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Abstract: This paper proposes a family of single step, fifth and fourth order continuous hybrid linear multistep 

methods (CHLMM). These methods are used to integrate the initial value problems of first order ordinary 

differential equations. The methods are obtained from the continuous schemes derived via interpolation and 

collocation procedure. The schemes are consistent, zero stable, convergent and accurate. Taylor’s series 

approximation was adapted as simultaneous numerical integrators over non-overlapping intervals values and 

for the implementation of the methods. These methods compared favorably with some existing methods because 

they are efficient and simple in terms of derivation and implementation.  
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I. Introduction 
This paper considers the development of numerical methods for solving first order ordinary differential equation 

with initial value problems of the form: 

( , )y f x y   0 0( ) ,y x y          (1) 

f is a real valued function and continuously differentiable within an interval and satisfies Lipchitz’s 

condition which makes the existence and the uniqueness of the solution (1) to be guaranteed. Ordinary 

differential equations are important tools in solving real-life problems. Various natural phenomena are modelled 

using odes which are applied to many problems in physics, engineering, biology and social sciences. Thus, 

much attention have been given to ordinary differential equations in recent years. 

Collocation Method is widely considered as a way of generating numerical solution to ordinary 

differential equation of the form (1). The usual way of solving (1) is to use a one-step explicit method such as 

Runge-Kutta of the same order of accuracy until enough values have been generated for multistep method to 

take off. The problem with linear multistep method is that they need help getting started which is encountered in 

single step methods [1]. The help required in getting started is called a predictor. These starting values are called 

Predictors for (1) while the equation (1) is called corrector; hence the procedure is called predictor-corrector 

method. The predictors are explicit while the correctors are implicit methods. The general multistep method of 

the form (1) includes Simpson method, Adam-Bashforth method and Adam- Moulton’s methods. All the Adam-

Moulton’s methods are regarded as constant coefficient method but in this paper, linear multistep methods with 

continuous variable coefficient are generated. Such methods are often called continuous collocation methods. 

Collocation is a projection method for solving integral and differential equations in which the approximate 

solution is determined from the condition that the equation must be stratified at certain given points. It involves 

the determination of an approximate solution in a set of functions called the basis function. 

Several researchers have developed collocation methods of the form (1) for solving initial value problems, they 

are [1], [2], [3], [4], [5], [6], [7], and [8]. [9], propose a double hybrid continuous method to solve second order 

ordinary differential equation. [4], specifically stated the advantages of continuous schemes over the discrete 

ones, they are; 

i. Provision of better global error estimate 

ii. Usefulness for further analytical work in a simpler form than the discrete ones. 

iii. Provision of approximation at all interior points. 

 

Another added advantage of continuous scheme is that infinite number of schemes could emerge from one 

continuous scheme [8]. 

Our interest in this paper is to develop some continuous multistep hybrid methods with k = 1 and 

collocate at all the grids and off grids points. We use Taylor’s series approximation to supply the starting values 

and in the implementation of the methods developed. 
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II. The Methods Developed 
We consider a power series approximation of the form: 

 
 

0

i c

j

j

j

y x a x
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           (2) 

i and c  represents the number of the interpolation and collocation points respectively and the first derivative of 

(2) is 
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Putting (3) into (1) we obtain the differential system 

 
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          (4) 

 

2.1 Derivation of the First Scheme 

Collocating (4) at ,n ix x 
1 1 3

0, , , ,1
4 2 4

i    and interpolating (2) at 
1

,
2

n ix x i   gives a system of non-

linear equation of the form: 

AX U            (5) 

where 

 0 1 2 3 4 5 6, , , , , ,
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A a a a a a a a
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Using Gaussian elimination for ja s  in (5) gives a continuous method in the form: 

       
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where
1

2
 

1 3 1
0, , 1

4 4 2


 
  

 
,  n nf f x h     

Then, using the transformation nx x
t

h


  in (6) we have a continuous scheme and the coefficients as follows: 
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     (7) 

Evaluating (7) at 1t   (i.e 1nx x  ) gives 

1 1 1 3 1 1

2 4 2 4
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360

n n n
n n n n

h
y y f f f f f 

   

 
      

 
     (8)

  

With order 5,p   Error constant 
7

1

368640
c  

 
 

2.2 Derivation of the Second Scheme 

Collocating (4) at ,n ix x 
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Using Gaussian elimination method has been done for the first Scheme gives a continuous method in the form 

(6): 
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Evaluating (9) at 1t   (i.e 1nx x  ) gives 

1 3 1 3 1
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With order 4,p   Error constant 
5

7 3.59 10c   
 

 

III. Analysis of the Basic Properties of Method 
We verify the accuracy of the methods, examine their basic properties which include Local Truncation Error and 

order of accuracy, consistency and zero stability. 

 

3.1 Local Truncation Error and Order of Accuracy:   

Definition 1: According to [2], Linear Multistep Method (8) and (10) are said to be of order p , if p  is the 

largest positive integer for which 0 1 2 1 0p pc c c c c        but 2 0.pc   Expanding (8) and 

(10) by Taylor’s series and comparing coefficients of the expansion equating it to zero, we get the ic  values for 

the method: 

0 1 2 6c c c c     

Hence, the two methods are of  

order 5p  with principal truncation error 
2

1

368640
pc    and order 4p  with principal truncation 

error 
5

2 3.59 10pc 

   
 

 

3.2 Consistency 

For (8) and (10) to be consistent, the following criteria must be met. 

Condition 1: 1p   

Condition 2: 

0

0
k

j

j




  where  0 2j    

Condition 3:   0r   when 1r   

Condition 4:    2!r r    when 1r   

Where   and   are  the  first  and  second  characteristic  polynomials of  (5) and (7), applying  these  

conditions, the methods was found to be consistent. 

 

3.3 Zero Stability 

Definition 2: A linear multistep method is said to be zero-stable if no root  r  has modulus greater than one 

(that is, if all roots of  r lie in or on the unit circle). A numerical solution to class of system (1) is stable if 
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the difference between the numerical and the theoretical solutions can be made as small as possible [2]. Hence, 

(8) and (10) were found to be zero-stable since none of their roots has modulus greater than one. 

 

3.4 Convergence   
Definition 3: a linear multistep method of the form (8) and (10) is convergent if it is consistent and zero stable. 

Hence the necessary and sufficient conditions for the methods to be convergent is that it must both consistent 

and zero-stable. Since, these conditions are satisfied, then the methods (8) and (10) are said to be convergent. 

 

IV. Implementation of the Method 
Methods (8) and (10) are tested on some first order differential equations problems. 

 

Problem 1  

,y x y    0 0,0 1y x   0.1h 
    

 

 

Exact Solution 

  1xy x x e    

 

Problem 2: 

  sin ,y t t    0 1, 0.01y h   

 

Exact Solution 

  cosy t t
 

 

V.     Results
 

Table 1: Numerical Results of Problem 1 using the New Methods Developed 
X YEX1 YEX 2 YCOM1 YCOM 2 ERR 1 ERR 2 

0.1 0.0048374180 0.0048374180 0.00483741800 0.00483741498 9.6000E-13 3.0469E-09 

0.2 0.0187307530 0.0187307530 0.01873075307 0.01873074756 4.8552E-12 5.5130E-09 

0.3 0.0408182206 0.0408182206 0.04081822066 0.04081821320 1.4457E-11 7.4810E-09 

0.4 0.0703200460 0.0703200460 0.07032004600 0.07032003701 3.1965E-11 9.0232E-09 

0.5 0.1065306597 0.1065306597 0.10653065965 0.10653064951 5.9120E-11 1.0202E-08 

0.6 0.1488116360 0.1488116360 0.14881163599 0.14881162501 9.7270E-11 1.1074E-08 

0.7 0.1965853037 0.1965853037 0.19658530364 0.19658529210 1.4739E-10 1.1685E-08 

0.8 0.2493289641 0.2493289641 0.24932896390 0.24932895203 2.1019E-10 1.2078E-08 

0.9 0.3065696597 0.3065696597 0.30656965945 0.30656964745 2.8615E-10 1.2287E-08 

1.0 0.3678794411 0.3678794411 0.36787944079 0.36787942882 3.7551E-10 1.2345E-08 

 

Table 2: Numerical Results of Problem 2 using the New Methods Developed 
X YEX 1 YEX 22 YCOM 11 YCOM 22 ERR 11 ERR 22 

0.1 0.9999500004 0.9999500004 0.999950000417 0.9999500004 0.0000E+00 0.0000E+00 

0.2 0.9998000067 0.9998000066 0.999800006667 0.9998000066 0.0000E+00 1.0000E-10 

0.3 0.9995500337 0.9995500337 0.999550033749 0.9995500337 0.0000E+00 0.0000E+00 

0.4 0.9992001067 0.9992001066 0.999200106661 0.9992001066 0.0000E+00 1.0000E-10 

0.5 0.9987502604 0.9987502603 0.998750260395 0.9987502603 0.0000E+00 1.0000E-10 

0.6 0.9982005399 0.9982005399 0.998200539935 0.9982005399 0.0000E+00 0.0000E+00 
0.7 0.9975510003 0.9975510002 0.997551000253 0.9975510002 0.0000E+00 1.0000E-10 
0.8 0.9968017063 0.9968017062 0.996801706302 0.9968017062 1.0000E-12 1.0000E-10 
0.9 0.9959527330 0.9959527328 0.995952733011 0.9959527328 1.0000E-12 2.0000E-10 

1.0 0.9950041653 0.9950041651 0.995004165277 0.9950041651 1.0000E-12 2.0000E-10 

 

Table 3: Comparison with existing Methods 
X ERR1 ERR 2 ERRJM p=7 ERROD p=9 ERRAR p=6 

0.1 9.6000E-13 3.04696E-09 1.7443E-11 0.13201E-14 0.00 

0.2 4.8552E-12 5.51305E-09 1.5786E-11 0.10348E-14 0.00 

0.3 1.4457E-11 7.48105E-09 1.4283E-11 9.52016E-14 6.00E-10 

0.4 3.1965E-11 9.02323E-09 1.2924E-11 8.65280E-14 3.00E-11 
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NOTE: 

YEX 1: Exact Solution for method 1  

YEX 2: Exact Solution for method 2  

YCOM 1: Computed Solution for Method 1  

YCOM 2: Computed Solution for Method 2  

ERR 1: Errors in Method 1  

ERR 2: Errors in Method 2  

ERRJM: Errors in [10] 

ERROD: Error in [1] 

ERRAR: Error in [11] 

 

VI. Discussion of Results 
This paper considered two numerical examples to test the efficiency of the methods. The test problems 

were solved by [10] and [1]. They individually proposed a hybrid method of order seven and nine respectively 

which they adopted classical Runge Kutta method to provide the starting values. Our methods compared 

favourably because the proposed methods are self-starting and does not require starting values as a result 

Taylor’s series which was used as a starting value. 

 

VII. Conclusion 
In this paper, a class of hybrid method with the use of Taylor’s series for the approximation of y 

variables has enabled us compute the derivatives of the method to any possible order which allows direct 

solution of Initial Value Problems (IVPs) of ordinary differential equations. Using this new methods with all 

computations done with the aid of a MATLAB generated codes, has enable us to compute the solution of first 

order ordinary differentials equations with initial value problems (IVPs). Based on this new approach, it is 

evident that the new methods are considerably accurate and efficient. 
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0.5 5.9120E-11 1.02026E-08 1.1694E-11 7.81458E-14 0.00 

0.6 9.7270E-11 1.10741E-08 1.0581E-11 0.14738E-14 1.00E-10 

0.7 1.4739E-10 1.16854E-08 9.5739E-12 0.12312E-14 0.00 

0.8 2.1019E-10 1.20780E-08 8.6613-E12 0.11351E-14 0.00 

0.9 2.8615E-10 1.22878E-08 7.8396E-12 0.10242E-14 0.00 

1.0 3.7551E-10 1.23458E-08 7.0906E-12 9.25926E-14 1.00E-10 


