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Abstract: The purpose of this paper is to study the optimality of circular neighbor balanced designs for total
effects when equal right and left neighbor effects are present in the model and the observation errors are
correlated according to first order circular stationary autoregressive process. Few results pertaining to the
optimality conditions under some specified conditions are provided and the efficiencies of circular neighbor
balanced designs relative to the optimal continuous block designs are also investigated. The efficiency of the
circular neighbor balanced designs is illustrated corresponding to the optimal continuous block designs.
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One major issue faced in the areas like agricultural trails and horticultural trails is that the treatment
applied in one plot shows its impact on the plot to which it was applied as well as on the plot which are
neighboring to it. Sometimes only one neighbor plot will undergo such neighboring effect. In few cases, plots
that are in the left side as well in the right side of the original plot receive the neighboring effect. For example,
in cereal crops or sunflowers, tall varieties may shade the plot on their North side and influence the response of
the plot. Sunflowers are traditionally very tall plants. When new, short-stalked varieties were introduced,
agricultural research stations wanted to do experiments to compare the new varieties with the old. Similarly, in
pesticides or fungicide experiment, part of the treatment may spread to the plot immediately downwind; so may
spores from untreated plots. In plants with roots, such as potatoes, varieties which germinate earlier will
establish their roots and take nutrients from adjoining plots on both sides if the crop is grown in linear ridges, or
on all sides if the crop is grown in a two dimensional area with no gaps. Similar effects are reported on oil seed
rape, on field beans, in anti feedants, in forestry, and in horticulture.The detailed discussion can be found in
most recent texts on the design of experiments, e.g., in Dey (1986), Pukelsheim(1993), Wu and Hamada (2000)
and Box, Hunter and Hunter (2005).

Under the linear models with the neighbor effects, many optimality results of block designs are
established for treatment and neighbor effects separately. Hedayat and Afsarinejad (1978), Cheng and Wu
(1980), Kunert (1984b) and Kushner (1997) for cross-over designs, Kunert (1984a) and AzaA3s, Bailey and
Monod(1993), Druilhet (1999) and Filipialk and Markiewicz(2005) were dealt with circular neighbor- balanced
designs.

Bailey and Druilhet (2004) pointed out that the effect of most importance is the sum of the direct effect
of the treatment and the neighbor effects of the same treatment that is the total effect. Furthermore, they also
showed that a circular neighbor-balanced design is universally optimal [in Kiefer's (1975) sense] for total effects
under linear models containing the neighbor effects at distance one among the class of all designs with no
treatment preceded by itself. Optimality of circular neighbor — balanced designs for total effects with
Autoregressive correlated observations was studied by Yun long Yu, MingYao Ai, and Shayuan He (2009).In
this paper we study the universal optimality of circular neighbor-balanced designs for total effects, but when the
observation errors are correlated according to a first-order circular autoregressive process under the assumption
that the left neighbor effects and left neighbor effects are equal.

In this paper, Section 2 deals with some definitions and preliminaries. Section 3 presents the main
results that circular neighbor- balanced designs are universally optimal under some conditions for the total
effects in linear models which incorporate equal two-sided neighbor effects when the observation errors are
correlated according to a first-order circular autoregressive process. In order to discuss the efficiency of circular
neighbor-balanced designs among all possible block designs with the same parameters, the optimal continuous
block designs are characterized in Section 4. Section 5 presents the efficiency of circular neighbor-balanced
designs with blocks of small size, based on the previous structure of optimal equivalence classes of sequences.

I.  Model and Definition
In many occasions, it is reasonable to believe that the neighbor effects of each treatment from the left
and the right should be the same i.e. A=p (Filipiak 2012, Wei Cheng 2014). By assuming this condition,
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Consider a set of circular block designs Q, . For a design d€ ., the two-sided Neighbor linear

effect additive model with equal right and left neighbor effects can be written in vector form as,

Y=L, u+Tyc+(Ly +R)A+(, ®1,)B+¢ ---- (D)

Where,
Y =(Y 30 Yies Yoo Yi) ', Y I8 the observation response on plot j of block i,
M is the general mean, T and Aare, respectively, the
t-dimensional vectors of the direct effects, left-Neighbor effects and right-Neighboreffects of the t
treatments,
T,, Lyand R are the corresponding incidence matrices,
B is the b-dimensional vector of the block effects, and
£ is the vector of random errors,
1n denotesan n-dimensionalvector of ones
Thesymbol ®denotes the Kro- Necker product.

vV

YV VVV Y

Observations in different blocks are statistically independent while the observations within each block

have the following stationary, first-order, autoregressive covariance structure:
li-]l k—fi—j|
+
cov(Y,,Y;) =0’ LEA 'Dk
1+p

wherei and j index the positions of the observations in the block and i denotes the block. Because the
observations in different blocks are assumed to be independent, C is block-diagonal and so is its inverse. The ij-
th element of the inverse of the covariance matrix for any block is given by

1+ o* 1+ p®,ifi = |
21 +zp1 —pif [i—jl=lork —=1...2)
o d=p)L=p) 0, otherwise

Also, assume that the errors in each block are correlated according toa first-order circular auto
regressive process, denoted by AR(1,C) as in the case of Kunert and Martin (1987), D. Richard Cutler (1990)

and Ai M, Yu'Y, He S (2009). The AR(1,C) process can be represented in the recursive form &=p&;_,+n;with
| p|<1wherethe nj’s are uncorrelated noises with E(ni)=0 and Var (ni)=02, and E(g;)=0.Then E(g) =

0,Cov (g) = cszlb ®S and hence, we can write the inverse of the variance — covariance matrix as
follows(Cutler 1990)

ST=@1+p)°l,—p(H+H) —(3)
1+p? —p 0 .. 0 —p |
—p 1+p° —-p .. O 0
= .. —e(8)
0 0 0 .. 1+p> —p
L -p 0 0 .. -p 1l+p?]

Where H is a k x k matrix and is given by,
0 00 . 01

100 .00
H=0 1 0 0 0O

000010
Note that when p=0, the structure of errors is reduced to the popular i.i.d. case.
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Lemma 1

Let C,[cx] be the information matrix for some effect o based on a design d. Assume that a design
d” e Dhas its information matrix completely symmetric,then d* is universally optimal for the effect o over a
class D of designs if and onlyif tr (C ,.[a] =max,_, tr{C, [a]}

Let gdenote the total effects of the t treatments in the model(1), that is ¢=t+p. Thus, we can
obtain the following universal optimality results of CNBD’s for the total effects.

Theorem 1
For3<k<t.aCNBD (2)inQ, is universally optimal for the total effects in the model (1) among all the

designs with no treatment Neighbor of itself when0<p<1.,andamongallthedesignswithnotreatment Neighbor
ofitself at distance 1or2when—1<p<0.

Proof:
For a design,d € Q(t'b’k) , the information matrix Cgy[a] for the effect a=[t’,A’]” in the model (1) can be
expressed as,

Cylad =T L) (1, ®S ) pr! . (1,®5 *)(T,.L,)
:(Cdij)lSI,jSZ,

Where the submatrices (Cdij )1<i, j <2, have the forms

C, =T,(1,®S)T, )
Co. =To(L,®S)L+R) ©
c, =L(,®s), -

And

- , 1-p)% .
S =@+ o)1, —p( +H)- S 0,

Since S is a cyclic matrix, so HSH = H SH =S . For a circular design d, Ly, = HT,,,1<u <b. It implies
that Cy =Cy .
For a CNBD (2) d*, we have

. . . . - bk, ..
T (l,®H)T,. =T, (I, ®H )T, =T (I, ®H H)T,. =—— (11 - 1,)

t(t—1)

Then,

Cy =Teu(l, ®S)T,.

. 1-p)%_. , . , .
=1+ pA)T (1, ® 1T, —%Td*(lb ®LL)T,. —pT,. (1, ®H)T,. — pT . (I, ®H T,

bk . (1-p)% bk, bk(k-21) 2abk
( )_I - K T|t+ t( 1) (tt t)] t( _1)(t1t )
[(1+p Yok b(d-p)*(t- k) , 2pbk 1 [b(k DA- p) 2 pbk 1]
= t t(t—1) t(t ) t(t—1) t(t T
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Now Consider,
Cdl*2 =le*(|b ®S)(Ld* + Rd*)

=T, (I, ®S)L. +T,.(I, ®S)R,.

. 1— p)? _. . . .
=@+ p")T. (1, ® H)T,. _ kp) T (1, ®LLT,. — T (I, ®HH)T . — pT . (1, ® )T,

- o @7 - - - -
+ L+ pA)T. (1, ®HT,. — T (1, ®LL)T, — T, (I, @ HHOT, — T, (1, ® 1T,

. 1— p0)? _. . . .
:(1+p2)Td*(Ib®H)Td*—2( kp) T. (I, ®L,L)T . 20T . (I, ® L )T. — pT . (I, ® HH)T

-
—pT (L, ®HH)T,. + @+ p*)T..(1, ®H T,

Hence all Cd* (11, j<2) are completely symmetric.
i
Rewrite ¢ = K’a with K =1, ® |,.1t is obvious that K’K=2I,. By Lemma and equation, for any

design d €Qp ),

Clg1= 7K C,lalk

= %(Cdu +Cy, +Cy,, +Cy,)

2(1-

1 . z_, . .
:Z[z(1+p2)Td(|b ® Ik)Td _Tp)Td(lb ®1k1k)Td _ZpTd(Ib ® H)Td -

41~

2
2pTy (1, ® H )T, +2(l+p2)Td(|b ®H)T, _Tp)Td(lb ®L1)T, -

4T, (1, ®1)T, —2pT, (1, ® HH)T, = 2T, (I, ® H H)T, +2(1+ p*)T, (1, ® H )T,

1 - 6(Ll-p)° . : ) .
=127, @17, - X 2T, @18 T, <20 7 - AT 0, @ HIT, g

+2(1+ p? —p)Td' (1, ®H ')Td - ZpTd' (I, ® HH)T, — 2pTd' (1, ®H 'H ')Td
Since. C_. (1< i, j <2) are completely symmetric C. =C_. . So C_.[a]commutes with
i 12 21

Priy = %(121'2 ®1,).Then

1, 1
Cyldl=7 K CylalK =2(Cy, +Cy, +C, +C

» PG o)
And consequently Cd* [#] is also completely symmetric. Consider now (8). When -1<p<0, for a design
d in Q,,, with no treatment neighbor of itself at distance 1 or 2, the traces of T, (I, ® H)T,,
T,(1, ®H)T, T, (I, ® HH)T, , T, (I, ® H H )T, are all zero, and tr(T, (I, ® I, )T, ) is a constant.
so tr{C, [#]}depends only on tr T, (I, ®1,1 )T, . Moreover, a CNBD(2) is a balanced block design, so it
also minimize tr T, (1, ®1,1, )T, among all possible designs of the same size. Therefore tr{C, [¢#]}attains

the maximum. When 0 < p <1, the traces of both T, (I, ® HH)T,, T, (I, ® H H )T, must be non-
negative. However, for a CNBD(2) d*, they are all zero. So for a design with no treatment neighbor of
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Therefore tr{C, [¢]}attains the maximum. When0< p <1, the traces of both Ta (1, ® HH)T, ,
Ty (1, ®H H)T, must be non-negative. However, for a CNBD(2) d*, they are all zero. So for a design with

tr{C,.[¢1} = tr{C, [¢]}

no treatment neighbor of itself at distance 1, it still holds that - Hence the theorem

follows from the lemma 1.

3. Optimal continuous block designs

In this section we will be discussing the optimality of continuous block designs. The optimal designs
among all possible designs with the same parameters are characterized according to the method introduced by
Kushner (1997) and Bailey and Druilhet (2004).

For u=1, 2, .. b, let T, be the incidence matrix of the direct effects of the treatment in block u,
1<u<b.

Then Ty = (T, Taz,...Tap)’ is just the incidence matrix of the direct effects. For each u, define Lg,=H
Tau Ra=H Tqy. Thus, it is obvious that Le= (lb®H)T, and Re=(ls@H") Ta are exactly the incidence matrices of
the left-Neighbor effects and of the right-Neighboreffects.

Two sequencesoftreatmentsonablockareequivalentifonesequence can be obtained from the other by
relabeling the treatments and denote by s the equivalence class of the sequence | on the block u. Because
tr(C,,)are in variant under permutations of treatment labels, so the value tr(C,,) remains the same for any
sequence in the same equivalence class. Thus, we can define,

o(s)=tr (Cdu)% {2(1—,3)2 K+2(1+ p? —p)zt:mi—4p Zt:pi _Minf} ©)

i=1 i=1 k i=1

Where

% n;is the number of occurrences of treatment i in the sequence |,

% m; is the number of times treatment i is on the left-hand side of itself in the sequence |

%+ pjis the number of plots having treatmenti both on the left-hand side and on the right-hand side.
From, Ai M, Yu Y, He S (2009) we have the following propositions.

Proposition 1:
When k = 3 o 4, for any pe(-1,1), a CNBD (2) is universally
optimalforthetotaleffectsinthemodel (1)amongal Ipossibledesignswithequalsize.

Proposition2:
When k>5,v>2and vl = 0or 1in any optimal sequence.

Proposition 3

When 5 e (0.3819,1) for any positive integer k > 5, if kisodd, then the optimal sequence has the form
of  ‘a;3,3,8383  Ayp)d2) > While if Kiseven, thenthe optimal sequence has the form of
‘8,8, 3,8, " Apy21 31727 WHEreay ..., ag o) are distinct treatments.

PROOF:

t t
If z p; decreases by one unit, then Zmi decreases definitely by one unit, and

i=1 i=1
correspondingly c(s) will increase by 4p — 2(,02 — p+1). Also for the value p between 0.38191 and

1, the above increment takes the positive value. Thus from the Proposition 3 of Ai M, Yu Y, He S
(2009), we have the remainder proof of this theorem.

4. Optimal equivalence classes of sequences:

Using the above propositions now in this section we exhibit the optimal sequences of treatment for
some block size.

Let Ibe sequence in an equivalence class. Denote by N; and Ny, respectively, the setsoftreatments
appearing just once and at least twice in I. Then N=N;U Nis the set of distinct treatments in I. Let v =|Ny|,v, =
IN2Jandv = |NJ, where |N| denotes the cardinality of the set N.
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For illustration, under the condition of, —1 < p <the optimaltreatment sequences for the given
parameters {vy,v,} are listed together with the corresponding tr (Cq,) for k =6, 7, 8, ...11, respectively. Note
that the sequence for aCNBD (2) is also listed in the last row for the convenience of comparison.

Optimal equivalence classes of sequences when k=6
Table 1.0ptimal sequencesfor all possible pairs of {v,v;} for k=6

S.No | OPTIMAL SEQUENCE |v Vi tr (Cau)

1 aaabbb 2 0 1/2(5p>-6p+5)
2 abbbbb 2 1 1/2(p*-1)

3 aabbcc 3 0 1/3(p*-pt+1)

4 abbcce 3 0 1/2(5p>-6p+5)
5 abcdef 6 0 3/2(p*-2p+1)

Among the above sequences, the sequence “aabbec” is the optimal sequence by Proposition 3.
The below table represents all the optimal sequences for 6 <k < 11. Also Note that the below table
shows the optimal sequence and the last column lists the values tr(Cg,) of a CNBD (2) d.

g;;:k Optimal sequence c(s*) tr(Cau)

6 aabbcc 1/3(p°-pt1) 312 (p°2pt 1)
aabbbcce 1/7(27p>33p+27) )

! abbcedd 1/7(26p%-31p+26) 2p™2p*1)

8 aabbccdd 5p%-6p+5 5/2(p*2p+1)
aaabbbccce 6p>-9p+6

9 aabbceddd 1/9(15p2-11p+15) 3(p2-2p+1)
abbccddee 1/9(51p*-66p+51)
aabbbcccddd 1/10(71p*102p+71) 2

10 aabbccddee 7p%-9p+7 72(p2p*1)
aabbbcccddd 1/11(99p>144p+99)

11 aabbccddeee 1/11(89p*-123p+89) 4(p*2p+1)
abbccddeeff 1/11(84p*-113p+84)

5. Efficiency of CNBD (2) corresponding to optimal continuous designs:

Now let us discuss and calculate the efficiency of CNBD(2) corresponding to the optimal continuous
block design for various block size.

The optimal equivalence class of sequence s* is obtained by making use of Kunert and Martin (2000b).
i.e the optimal sequence is the one among all possible sequences, which maximizes c(s) in (3). It was shown in
Theorem 10 of Bailey and Druilhet (2004) that a designd+which has each sequence in sxequally often is
universally optimal among all possible designs with the same size. Since the values t r(Cy,) are invariant to any
block u for aCNBD (2), so we can define the efficiency of aCNBD (2) d relative to the optimal continuous block
design d=as
Eff(d) = tr(Ca) _ tr(Cau)

tr(Cq.)  c(sY)

The below tables show the calculations of tr(Cg,) and c(s*).

Efficiency of CNBD (2) when the block size k=6
Table 10 Efficiency of CNBD (2) when k=6

S.No \Y c(S*) tr(Cdu) Eff(d)
1 -1 9.00 6.00 0.6667
2 -0.8 7.32 4.86 0.6639
3 -0.6 5.88 3.84 0.6531
4 -0.4 4.68 2.94 0.6282
5 -0.2 3.72 2.16 0.5806
6 0 3.00 1.50 0.5000
7 0.2 2.52 0.96 0.3810
8 0.4 2.28 0.54 0.2368
9 0.6 2.28 0.24 0.1053
10 0.8 2.52 0.06 0.0238
11 1 3.00 0.00 0.0000

From the above table it is evident that the efficiency of a CNBD (2) approaches to 0 as p tends to 1 for k= 6.
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The Efficiency of CNBD (2) d for pbelongs to (-1, 1) are given in the below table for different
blocksize.

Block Size
p 6 7 8 9 10 11
1 0.6667 | 0.6747 | 0.6250 | 0.6429 | 0.6087 | 0.6263

-0.8 0.6639 0.6726 0.6231 | 0.6412 0.6071 0.6248
-0.6 0.6531 0.6642 0.6154 | 0.6344 0.6005 0.6188
04 0.6282 0.6447 0.5976 | 0.6185 0.5853 0.6046
-0.2 0.5806 0.6065 0.5625 | 0.5870 0.5551 0.5762
0 0.5000 0.5385 0.5000 | 0.5294 0.5000 0.5238
0.2 0.3810 0.4299 0.4000 | 0.4337 0.4088 0.4348
0.4 0.2368 0.2838 0.2647 | 0.2967 0.2788 0.3032
0.6 0.1053 0.1337 0.1250 | 0.1452 0.1359 0.1516
0.8 0.0238 0.0314 0.0294 | 0.0350 0.0327 0.0372
1 0.0000 0.0000 0.0000 | 0.0000 0.0000 0.0000

The following figure shows the relationship between the efficiency Eff(d) of a CNBD (2) d and v for
block size, 6< k <11. It can be seen that the efficiency of a CNBD (2) approaches to 0 as p tends to 1 for any k.

Fig.1Efficiency of CNBD (2)
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I1.  Summary And Conclusion

In this research paper, the optimality and efficiency of circular Neighbor balanced design when the
neighbor effects from left side and right side are equal have been investigated.We also have constructed the
efficiency of circular neighbor balanced designs among all possible block designs with the same parameters. For
different block size, the optimal continuous blocks are derived, and the efficiencies of circular neighbor
balanced designs with blocks of small size k <11 are illustrated. Also the value of the correlation co — efficient

From Fig 1, we could see that the efficiency of CNBD (2) approaches 1 as ptends to -1 for block sizes
k= 6,...,11. or the efficiency is getting decreased and tends to zero as the p value increases to one. So we can
conclude that the Circular neighbor balanced design is an efficient design.

Thus we can conclude that CNBD (2) is always a good choice when the adjacent observation errors
have strong negative correlation when the left and right neighbor effects are equal.
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