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I.  Introduction

From the view of differential geometry, a straight line is a geometric curve with the cur- vature k(s) =
0. A plane curve is a family of geometric curves with torsion t (s) = 0. Helix (circular helix) is a geometric curve
with non-vanishing constant curvature k and non-vanishing constant torsion t [3]. A curve of constant slope or
general helix is defined by the property that the tangent makes a constant angle with a fixed straight line called
the axis of the general helix. A necessary and sufficient condition that a curve be a general
helix is that the function

7(s)

K(s) (1)

is constant along the curve, where x and 7 denote the curvature and the torsion, respec-
tively [13]. Izumiya and Takeuchi [8] introduced the concept of slant helir by saying that
the normal lines make a constant angle with a fixed straight line. They characterize a slant

an =

helix if and only if the geodesic curvature of the principal image of the principal normal

indicatrix

o= ) 2)

k(s) (1 + O’% (s)) v

is a constant function. Ali [2], defined a new special curve called it a k—slant helir and

proved that the straight lines, plane curves, general helices, slant helices and slant-slant
helices are a special subclasses from k-slant helix. He characterized that: the curve is a
k-slant helices if and only if the geodesic curvature of the spherical image of ;. indicatrix
of the curve ¥

r
0y_1(8)
o = o7 3)
n‘.(s)\/l + Jé(s)\/l + a%(s] (1 + 02_1(5])
. . [ In.(s) i ; 7(s) ~
is a constant function, where 1,1 = ﬁ tol(s) = U(s), oo(s) = n-fi] and k €

{0,1,2,...}.

The surface pairs especially ruled surface pairs have an important applications in
the study of design problems in spatial mechanisms and physics, kinematics and computer
aided design (CAD) [11, 12]. So, these surfaces are one of the most important topics of the
surface theory. Ruled surfaces are surfaces which are generated by moving a straight line
continuously in the space and are one of the most important topics of differential geometry
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[14]. Recently, Ali et al [1] studied a family of ruled surfaces generated by a linear combination
of Frenet frame (tangent, normal and binormal) vectors with fixed components in Euclidean 3-
space at the points (s, 0).

El-Sabbagh and Ali [5] introduced a new definition of the associated curves called it family of similar
curves with variable transformation. After this, Onder [9] used the definition of similar curvesto definea
family of similar ruled surfaces with variable transformation. In this paper, we introduce a new (more
general and comprehensive) definition of a similar ruled surfaces with variable transformation in
Euclidean 3-space. Also, we prove that: a family of k-slant helices is a family of similar curves with
variable transformations, where

k € {0,1,2,..}.
I1.  Basic Conceptsfor surfaces
Let E? be a 3-dimensional Euclidean space provided with the metric given by
(,) = d;f% + d;c% + d;z.'g,

where (x1, 92, x3) is a rectangular coordinate system of E3. Let ¢» = ¢(s) : I c R — E?
be an arbitrary curve of arc-length parameter s. Let {T(s),N(s), B(s)} be the moving
Frenet frame along v, then the Frenet formulae is given by [13]

T'(s) 0 Kk(s) 0 T(s)
N's) | = | =s(s) 0 (o) | | NGs) | (1)
B'(s) 0 —7(s) 0 B(s)

where the functions k(s) and 7(s) are the curvature and the torsion of the curve #(s),
respectively.

Let §: ¥ = U(xq,a9) C E? be a regular surface. Then, the standard unit normal vector
field U on the surface ¥ can be defined by:

. Uy A WDy
[Ty AP
aw ow
where V41 = — and W9 = —, 11 = s and 12 = v.
O Ao
Now, we will write some basic concepts and important properties of ruled surfaces as the
following:
Definition 2.1. [15] A ruled surface in E* is a surface which contains at least one-
parameter family of straight lines. Thus a ruled surface has a parametric representation
as

U(s,v) =1(s) +vL(s), (6)

where ©(s) is called the base curve and L(s) is a unit space curve called director curve
which represents the direction of straight line v — (s) + v L(s) which is called ruling.
If the direction of L is constant, then the ruled surface is said to be cylindrical surface,
otherwise is said to be non-cylindrical surface.

The distribution parameter of the ruled surface (6) is given by

['EI'EF{S):L(S)SL!(S}] [T,L,III]

WETer T UIET v
where T = ¢/(s) = Z—L j—L = L'(s) = ||IL(s)|| m and m is a unit vector in the direction
s _ds

L’. Because, the vector L is unit vector, then L’ is perpendicular to L and then (L, m) = 0.
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The ruled surface is developable if and only if the distribution parameter vanishes and it is
minimal if and only if its mean curvature vanishes [6].

The unit normal vector of the ruled surface (6)

Us,v) = L E0LIAL (8)
VIl - L

along a ruling s = sy approaches a limiting direction as v infinitely decreases. This

direction is called the asymptotic normal (central tangent) direction and is defined by:

a= v_l:llloc U(sp,v) = =L Am. (9)

The point at which the unit normal of ¥ is perpendicular to a is called the striction point
(or central point) C and the locus of the central points of all rulings is called striction
curve. The parametrization of the striction curve on the ruled surface (6) is given by

(T(s), m(s))

Y(sy) = ¢(s) — IO L(s) =(s) + q(s) L(s), (10)
where
. (T'm)
1=~ (1)

is called strictional distance and s. is the arclength of the striction curve. In the case of
q(s) = 0, the base curve is a striction curve.

!

L]
along the striction curve. Then the orthonormal system {C; L, m, a} is called Frenet frame
of the ruled surfaces W, where C is the central points of ruling of the ruled surface and L,

is called central normal which is the surface normal

The unit vector m =a AL =

m and a are unit vectors of ruling, central normal and central tangent, respectively.

For the derivatives of the vectors of Frenet frame {C;L,m,a} of ruled surface ¥ with
respect to the arclength parameter s., of striction curve, we have

L'(sy) 0 & 0 L(sy)
m'(sy) = & 0 7 m(s,) |, (12)
a'(sy) 0 -7 0 a(sy)
__dsy __ dsa : : :
where & = T T= g sl and s, are arclengths of the spherical curves circumscribed
Sy S

by the bound vectors L and a, respectively. It is worth noting that when & # 0 and 7 = 0,
the ruled surface is called conoid [7].

On the other hand, the unit normal vector field (8) can be written in the form:

TAL—U%R

V) = T —odal

(13)
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Therefore, we have

TAL TAL

U(s,0) = TAL] = TG R (14)
_U“ﬁ)ZHNAL+w£TAm_<TJ3PWNJ¢+ﬁﬂTJm}U@ﬁ3 )

TAL| T AL|?

Then, the geodesic curvature, the normal curvature and the geodesic torsion which asso-
ciate the curve ¥/(s) on the ruled surface ¥ can be written as follows:

( % (N, L)

kg = [U(s,0),%4(s).4"(s)] = m,
- sy — — (B, L)
= (U(s,0),0"(s)) = ~T T (16)

% (T,L) (B,L) + s'L(T, a)
IT AL|2

75 = [U(s,0),U’(5,0),¢'(s)] =

Furthermore, we can write the following important definitions (results):

Definition 2.2. [4] For a curve w(s) lying on a ruled surface, the following statements are well-known:
(1): The base curve w(s) of the ruled surface ¥ is a geodesic curve if and only if the geodesic curvature xg

vanishes.
(2): The base curve y(s) of the ruled surface W is an asymptotic line if and only if the normal curvature xn

vanishes.
(3): The base curve w(s) of the ruled surface ¥ is a principal line if and only if the geodesic torsion zg

vanishes.
On the other hand, let us consider the Darboux frame {T,V, U} instead of the Frenet

frame {T, N, B} on the curve ¢, where U is the normal in the surface restricted to v and
V =UAT. Then we have

T (s) 0 Kg kn T(s)
Viis) | =| =6y 0 1 Vis) |, (17)
U'(s) —kp —T5 0 Uls)

where k,, 1s the normal curvature of the surface in the direction of the tangent vector T;
kg and 7, are the geodesic torsion and the geodesic curvature of 2. respectively [10]. The
geodesic torsion and the geodesic curvature of ¢/ are given by:

kg = (IT'. V) = 6 (N.V) = & cos[y],

kn = (T, U) = k (N, U) = —& sin[yp], (18)

7, = (V,U) = [UU,T] =7+ ¢.

where ¢ is the angle between the vectors V and N. That is V and U are the rotation of
N and B of the curve y in the normal plane. Then
V =cos[4]N +sin[¢] B, U=—sin[¢] N +cos[¢#] B. (19)

I1l.  Similar curves and similar ruled surfaces
Recently, a new definition of associated curves was given by El-Sabbagh and Ali [5]. They
called these new curves as similar curves with variable transformation and defined it as follows:
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Definition 3.1. [5] Let v and W be two reqular curves in E® parameterized by arclengths sq
and sg with curvatures ko and kg, torsion To and 13 and Frenet frames { Ty, N, B} and
{T3,Ng,Bg}. The curves 1 and v are called similar curves with variable transformation
dsg

To )\g if and only if the tangent vectors are the same for the two curves i.e.,
So

Ty = T,. (20)

The relation "similar” between curves is an equivalence relation, so that all curves satis-
fying this condition are called a family of similar curves with variable transformation.

Also, new special curves were given by Ali [2] who called them by k-slant helices and
defined it as follows:

Definition 3.2. [2] Let v» = 1(s) be a natural representation of a unit speed regular curve
in Fuclidean 3-space with Frenet apparatus {x, 7, T, N, B}. A curve v is called a k-slant
helixz if the unit vector

. Vg (s)
Vetl = T 70 (21)
= g ]
makes a constant angle with a fired direction, where g = ¥ (s) and ¥ = ”z‘;:tg .

El-Sabbagh and Ali [5] proved that:

(1): A family of straight lines is a family of similar curves with variable transformations. (2): A
family of plane curves is a family of similar curves with variable transformations. (3): A family of
general helices is a family of similar curves with variable transformations. (4): A family of slant helices
is a family of similar curves with variable transformations.

Now, we can introduce a general theorem for a family of similar curves with variable
transformation within the following important theorem:

Theorem 3.3. The family of k-slant helices with fixed angle ¢ between the axis of k-slant helix and the unit vector
wi+1 forms a family of similar curves with variable transforma-

tion, where k € {0,1,2,...}.

Proof: We will use the Principal of Mathematical Induction in this proof.

(1): El-Sabbagh and Ali [5] proved that: A family of 0-slant helices (general helices) is a family
of similar curves with variable transformations. Then the theorem is true when k = 0.

(2): Let a family of k-slant helices with fixed angle ¢ between the axis of k-slant helix and the
unit vector wx+1 forms a family of similar curves with variable transformations.

Then assume that

Pry1(sg) = Yrs1(sa)
where 1 = ig(s,) and ) = 1,3'0(53) are two k-slant helices with arclength parameters s,
and sg, respectively. Differentiating the above equation with respect to sg, we have

= _ diby1(55) _ dYnyi(sa) dse dsq .
Vri1(sp) = ds; — s, dsp Yrt1(5a) dss (22)
and
".-' X dsﬁ ¢
| Yrs1(s8) 1=l Yhiq(sa) |l To5 (23)

Here, "prime” and "dot” refer the differentiation with respect to s, and sg, respectively.
From (22) and (23), we obtain the following:

Yeia(sg)  _ Yrga(sa)

| Pesa(sp) | I ¥Phra(sa) |

Drra(sp) = = Yi+2(Sa)-

This proves that the family of (k + 1)-slant helices forms a family of similar curves with
variable transformations.
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Hence the proof is complete.

On the other hand, Onder [9] used the definition of similar curves with variable transfor-
mations and defined new associated ruled surfaces. He called these new ruled surfaces as similar
ruled surfaces with variable transformations and defined it as follows:

Definition 3.4. [9] Let ¥(sq,Vv) and tI(sﬁ,v) be two regular ruled surfaces in g3 given by the parameterizations
U(sq,v) = d(sa) +vLalsa),  U(spv) = d(s5) +vLa(ss), (24)

respectively, where 1 and ¥ are the striction curves of U and U, respectively. ¥ and ¥
are called similar ruled surfaces with variable transformation if the direction wvectors are
the same for the two surfaces i.e., Lg = Ly = L.

Remark 3.5. From Onder definition above of similar ruled surface, we show that Onder definition of the similar
ruled surfaces is a special case because he takes the three conditions to define the similar ruled surfaces as the
following:

(1): The striction curve and the base curve on the ruled surface ' are the same.

(2): The striction curve and the base curve on the ruled surface Warethesame.
(3): The rulings on the similar ruled surfaces ¥ and ¥ arethesame.

The first and the second conditions are one condition on the surface ¥ and another con- dition for the surface (I{

respectively, i.e., not a relation between them (similar surfaces W and . So that, the third condition and the fourth
condition have weakened his definition.
This remark is what invited us to think in a more general and comprehensive definition of similar ruled surfaces
by omitting the first and the second conditions.

The general suggestion definition of similar ruled surfaces can be introduced as the fol-
lowing:

Definition 3.6. Let ¥(s,,v) and li‘(sg, v) be two reqular ruled surfaces in E? given by
U(sq,v) = ¥(sa) +vLalsa),  U(sgv) =v(sg) +vLs(sp), (25)

where ¥ and 1; are the base curves of the surfaces ¥ and U, respectively and the quantities
sa and sg are arclength parameters of the base curves 1(s,) and z:(sdj respectively. The
ruled surfaces U and T are called similar ruled surfaces with variable transformation if
the two curves v and 1; are similar curves with variable transformation and the direction
vectors for the two surfaces are the same i.e., i)l‘j =L, =L.

The relation "similar” between ruled surfaces is an equivalence relation, so that all similar
ruled surfaces are called a family of similar ruled surfaces with variable transformation.

Now, we can give some new characterizations and more general theorems of similar ruled
surfaces as the following:

Theorem 3.7. Let V(s,,v) and \i‘(s_..g, v) be two reqular ruled surfaces in E® given by

U(sa,v) = ¥(sa) +vL,  U(sg,v) =(sg) +vL (26)
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with the same rulings. Then the following statements are equivalent:

~ ds;
(1): The surfaces ¥ and WV are similar ruled surfaces with variables transformation 2% _

Sa

AL
(2): The base curves on the ruled surfaces VU and ¥ are similar curves with variables
transformation %% _ Aﬁ

Sa
(3): The tangents of the base curves on the ruled surfaces ¥ and U are the same, i.e.,
Tg=T.=T.
(4): The position vector of the base curve on the ruled surface U takes the form:

U(sg) = /TQ,\sta. (27)

(5): The normals of the base curves on the ruled surfaces U and U are the same, i.e.,
Ng = No = N and the following condition is satisfied:

A= 22 (28)

a kg

(6): The binormals of the base curves on the ruled surfaces ¥ and U are the same, i.e.,
Bs =B, =B.

(7): The position vector of the ruled surfaces U takes the form:

\i‘{s_.g,t:) = /TO. Agdsa + v L. (29)

Proof. (1) & (2). It is clear from the definition 3.4 of similar ruled surfaces.

(2) < (3). Itis clear from the definition 3.4 of similar curves.

(2) < (4). The proof results from the theorem 4.2 in EI-Sabbagh and Ali [5].

(2) < (5). The proof results from the theorem 4.3 in EI-Sabbagh and Ali [5].

(2) < (6). The proof results from the theorem 4.4 in EI-Sabbagh and Ali [5].

(4) < (7).1t is clear from the definition 3.6 of similar ruled surfaces and from the definition

3.4 of similar curves.

Therefore the proof is completed.
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Theorem 3.8. Let U(sq,v) and ¥(sg,v) be two regular similar ruled surfaces with variable
dsg

transformation N )\g in B3 given by
SC(
U(5as0) = ¥(sa) + vLalsa),  Ulsp,v) = Blss) + v Ls(ss). (30)

Then the following relations are satisfied:
(1): kg = A Ka.

(2): T8 = A3 Ta-

(3): Ug (55,0) = Uq (54.0).

(4): Vg = V.
(5): s1, = A% sp, .
(6): Mg = my,.
(7): ag =
(8): ity = XS Ky,
(9): Fin = NG Fon.
(10): 7y = A3 7.
(11): 43 = A2 da-
(12): dg = A d,.

(13): ¢35 = pa-

3

Proof. (1): The proof of this part is resulting directly from (39).
(2): Differentiating the equation ES = B, with respect to sz one gets

dsa

—13Ng = —7a Na dss’

which leads to the relation in part (2).
(3): The proof is clear from (14).
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(4): Vs =UgATsg=U, AT, = V.

(5) and (6): Differentiating the equation L = L, with respect to sg one gets

: ' dsg
IL(ss) [l mg = [[L'(sa) || mq sy’

or

$1, M3 = 57, My, ﬂ

' dsg
which leads to the relation in part (5) and part (6).
(7): ag = ]:I._q Amg = Ly Amy = a,.

(8): From equation (16), we have

P Kg (ﬁgiﬁ} _ )\g Ko (Nn:La>
?ITsALsl  [TaA Ll

= )\g Kg.
(9): From equation (16), we have

Kg (f’)g,fxﬁ} B _)\g Hea {ch: La) .

o .

bp = —"—=———7=" = = K.
IT5 A Lg|| ITa ALql g
(10): From equation (16), we have
- _ KB (T3, Lg) (Bg. L) + s (T, ag)
? ITs A Lg|?
g Ky (Tr:n Lr:r> (Ba-s La—} + A% s'L {Tc:; ao—> \a
- [Ta AL S
(11): From equation (11), we have
Tz mga T, m, ,
%ZJ'-&=JH fzﬁ%-
ILg] g ILall
(12): From equation (11), we have
T N Ll N f s s ¥ f
dy — Lo Lgmg] [T &L L | _\pa,
| 1Ls|| AG ILG
(13): From equation (18), we have
g = — tan ™ l@] = —tan"! [E] = a-
' Rg Rg
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From the above discussion, it is easy to write the following:

Theorem 3.9. Let U and ¥ be two regular similar ruled surfaces with variable transfor-
mation Aﬁ in E® given by (30). Then the followings hold:

(1): There are many invariant vectors, for example: T, N, B, L, m, a, U(s), V, T Aa
and so on.

d

(2): There are many invariant scalars, for erample: z, Td, %, [ rkds, [ ES, (N, m},
K

Kn
—, @ and so on.
kg
Theorem 3.10. Let ¥ and ¥ be two reqular similar ruled surfaces with variable transfor-
mation A5 in E3 given by (30). Then the quantities:

oy = Tie—1(5) o ke {0,1.2,..)
/2
r(s)\/ 1+ a3(s) /1 + ai(s) ... (1 —+ o%_l(s))
are invariants.

Proof: We will use the Principal of Mathematical Induction in this proof.

.
(1): From the above theorem, we have og = — invariant. Then the theorem is true when

K
E=0.

(2): Let the quantities og, o1,..., o are invariants. Then we have 5o(s3) = o0(sa),....0k(s5) =
or(s,) and

Gr(sg)

ka(sa)\/1+33(sm\/1+ 53(s8) . (1+52(s9)) "
o} (5a) A3

fa(5a) AF VT F 03 (a)v/ T+ 07 (sa) - (1 + oR(sa))

Hence the proof is complete.

Try1(s5) =

373 = Ok+1(8a).

From the theorem 3.10 and the parts 8, 9, 10 .11, 12 and 5 in theorem 3.8, respectively,
we can write the following lemma:

Lemma 3.11. Let U and U be two regular similar ruled surfaces with variable transfor-
mation /\E in E® given by (30). Then the following relations are satisfied:

(1): The base curve ¢ of surface U is a k-slant heliz if and only if the base curve i of
surface U is a k-slant helirz also.

(2): The base curve ¢ of surface U is a geodesic curve if and only if the base curve b of
surface ¥ is a geodesic curve too.

(3): The base curve ip of surface ¥ is an asymptotic line if and only if the base curve P
of surface W is an asymptotic line.

(4): The base curve © of surface V is a principal line if and only if the base curve t:' of
surface ¥ is a principal line.

(5): The striction curve and the base curve are the same on the surface ¥ f and only if
The striction curve and the base curve are the same on the surface W.

(6): The surface V¥ is developable if and only if the the surface U is developable.
(7): The surface ¥V is cylindrical if and only if the the surface U is cylindrical.
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I. Similar striction curves with variable transformation
In this section we show the following important theorem:
Theorem 4.1. Let V(s,,v) and ‘i‘(slg,*v) be two reqular Tuled surfaces in E® given by
(30) with the Frenet frames {C,:;L,,m,,a,} and {C5;Ls,m5,a5}, respectively, v and

5 are the striction curves on the ruled surfaces U and U with arclength parameters Sy
dsL., dsa,

, Ty = , 5L, Sa, are the arclength of the spherical
ds, ds, v

and ss, respectively, k., =

o f.'f.'stI
i A .
' a!I‘,rS;T '

curves circumscribed by the bound vector Ly, and a., of the ruled surface ¥ and &

dsa,

T = , SLs, Sa; are the arclength of the spherical curves circumscribed by the bound
vector Ly and a5 of the ruled surface U. Then the following statements are equivalent:
(1): The rulings of the ruled surfaces ¥ and U are the same, i.c., L; =L, =L.

(2): The curves ¢(sy) = [ L, ds, and 5(54) = [ L ds; are similar curves with variables
dS,;-

a5,

(3): The position vector of the curve ¢ on the ruled surfaces U takes the form:

transformation N} =

o= f L, \ ds,.

(4): The central normals on the ruled surfaces U and O are the same, i.e., m, =m; =m
and the following condition is satisfied:

X =

=l |§|

‘,;.
!

(5): The central tangents on the ruled surfaces U and U are the same, i.e., a3 = a, = a.

Proof. The proof is very easy and we will omit here.
Theorem 4.2. Let the rulings of the similar ruled surfaces ¥(s,,v) and @(sl.g,v) with

5 dsy . ,
variable transformation A, = a’i in E3 given by (30) be the same. Then the following
relations are satisfied: '

—).>:?.e
I
I

Ty
C L

Proof. The proof is similar to the proof of theorem 3.8.

Theorem 4.3. Let U and U be two reqular similar ruled surfaces in E® given by (30) and

(o ey ) Ksa)) [
f( ’?) y ( a) HL,(SQ)HQ L( n);
~ I (31)
3(s3) = Blsg) — LGB g )
| L(sg)l?
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be the striction curves on the ruled surfaces U and U respectively. Then the following
statements are equivalent:

(1): The striction curves on the ruled surfaces U and W are similar curves with variable
transformation.

(2): The striction curves and the base curves on the ruled surfaces ¥ and T are the same.
(2): The striction parameters on the ruled surfaces ¥ and ¥ vanish.

(4): The tangent vector T of the base curves on the ruled surfaces ¥ and U lies in the
cental ruling-central tangent plane (Lm-plane).

(5): The tangent vector T of the base curves are perpendicular to the central normal
wvector a on the ruled surfaces ¥ and ¥,

Proof. If the ruled surfaces ¥ and T are similar ruled surfaces with variable transforma-
tion, then the curves 1 and i are similar curves with variable transformation and L = L.
Therefore, it is easy to show that:

'i."—'l_"!(sct) =T,=T. L’(Sﬂ) = L!! (32)
U(sg) =Ts =T, L(sg) = sL".
- r ng . dSQ, . . - .
We refer s = d— and § = Je Then, from the above equations the striction distances
LSy S3

of the two similar surfaces are given by:
a(se) = (¥'(5a),L'(sa)) _ (T,L') _(T,m) (T,m)
(a3 - - - - ?
IL (sa) 1 1|2 L] SL

J [ (33)
d(sg) = (Blsp). Llss)) _ (DL _ (T, m)
IE(s) 112 7k o

Therefore, we get the relation between the strictianal distances as the following:
a(ss) = s"a(sa) = Al alsa). (34)
Then, the equations in (31) becomes:
vy=v—-qL, §=14—sqL. (35)

Now, by computing the tangent of the striction curves v and 7, we obtain:

dsq
Ty =7"(sy)=(T—-d'L —qs; m) T

: Vd (36)
Ty =4(s) = (T — (@) L—qsi?m) 2.
55
(1) = (4) : If the striction curves are similar curves, then T5; = T, which leads to the
following equation:
(51{. — si;) T = [(5’ q)’ sh — qs%] L+ spq (st sl — S:;,) m. (37)

Then, the tangent T must lie in the Lm-plane.
(4) = (5): The proof is very clear.
(5) = (3): The proof is very clear.
(3) = (2): The proof is very clear.
(2) = (1) : The proof is very clear.

Therefore, the proof of the theorem is completed.
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11. Applications
Now we give an example to illustrate the above results by considering two similar ruled
surfaces given by

U(sq,v) = (sa) +vB(sa),  ¥(sg,v) =(ss) +vBs(ss), (38)

with base curves which are circular helix and spherical general helix generated by the
binormal vectors. The natural representation of the circular helix is:

2 2
s = T (sin [™5]— cos [MS5] 28 -
U(sq) = 3 (s.ln { - } ,—cos [— ] — ) : (39)
where s, = s is the arclength of the circular helix, m = - > and n = cos[¢], and ¢
—n

is the constant angle between the tangent vector and the axis of the circular helix. The
curvature and torsion of this circular helix are k,(s) = 1 and 74(s) = m, respectively. The
Frenet vectors of this curve takes the form:

( n ms] . [ms
Ta(s) =— (cos [— ,sin {—} ,-m) ,

m n n

ms m s

Na(s) = (— sin [—} , cos [—} o) (10)

(s n

Ba(s) = n (—cos [%} ,—sin [?] %) .

On the other hand, the natural representation of a spherical general helix ¢) = (1:1 Py, -1,53)
is:

(- 1
V1= 2 (1+m?2) —m?

(c V1 —m?52 sint]| —nm3s cos[t]) :

1
m2 — 2 (1+ -mgj

o =

(c V1 —m232 cos[t] —nm3 Sjn[t]) : (41)

Y3 =mns,

[
where ¢ is an arbitrary constant, { = — arcsin[m §|, sg = § is the arclength of the spherical
n :

n . .

general helix, m = Vi and n = cos[®], and ¢ is the constant angle between the
—n

tangent vector and the axis of a spherical general helix. The curvature and the torsion of

this curve is kg(s) = and 75(5) =

V1 —m232 1—m2352

The two curves #(s) and /(s) are similar curves with variable transformations, then

_ds_.'a:c(:\/l—mgsg. (42)

_E_RB c

A i)

x
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Solving the above equation we have:

. - 1 -
s=" sin! [m 3] = §=—sin [E (43)
m m ¢
The Frenet vectors of the spherical general helix (41) take the form:
( Ts(s) = -~ (cos [5 sin~! [m §]] ,sin [E sin~ ! [m 5]] , m) \
m n n
Nj(s5) = (— sin [E sin~! [m 5]} ,Cos [E sin~! [m 5]] ‘0) . (44)
' n ' n ' '

Bs(3) = n (— cos E sin~! [m 51] —sin E sin~ [m g]} ; l) .

m
It is easy to show that Tg(5) = Tya(s), Ng(5) = Na(s) and Bg(s) = Ba(s) under the
transformation (43).

Now, we will begin to calculate all quantities in theorem 3.8 and check for all statements
as follows.

(1): rg(s) = Vﬁ: Ko = 1 and A = \/ﬁ Therefore the relation kg =
A Kq is satisfied.
(2) ne d Then the relati A2 7, is satisfied

1T = —== and 7, = m. en the relation 753 = A3 7, is satisfied.

V1 —m23?
T, N B, Tsg A Bg

(3): From (14) we have U, = —————— = —N_, and Ug = ————~— = —Nj.

: ) | Ta ABa || s Il T.,-j‘ A B_g I A

Then the relation Ug = U, is satisfied.

(4): Vo =Ua ATy = —Nu ATy =By and Vg = Uz ATg = —-NgATg=DBg. Then
the relation Vg = V,, is satisfied.

(5): s, = B ||= 7o and sp, =|| Bs ||=75. Then the relation $B, = Aj sp_ is satisfied.
(6): From the definition of the vector m, we have m, = N, and mg = Ng. Then the
relation mg = m,, is satisfied.

(7): From (9) we have a, = BoAm, = BoAN, = T, and ag = BgAmg = BgANg =
—T5. Then the relation ag = a,, is satisfied.

(8): kg =0 and Ky = 0. Then the relation &y, = A Ky is satisfied.

(9): kp = —1 and K, = ——— . Under the transformation (43), the relation

_ ) ) V1 —m? 52
Fop = )\g K, is satisfied.
me

vV1—m23%

(10): 7y = m and Ty, = Under the transformation (43), the relation 7, =
AG Tg is satisfied.

(11): g = 0 and g, = 0. Then the relation gz = )\ﬁ (e 18 satisfied.
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n? o [ms ms C|12ms
(12): d, = =—3 (.‘5111 [—} — cos [—D sin and
2m n i) mn
] 0
~ n* V1 — m? 352 C gt S I e
dg = ————5 | cos [— sin” " |m s ] — sin [— sin™ " |m s]}
' dem n - n :

(45)

n mn

— cos| F— sin![m 5]] — sin F’— sin![m 5]}

Under the transformation (43), the relation dg = )\i d, is satisfied.

(13): From the part (8) and part (9)) in this theorem, we have ¢35 = @a,.
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