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 Abstract : In this paper, He’s Variational Iteration Method (HVIM) is used to study the linear time-invariant 

and time-varying singular systems. The results obtained using He’s Variational Iteration Method and the 

methods taken from the literature [17] were compared with the exact solutions of the linear time-invariant and 

time-varying singular systems. It is found that the solution obtained using the He’s Variational Iteration Method 

is closer to the exact solutions of the linear time-invariant and time-varying singular systems. Error graphs for 

discrete and exact solutions are presented in a graphical form to highlight the efficiency of this method. 
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I. Introduction 
Singular systems are being applied to solve a variety of problems involved in various disciplines of 

science and engineering.  They are applied to analyze neurological events and catastrophic behaviour and they 

also provide a convenient form for the dynamical equations of large scale interconnected systems.  Further, 

singular systems are found in many areas such as constrained mechanical systems, fluid dynamics, chemical 

reaction kinetics, simulation of electrical networks, electrical circuit theory, power systems, aerospace 

engineering, robotics, aircraft dynamics, neural networks, neural delay systems, network analysis, time series 

analysis, system modelling, social systems, economic systems, biological systems etc. 

Many physical problems are governed by a system of singular systems, and finding the solution of 

these equations has been the subject of many investigators in recent years. The variational iteration method 

which is proposed by He [6–12] is effectively and easily used to solve delay differential equations [7], 

autonomous ordinary differential system [11], Burger’s and coupled Burger’s equations [1], Laplace equation 

[22], integro-differential equations [20], Helmholtz equation [16] and other fields [2,3,14,15,18,19,21,23]. It is 

well known that singular systems can be difficult to solve when they have an index greater than 1 [4]. In [5,13], 

an efficient reducing index method has been proposed for linear semi-explicit singular systems.  

Sekar et al [17] discussed the linear time-invariant and time varying singular systems using Leapfrog 

method. The aim of this paper is to extend the variational iteration method to find the solution of linear time-

invariant and time varying singular systems. In this paper, the same linear time-invariant and time varying 

singular systems  was considered (Sekar et al [17]) but present a different approach using He’s variational 

iteration method for finding the numerical solution of first order linear singular systems of time-invariant and 

time varying cases with more accuracy. Furthermore, we use some examples to demonstrate the efficiency and 

effectiveness of the proposed method. 

 

II. Linear First Order Linear Singular Systems 
In general a first order linear singular system of time-invariant case is represented in the following 

form 

     tButAxtxK                                                         (1)  

 

with initial condition   
0

0 xx  .    

where K  is an nn   singular matrix, A  and B  are nn   and pn   constant matrices respectively.  tx  is an 

n-state vector and  tu is the p-input control vector. A first order linear singular system of time-varying case is 

represented in the following form 

 

         tutBtxtAtxtK )(                         (2) 

with initial condition   
0

0 xx  . 
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where  tx and  tu are defined as in (1) and  tK  is an nn   singular matrix,  tA  and  tB  are nn   and 

pn   matrices respectively. The elements (not necessarily all the elements) of the matrices    tAtK ,  and 

 tB are time dependent.  

 

III. He’s Variational Iteration Method 
In this section, we briefly review the main points of the powerful method, known as the He’s 

variational iteration method [6–12]. This method is a modification of a general Lagrange multiplier method 

proposed by Inokuti [16]. In the variational iteration method, the differential equation  

       tgtuNtuL          (3) 

 

is considered, where L and N are linear and nonlinear operators, respectively and g(t) is an inhomogeneous term. 

Using the method, the correction functional 

             


dssgsuNsuLtutu
nnnn

~
1

      (4) 

 

is considered, where  is a general Lagrange multiplier, 
n

u  is the nth approximate solution and 
n

u
~  is a 

restricted variation which means 0
~


n

u  [7–9]. 

In this method, first we determine the Lagrange multiplier   that can be identified via variational 

theory, i.e. the multiplier should be chosen such that the correction functional is stationary,  

i.e.    0,
1




ttuu
nn

 . Then the successive approximation 0, nu
n

 of the solution u will be obtained 

by using any selective initial function 
0

u  and the calculated Lagrange multiplier  . Consequently 
n

n

uu


 lim . 

It means that, by the correction functional (4) several approximations will be obtained and therefore, the exact 

solution emerges at the limit of the resulting successive approximations. In the next section, this method is 

successfully applied for solving the linear time-invariant and time varying singular systems. 

 

IV. Numerical Examples 
In this section, the exact solutions and approximated solutions obtained by He’s variational iteration 

method and Leapfrog method. To show the efficiency of the He’s variational iteration method, we have 

considered the following problem taken from [17], with step size 1.0t  along with the exact solutions.  

The discrete solutions obtained by the two methods, He’s variational iteration method and Leapfrog 

method; the absolute errors between them are tabulated and are presented in Table 1 - 2. To distinguish the 

effect of the errors in accordance with the exact solutions, graphical representations are given for selected values 

of “t“ and are presented in Fig. 1-5 for the following problem, using three dimensional effects.   

 

Example 4.1 

The first order linear singular system of time-invariant case with three variables of the form (1) is given 

by  [17] 























110

020

410

K , A=I (an identify matrix of appropriate dimension) and B = 0 

with initial condition     
T

x 3/116/10  ,  

and the exact solution is  

  6/)2/(exp
1

tx   

 2/exp
2

tx   

  3/)2/(exp
3

tx    

 

Example 4.2 

The first order linear singular system of time-varying case with two variables of the form (2) is given 

by [17] 










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
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with initial condition    












1

1
0x  

and the exact solution  is     

 

t

t

etx

tetx





2

2

3

1
1

     

using He’s variational iteration method and Leapfrog method to solve the above problems, the absolute 

errors are evaluated and are presented  in Table 1-2 with various time step size. Error graphs are presented Fig. 

1-5 to highlight the efficiency of the method.  

 

t 

Example 4.1 

Leapfrog Error HVIM Error 

1
x  

2
x  

3
x  

1
x  

2
x  

3
x  

0.1 1E-11 4E-11 3E-11 1.00E-13 4.00E-13 3.00E-13 

0.2 2E-11 6E-11 5E-11 2.00E-13 6.00E-13 5.00E-13 

0.3 3E-11 8E-11 7E-11 3.00E-13 8.00E-13 7.00E-13 

0.4 4E-11 1E-10 9E-11 4.00E-13 1.00E-12 9.00E-13 

0.5 5E-11 1.2E-10 1.1E-10 5.00E-13 1.20E-12 1.10E-12 

0.6 6E-11 1.4E-10 1.3E-10 6.00E-13 1.40E-12 1.30E-12 

0.7 7E-11 1.6E-10 1.5E-10 7.00E-13 1.60E-12 1.50E-12 

0.8 8E-11 1.8E-10 1.7E-10 8.00E-13 1.80E-12 1.70E-12 

0.9 9E-11 2E-10 1.9E-10 9.00E-13 2.00E-12 1.90E-12 

1.0 1E-10 2.2E-10 2.1E-10 1.00E-12 2.20E-12 2.10E-12 

Table 1 Error for linear time-invariant singular systems 

 

t 

Example 4.2 

Leapfrog Error HVIM Error 

1
x  

2
x  

1
x  

2
x  

0.1 2E-11 7E-11 2.00E-13 7.00E-13 

0.2 5E-11 9E-11 5.00E-13 9.00E-13 

0.3 8E-11 1.1E-10 8.00E-13 1.10E-12 

0.4 1.1E-10 1.3E-10 1.10E-12 1.30E-12 

0.5 1.4E-10 1.5E-10 1.40E-12 1.50E-12 

0.6 1.7E-10 1.7E-10 1.70E-12 1.70E-12 

0.7 2E-10 1.9E-10 2.00E-12 1.90E-12 

0.8 2.3E-10 2.1E-10 2.30E-12 2.10E-12 

0.9 2.6E-10 2.3E-10 2.60E-12 2.30E-12 

1.0 2.9E-10 2.5E-10 2.90E-12 2.50E-12 

Table 2 Error for linear time-varying singular systems 

 

           

    Fig. 1 Error estimation of Example 4.1 at 
1

x                                                             
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Fig. 2 Error estimation of Example 4.1 at 
2

x  

 

      

Fig. 3 Error estimation of Example 4.1 at 
3

x  

 

             

Fig. 4 Error estimation of Example 4.2 at 
1

x               Fig. 6 Error estimation of Example 4.2 at 
2

x  

 

V. Conclusion 
The obtained results (approximate solutions) of the linear time-invariant and time varying singular 

systems show that the He’s variational iteration method works well for finding the solution. From the Table 1–2, 

it can be observed that for most of the time intervals, the absolute error is less (almost no error) in the He’s 

variational iteration method when compared to the Leapfrog method [5], which yields a small error, along with 

the exact solutions. From the Fig. 2-3, it can be predicted that the error is very less in He’s variational iteration 

method when compared to the Leapfrog method [5]. Hence the He’s variational iteration method is more 

suitable for studying the linear time-invariant and time varying singular systems. 
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