼 ,𝛽 (𝑦)

∞

0
 (1 −

1

𝑦+1
)𝑛  𝑑𝑦 =

𝑟+1

𝑦
  1 −

𝑢

𝑦
 

𝑟𝑦

0
 𝜕𝛼 ,𝛽  𝑢 𝑑𝑢          (3.1) 

Where
 
  𝜕𝛼 ,𝛽  𝑢 =  𝑓 𝑢  , )0(           

 = dyyfyyx
x

x

)()(
1

)1()(

)1(

0

1 














,  )1,0(    . 

Case (a) : 𝛼 = 0, 𝑟 > −1  is obvious. 

Case (b) : 0 ≤ 𝛼 ≤ 1, 𝑟 > −1 , putting  

𝑔 𝑦 =
1

𝑦+1
  𝜕𝛼 ,𝛽 (𝑦)

∞

0
(1 −

1

𝑦+1
)𝑛  𝑑𝑦  . 

We get from (3.1) that 𝑔 𝑦 =  𝑟 + 1   𝜕𝛼 ,𝛽  𝑣𝑦 
1

0
 1 − 𝑓 𝑣  

𝑛
 𝑑𝑣,   

Where  𝜕𝛼 ,𝛽 (𝑢) now has bounded (𝐶, 𝛼, 𝛽)- variation over  0, ∞ . Let  

𝑉  =       𝜕𝛼 ,𝛽  𝑦𝑟 −  𝜕𝛼 ,𝛽  𝑦𝑟−1  
1
𝛼

𝑁

1

 

𝛼

 

                                               

 = (𝑟 + 1)     (1 − 𝑓 𝑣 )  𝜕𝛼 ,𝛽  𝑣𝑦𝑣 − 
1

0
  𝜕𝛼 ,𝛽 (𝑣𝑦𝑣−1)

1

𝛼
𝑁

1
 
𝛼

  . Then by theorem 201 of [5],  we have 

𝑉 ≤  𝑟 + 1 𝑀  (1 − 𝑓 𝑣 )𝑟1

0
 𝑑𝑣   = M. . 

Where 𝑀 = 𝑉𝛼   𝜕𝛼 ,𝛽  𝑥 : 0 ≤ 𝑥 ≤ ∞ . Thus  𝜕𝛼 ,𝛽 (𝑦) has bounded (𝐶, 𝛼, 𝛽)- variation over  0, ∞ . It is readily 

seen from Minkowski’s inequality that the sum of two (𝐶, 𝛼, 𝛽) convergent sequences is also (𝐶, 𝛼, 𝛽) 

convergent and we therefore deduce that f(x) is (𝐶, 𝛼, 𝛽) convergent to s. 

Case (c ) r=-1,when 𝛼 = 0,the result reduces to Tauber’s original theorem; when 0 ≤ 𝛼 ≤ 1 it follows from 

above theorem . For 𝛼 = 1, the result was proved by Hyslop [2] . 

 

Theorem 3.2 : Let 𝛼 >  𝛾 ≥ 0, 𝛽 > −1  , and suppose that a(x) is summable (𝐶, 𝛾, 𝛽) to s and that 

 
𝜕𝛾 ,𝛽 (𝑥)

𝑥2

∞

1
  𝑑𝑥  converges . Then a(x) is summable  𝐷, 𝑘 (𝐶, 𝛼, 𝛽) to s . We first prove this theorem under 

unreasonable definition (2.2). However ,if the result holds with (2.2), then it must also hold under the definition 

of (2.3). This follows from the following  Lemmas. 

Lemma 3.1: Let 1,1  p . Suppose that ),0()( xLxf  for finite 0x .Suppose that )(xf

p
C  ,, ,according to the definition (2.3).  

Define                 












Txfor

Txforxf
xf

0

)(
)(                                   (3.2) 

Let )(, y



 denote the expression corresponding to )(, y but with )(xf replaced by )(xf


. 

     Then                  


 dyy
dy

d
y

p

p )(,

0

1

 .                                           (3.3) 

Thus )(xf


is summable 
p

C  ,, under the definition (2.3). 
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Lemma 3.2: Let the hypothesis be as in Lemma 3.1,and define )(xf as above. Let 

0and1,0  k .Then  
p

CkD ),,)(,(  summability of  )(xf  and 






 

)(xf are 

equivalent. 

Proof of Lemma 3.1: We are given that , for some T>0,                                  

                          


 dxx
dx

d
x

p

T

p )(,

1

                                           (3.3) 

But since, if (3.3) holds for given T, it holds for any greater T, it must hold for all sufficiently large T. Now by 

standard properties  of  fractional integrals, and since  1 ,we have 

                            
 duufuuT

T

)()(
0

2 
,                                                (3.4)   

Since (3.3) holds, this will follow from Minkowski’s inequality if we prove that                                                           















 dxxx
dx

d
x

p

T

p )()( ,,
1

                                               (3.5) 

Now , it follows at once from the definition that, for ,Tx   




)()( ,, xx 

dyyfyyx
x

dyyfyyx
x

TT

)()(
1

)1()(

)1(
)()(

1

)1()(

)1(

0

1

0

1 





 


























                                      

If 2 , then for Tx  , we have 
22 )()(    yTyx , so that  













)()( ,, xx
dx

d
 dyyfyyx

x

x
T

)()(
)(

)1()(

)1(

0

2 




















 

                                               =
 x

.Const
              by (3.4).   

Proof of Lemma 3.2: We use notations as in Lemma 3.1, and write further )(,, yUk  for the expression 

corresponding to )(,, yUk  but with )(xf replaced by )(xf


. 
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                       We know that for any fixed 0,1,0,0  ky   convergence of     

dxx
yx

x
kyyU

x

k

k

k )(
)(

)( ,

0

1

1

,,  


  



, is equivalent to the convergence of  
 

1

2

, )(
dx

x

x

.Then the conclusion will follow from Minkowski’s inequality, if we show that    

  


 dyyUyU
dy

d
y

p

kk

p )()( ,,,,

1

1

 ,                                     (3.6) 

where we take (3.6) as including the assertion that the integral defined by )()( ,,,, yUyU kk    

converges for all 0y . For large  y ,we have 

 )()( ,, yy  dxxfxxy
y

T

)()(
1

)1()(

)1(

0

1 














           (3.7) 

 Hence the convergence of  dxxxx
yx

x
ky

x

k

k

)()()(
)(

,,,

0

1

1

 
 



, follows at once by a 

result due to ( [2] ) . Now (3.6) is equivalent to  

  










p

k

k
p dxxxkyx

yx

x
cdyy )()()(

)(
,,

0

2

1

1

1

 .      (3.8)                   

Let 0T  be any sufficiently large constant. Then (3.8) will follow from Minkowski’s inequality, if we show 

that 
  

 





p
T

k

k
p dxxxkyx

yx

x
cdyy )()()(

)(
,,

0

2

1

1

1
0

 . (3.9)  

                     

  










p

T

k

k
p dxxxkyx

yx

x
cdyy )()()(

)(
,,2

1

1

1

0

 .   (3.10)    
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By (3.9), we have 

 
p

T

k

k
p dxxxkyx

yx

x
cdyy )()()(

)(
,,

0

2

1

1

1
0

 
 





 

                                             =   ).1()1(
1

OyO pkp 


  
Hence (3.9) follows . 

By (3.7), the expression on the left of (3.10) does not exceed a constant. Thus  

 
p

T

k

k
p dxxxkyx

yx

x
cdyy )()()(

)(
,,2

1

1

1

0

 










 

p

T

p dxxyxdyyo 12

1

1 )()1(

0





  


                            (3.11) 

By an obvious change of variables the expression (3.11) is equal to 

p

y

p dtyttdyyo 12

1

1 )()1( 



 


.)1( CCo  The result follows. 

Proof of Theorem 3.2 : We divide the proof into the following cases . 

Case  I .     
,
Case II .    

,
Case III .     

Here we observe that Case I and II follow from case III, with the aid of Theorem 3.1 . 

For, if ,  Choose any ,'   summability 
p

C  ,, implies summability 
p

C  ,, '
by Theorem 3.1, 

and it follows from Case III, that this implies 
p

CkD ),,)(,(  . Hence it is sufficient to consider the case III 

only. 

Proof of Case III : Since ),,()( Csxf  implies that ),,()( ' Csxf  for o '
, there is no 

loss of generality in considering the Case kk , is a positive integer. 

We have , dxxkyx
yx

x
CyU

dy

d

T

k

k

k )()(
)(

)( ,2

1

,,

0

 


 






                                               (3.12) 
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Now, by definition  

  )(, xp  .)()(
1

)1)((

)1(
,

0

1 dttttx
yp

x

p

p 









 

   

Putting p=1 and ,we see that   )(,1 x .)(
)1(

,

0

1
dttt

x

x









 

             (3.13)                                                      

We also write  )(, xR  .
)(

2

,
dt

t

t

x





 

It is clear that, whenever dx
x

x
2

,

1

)(



 converges, )(, xR  is defined for x >0, and that 0)(, xR  as 

x . It follows immediately from (3.13) that  

  )(,1 x dttdRtt
x

x

)(
)1(

,

2

0

1 




 

 


  

        )( 1xo and hence that, for  1p ,           )(,1 x )( 1xo                                             (3.14)                                                                           

             Integrating   (3.14)  by parts k times,we deduce with the help of (3.13) that  

.)(
)(

)()1()(
2

1

,

0

,, dxkyx
yx

x

dx

d
xxCyU

dy

d
k

k

k

k

k

kk

k






































                   (3.15) 

It is verified that  expression in (3.16) is 








 



1

1

)( k

k

yx

x
o



.                                                                    (3.16)                                                                                                                                              

Let ),( yxR .)(
)( 2

1

0

dtkyt
yt

t

dx

d
t

k

kx

k

k
k











 








 

In fact, for fixed 0k , we have uniformly in ,0,0  yx   

),( yxR 








 1)(
0

k

k

yx

x
  .                                                                                                                 (3.17) 

This may be proved by induction on k , if 0k ,we have  
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),( yxR dtkyt
yt

t
t

k

kx











 




 )(
)( 2

1

0




 = 
 

,
1


k

k

yx

x
 

hence the result is evident. Suppose  that ,1k and assume the  result true  for .1k Integrating by parts ,we 

have 

 
   

 
  .),(

2

1

1

1

0

1

2

1

1

1

dtkyt
yt

t

t
tkkyx

yx

x

dx

d
xyxR

k

k

k

kx

k

k

k

k

k
k



















































   

the first term is of required order by (3.17) (with k replaced by k-1), and the second by induction hypothesis. 

Now integrating (3.16) by parts, we have 

)(,, yU
dy

d
k   = dxx

dx

d
yxR k 








 



 )(),( ,

0

   =  .)(),( ,

0

dxx
dx

d
yxR 












  

Since the integrated term tends to 0 as )(, x is bounded and .0),(  xasyxR  

Using (3.17) and putting ytx  , we see that the expression in curly brackets  

                        
y

C
dt

t

t

y

C
dx

yx

x
C

x

k

kx

k

k





  







0

1

1

0

1

1

)1()(
, 

Again using (3.18) , the inner integral  
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on putting  txy  , the expression on the right of (3.19) is equal to  
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(Since the integral converges) . Hence the result follows. 
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