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Abstract: Techniques that improve on existing assumptions of normality and largeness of sample size would be 

of paramount interest as non normality increases with increasing complexity in data gathering techniques. An 

option of transformation could be either to carry out a normal transformation so as to improve on the normality 

of the data in other for the pearson and associated t-test to be applicable or to linearize the distribution so as to 

strengthen the linear relationship that exist between the data, the simulation study carried out on various 

transformations and sample sizes showed that the square root transformation fared consistently better than the 

other transformations and the sample size of n=80 proved to be the sample size that optimizes the pearson test.  
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I. Introduction 
Bivariate data are data in which two variables are measured on an individual. When interest is in 

measuring the strength of association between such bivariate data, the correlation coefficient may be used. The 

most common correlation coefficient, called the Pearson product-moment correlation coefficient, measures the 

strength of the linear relation between variables.   Pearson Correlation is employed to ratio and interval ratio 

data and most importantly when data is large or normally distributed. When the data is not normal and the 

sample size is small, the nonparametric Spearman rank correlation is useful.   

 Little work has been done for cases when the distribution of the data is relatively small or unknown. A 

test of the significance of Pearson's r may inflate Type I error rates and reduce power of the test when data are 

non-normally distributed. Several alternatives to the Pearson correlation are provided by literature, The relative 

performance and robustness of these alternatives has however been unclear (Bishara, and Hittner, 2012). 

A comparison of the Pearson correlation to other approaches of testing significance of correlation, such 

as data transformation approaches and Spearman's rank-order correlation, suggests that the sampling distribution 

of Pearson’s r was insensitive to the effects of non-normality when testing the hypothesis that ρ = 0 (Duncan & 

Layard, 1973; Zeller & Levine (1974)).  

Havlicek and Peterson (1977) extended these studies by examining the effects of non-normality and 

variations in scales of measurement on the sampling distribution of r, and accompanying Type I error rates, 

when testing ρ = 0. Their results indicated the robustness of the Pearson’s r  to non-normality, non-equal interval 

measurement, and the combination of non-normality and non-equal interval measurement. 

Edgell and Noon (1984) further expanded these studies by examining a variety of mixed and very non-

normal distributions. They found that Pearson’s r was robust to nearly all non-normal and mixed-normal 

conditions when testing ρ = 0 at a nominal alpha of .05. The exceptions occurred with the very small sample 

size of n = 5, in which Type I error rates were slightly inflated for all distributions. Type I error was also inflated 

when one or both variables were extremely non-normal, such as with Cauchy distributions Zimmerman, Zumbo, 

& Williams (2003) for exceptions. 

Although nonlinear transformations in many cases can induce normality and enhance statistical power, 

there are some distribution types for which optimal normalizing transformations are difficult to find.  

As non-normality seems to be growing more common with complexity of data gathering techniques, 

techniques for improving on existing assumptions of normality and largeness of sample size would be of 

paramount interest. An option of transformation could be either to carry out a normal transformation so as to 

improve on the normality of the data in other for the pearson and associated t-test to be applicable or to linearize 

the distribution so as to strengthen the linear relationship that exist between the data. As Data transformation 

essentially entails the application of a mathematical function to change the measurement scale of a variable that 

optimizes the linear correlation between the data. The function is applied to each point in a data set — that is, 

each data point yi is replaced with the transformed value 

This study therefore seeks to determine the effect of transformation and sample size on the on the Pearson t-test. 
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II. Methodology 
The study determines the effect of transformations of discrete distributions on the Pearson t-test.  The 

distributions are: binomial, Poisson, geometric, hypergeometric, and negative binomial. The required 

transformations are: inverse, square-root, log, arcsine and the Box-Cox.  The tests were conducted for various 

sample sizes of 10, 20, 80 and 160. For each distribution and  sample size, 20 variables were simulated and 

paired in twos without replacement resulting in
20

C2 (190) correlation tests. Five types of transformation (Box-

Cox. inverse, square root, arcsine, and log) were carried out on each data set. After each test the proportion of 

significant (2-tailed test of ρ=0) were obtained. The statistical tools and techniques to be used are stated below. 

 

1. Pearson Moment Correlation: The general Pearson moment correlation is given by  
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2. Pearson - t-test. Oyeka (1990) gave the Pearson product-moment correlation test as            

                tr
∗  =

r n−2

 1−r2
                        (3) 

Where the test is: H0: ρ = 0. Under H0, tr
∗follows the Student’s t-distribution with (n−2) degrees of freedom, 

denoted t(n-2) 

 

3. Inverse Transformation: The inverse transformation is given Eze, (2002) as 

X
X

1
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          (5) 

 

4. Box-Cox Transformation: the Box-Cox transformation used as given by Osborne,(2010  ) is:     

   XI  =
1

 x
, if λ ≠ 0 

     log x , if λ = 0         (6) 

Where λ if the parameter (mean of data) 

 

5. Arcsine Transformation: The arcsine transformation effectively stretches the tails of data.  The arcsine 

transform used is given by Eze (2002): 

XI = sin−1
 xi         (7) 

 

8. Log Transformation: Eze (2002) gave the log transformation as XI=log10
x                          

(9) 

 

9. Square Root Transformation:  the square root transformation as given by Eze (2002) is             

   XI= √x    

III. Discussion Of Findings 
Table 1: Pearson T-Test: Proportion Significant At α =0.05 

DISTRIBUTION SAMPLE RAW INVERSE SQUAREROOT LOG ARCSINE BOXCOX 

BINOMIAL 10 0.021053 0.026316 0.031579 0.031579 0.036842 0.042105 

  20 0.047368 0.052632 0.047368 0.047368 0.052632 0.052632 

  80 0.068421 0.063158 0.068421 0.063158 0.063158 0.047368 

  160 0.052632 0.057895 0.073684 0.052632 0.047368 0.057895 

POISSON DIST 10 0.057895 0.057895 0.063158 0.063158 0.063158 0.052632 

  20 0.052632 0.057895 0.052632 0.057895 0.057895 0.063158 

  80 0.073684 0.068421 0.078947 0.073684 0.073684 0.073684 

  160 0.084211 0.068421 0.068421 0.068421 0.068421 0.063158 

GEOMETRIC 10 0.063158 0.057895 0.057895 0.047368 0.047368 0.057895 

  20 0.042105 0.036842 0.036842 0.036842 0.036842 0.031579 

  80 0.047368 0.068421 0.047368 0.047368 0.047368 0.042105 

  160 0.031579 0.036842 0.052632 0.036842 0.036842 0.031579 

NEGATIVE BINOMIAL 10 0.047368 0.073684 0.052632 0.068421 0.068421 0.078947 

  20 0.042105 0.047368 0.047368 0.047368 0.047368 0.047368 

  80 0.036842 0.042105 0.042105 0.042105 0.042105 0.047368 

  160 0.031579 0.026316 0.031579 0.031579 0.031579 0.031579 

HYPERGEOMETRIC 10 0.010526 0.047368 0.021053 0.021053 0.015789 0.036842 

  20 0.042105 0.042105 0.052632 0.057895 0.057895 0.063158 

  80 0.047368 0.063158 0.052632 0.063158 0.063158 0.042105 

  160 0.042105 0.042105 0.042105 0.031579 0.042105 0.026316 
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IV. Interpretation Of Result 
Extracting the result for the Pearson test will give a true picture of the effects of transformations, 

distributions and sample size on Pearson t-test. 

For binomial, the boxcox transformation has the highest proportion of 0.042105  at n=10 and the least 

proportion with the raw data. At n=20, the inverse, arcsine, and boxcox have the highest proportion at n=80, the 

square root transformation gave the highest proportion at n=160 and also doubled as the highest proportion for 

the binomial distribution. 

In the case of Poisson, when n=10, the square root, logarithm and arcsine has the highest proportion of 

significance of 0.063158 and equal proportions of of 0.052632 in others. At n=20, the boxcox has the highest 

proportion as the least proportions were observed in the raw data and square root transformation. The square 

root has the highest proportion of 0.078947 at n=80 and least proportion of 0.0684 in the inverse transformation. 

The raw data at n=80 for Poisson has the highest proportion for both n=80 and in all Poisson cases. 

The geometric distribution has the highest proportions at n=10&20 in the raw data; n=80 in inverse 

transformation and at n=160 in squareroot transformation. Sample size of n=80 and the inverse transformation 

was observed to have the highest proportion for the geometric distribution. 

The boxcox transformation was observed to have the highest proportion of 0.078947 at n=10 and has 

the same proportion of 0.047368 in all transformation at n=20 except for the raw data. Similarly, n=160 had 

equal proportion of 0.031579 except for the raw data. Hence the boxcox transformation was observed to have 

the highest proportion across all sample sizes and transformation. 

For hypergeometric, the inverse transformation has the highest proportion of 0.047368 at r=10 and the 

least proportion with raw data. At n=20, the boxcox has the highest proportion of 0.063158 and least proportion 

of 0.042105 with the raw data and inverse transformation. Hence the inverse and logarithmic transformation at 

n=80 recorded the highest proportion for the hypergeometric distribution. 

In summary, the sample size of n=80 consistently performed better or at least equally with the rest 

sample sizes, and the squareroot transformation was observed to be consistently higher in proportion except for 

a very few instances. The proportion of significance was consistently higher in proportion when compared to 

other distribution. 

 

V. Conclusion 
In conclusion, the sample size of n=80 proved to be the sample size that optimizes the Pearson t-test 

since the proportion of significance at n=80 was virtually the highest in all cases followed by n=160 then n=20 

The inverse transformation were greater than or equal to in performance when compared to the raw data except 

for n=80. Also the square root transformation did consistently better than the raw data and inverse 

transformation except for the case of geometric at n=80, negative binomial at n=10 and hyper geometric at 

n=10. Further comparison showed that the square root transformation fared consistently better than the raw data, 

inverse, logarithmic, arcsine and the Boxcox transformation except for few cases. The logarithmic 

transformation performed equally with the arcsine except for some few other cases.  

 

VI. Recommendation For Further Study 
The study was strictly on bivariate discrete distributions. It is therefore recommended that further 

research be carried out determine how these transformations and correlation tests will fare in marginal normal 

distributions (e.g. normal-binomial, normal-Poisson etc.) and marginal non-normal discrete distributions (as 

binomial-Poisson, Poisson-geometric etc.) as well as determine the effect of these transformations on the power 

of the bivariate correlation test. Better effort should be made to determine the actual value of λ for the boxcox 

transformation, also increasing the number of iterations may have helped in clearly breaking the ties in the 

observed proportions in this study. 
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