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Abstract: we have studied the numerical solutions for FitzHugh-Nagumo equation (FHN) using Finite 

Difference Methods (FDM) including explicit method, implicit (Crank-Nicholson) method, fully implicit method, 

Exponential method. A Comparison was made among all the methods by solving two numerical examples with 

different time steps.  
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I. Introduction 
We can classify PDEs in hyperbolic, parabolic and elliptic equations. Hyperbolic PDEs usually 

describe phenomena in which features propagate in preferred directions, while keeping its strength (like 

supersonic flow). Elliptic PDEs usually describe phenomena in which features propagate in all directions, while 

decaying in strength (like subsonic flow). Parabolic PDEs are just a limit case of hyperbolic PDEs.The two 

types of physical problems (i.e., equilibrium and propagation problems) are discussed [1]. 

To solve differential equations numerically we can replace the derivatives in the equation with finite 
difference approximations on a discredited domain. This results in a number of algebraic equations that can be 

solved one at a time (explicit methods) or simultaneously (implicit methods) to obtain values of the dependent 

function corresponding to values of the independent function in the discredited domain [2].  

 

II. Indentations and EQUATIONS 
2.1 Mathematical model:  

The general form of FitzHugh- Nagumo Equation (FHN) is:  

                                                 (1) 

with the initial condition  

 

and the boundary conditions  

 
Where  0<a<1  is an arbitrary constant. It is a nonlinear equation proposed by Hodgkin and Huxley [3], it is the 
most widely accepted mathematical description of the excitation and propagation of nerve impulses [4]. 

The FitzHugh- Nagumo system of equations has been derived by both Fitzhugh and Nagumo [5, 6]. It 

is an important nonlinear reaction-diffusion equation used in physics circuit, biology and the area of population 

genetics as mathematical models [4]. 

Neuronal dynamics and stability of the differential equations described have been solved in wide 

aspects, beginning with Hodgkin and Huxley (1952), FitzHugh (1961) and Nagumo et al . (1962). Mackey and 

Nechaeva (1995). Zhang et al . (2010), finiahing with Tanabe and Pakdaman (2001) and Hasegawa (2003, 

2004). Hasegawa solves the dynamics of the Fitzhugh-Nagumo model of neuron ensembles with time-delayed 

couplings among neurons, noises and stochastic. Tanabe considers the solutions by numerical calculations for 

single Hodgkin-Huxley neurons. Zhang studies the traveling wave fronts in synaptic coupled neuronal networks 

more from the mathematical point of view [7].  In 1950 Hodgkin and Huxley developed a system of non-linear 

partial differential equations while studying a giant axon of a squid to show the action potential of the nerve 
axon. The Hodgkin-Huxley model is too difficult to solve analytically, so in 1961 FitzHugh and Nagumo 

created a simplified version. This simplified equation contains two variables opposed to the four variables of the 

Hodgkin-Huxley model. The FitzHugh-Nagumo equations show the qualitative solution to the nerve action 

impulse model [8]. 

 

2.2 The derivation of the explicit method for solving Fitz Hugh-Nagumo equation 

In this method we use forward difference at time  and a second-order central difference for the space 

derivative at position  which was devoted by the unknown function  at  depending on the known 

http://en.wikipedia.org/wiki/Forward_difference
http://en.wikipedia.org/wiki/Central_difference
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function , ,  at  and  at . Assuming the rectangle  

is subdivided into  by  rectangle with sides  and   

      Start at the bottom row, where  and the solution is   . A method for computing the 

approximations to  at grid points in successive rows for  

        we get: 

 

Let    Hence 

        (2) 

Equation (2) is the explicit difference equation to the FitzHugh-Nagumo equation. 

 

2.3  The derivation of the Semi Implicit (Crank-Nicholson) Method for solving Fitz Hugh-Nagumo 

equation 

        This method was developed by John Crank and Phyllis Nicolson in 1947, and is based on numerical 

approximation for solution. They replaced  by the mean of its finite difference presentation on the  and 

 time rows  

 
After rearrangement of the above equation, we get: 

     (3) 

        Equation (3) represents the semi implicit difference approximation for FitzHugh-Nagumo equation, where 

the left side of equation (3) contains three unknown values , while the right side contains 

three known values  for . 

        Hence, equation (3) forms a tridaigonal linear system:  Which can be solved by either direct 

methods or by iteration methods. 

 

2.4  The derivation of the Fully Implicit Method for solving FitzHugh-Nagumo equation 

In this method, we compute the approximations to  at grid points in successive rows 

for  which gives: 

              (4)       

    (5) 

Equation (5) represents the fully implicit difference approximation for FitzHugh-Nagumo equation, where the 

left side of equation (5) contains three unknown values  and the right side known value 

is . 

 

2.5 The derivation of the Exponential Method for solving FitzHugh-Nagumo equation  
        The exponential finite-difference method that we applied to solve FitzHugh Nagumo equation (1) was 

originally developed by Bhattachary [9] and used to solve one dimensional heat conduction in a solid slab [10]. 

It is also used to solve the Korteweg-de Vriesequation [11, 12]. 

       We assume that  denotes any continuous differential function. Multiplying eq. (1) by the derivation of 

 leads to the following equation  

  Thus 

   (6) 

Using the usual forward difference replacement to  obtains the finite difference representation of equation (6) 

as: 

 This implies that  

Hence 

    (7) 
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Assume let  and  in (7), the exponential finite difference scheme becomes 

 
taking the exponential to both sides of the equation 

  
Hence: 

  (8) 

we get 

        (9) 

 

III. Figures and Tables 
3.1 Numerical Examples 

We solved the following examples numerically to illustrate the efficiency of the presented methods  

 

Example 1 [4]: We take the FitzHugh-Nagumo equation (1): 

 

 

with the initial condition 

 

We take   and the exact solution is  

where the wave speed  

The boundary conditions are given by  

 

                                        
Figure 1: Exact Solution (0<t<0.05 and 0<x<1)          Figure 2: EFDM Solution (0<t<0.05 and 0<x<1) 

 

                          
Figure 3: Implicit Solution (0<t<0.05 and 0<x<1)     Figure 4: Fully implicit Solution (0<t<0.05 and 0<x<1) 
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Figure 5: Exponential Solution (0<t<0.05 and 0<x<1) 

  

 

Example 2 [12]:  
We take the FitzHugh-Nagumo equation (1): 

 With the initial condition  

We take                    

The boundary conditions is given by           

 

                                   
Figure 6: Space-time graph of Explicit solution to           Figure 7: Space-time graph of Implicit solution to 

0<t<0.05 and 0<x<1                                                                                      0<t<0.05 and 0<x<1 

 

                                     
Figure 8: Space-time graph of  Fully implicit  solution to Figure 9: Space-time graph of Exponential solution to 

0<t<0.05 and 0<x<1                                                                  0<t<0.05 and 0<x<1 
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Table 1: Comparison between Exact, EFDM, IFDM, FIFDM, ExpFDM and HPM solution at  with 
 

 

Table 2: Comparison between EFDM, IFDM, FIFDM, ExpFDM and HPM solution at  with  

 

 

 

 

 

 

 

 
 

 

 

 

IV. Conclusion 
It has shown that from example 1and 2, fully implicit finite differences  is more accurate than explicit, 

implicit and exponential methods as shown in Table (1-2).  
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ExpFDM FIFDM IFDM EFDM Exact  
0.5000000000000 0.500000000000000 0.500000000000000 0.500000000000000 0.500000000000000 0 

0.535293428119228 0.535296806800963 0.535296809648766 0.535296812285343 0.535296531107333 0.2 

0.570231138974464 0.570243533429389 0.570243541326771 0.570243549975995 0.570243014550411 0.4 

0.604478178693358 0.604503826644968 0.604503841969949 0.604503859341221 0.604503152468914 0.6 

0.637726627036934 0.637767620189916 0.637767636334362 0.637767653424034 0.637767014612595 0.8 

0.669761549326657 0.669761549326657 0.669761549326657 0.669761549326657 0.669761549326657 1 

    L.S.E 

ExpFDM FIFDM IFDM EFDM  
0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0 

0.208969251602732 0.210709491135952 0.208734652210643 0.206683256306262 0.1 

0.397617845709237 0.401256584364793 0.397500259239577 0.393590714655683 0.2 

0.547497952055164 0.552728694567887 0.547579653401799 0.542226995901918 0.3 

0.643804796088075 0.650018860773807 0.643996145116134 0.637725414955059 0.4 

0.676999376470964 0.683537561660151 0.677218857584887 0.670648111000106 0.5 

0.643804796088075 0.650018860773806 0.643996145116134 0.637725414955059 0.6 

0.547497952055164 0.552728694567887 0.547579653401799 0.542226995901918 0.7 

0.397617845709237 0.401256584364793 0.397500259239577 0.393590714655683 0.8 

0.208969251602732 0.210709491135952 0.208734652210643 0.206683256306262 0.9 

0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 1 
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