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Abstract: This research paper deals with the optimality of Circular Neighbor Balanced Designs for total
effects when the observation errors are correlated according to second order circular stationary autoregressive
process. Few results pertaining to the optimality conditions under some specified conditions are provided and
the efficiencies of circular neighbor balanced designs relative to the optimal continuous block designs are also
investigated. The efficiency of the Circular Neighbor Balanced Designs is illustrated corresponding to the
optimal continuous block designs.
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I.  Introduction:

In many practical problems it is inevitable that a particular plot is being affected by neighboring
effects. Even though it is harm in many cases, the plot is being gained by the neighboring effects in few cases.
So it was necessary for the researchers to study the neighboring effects. Under the linear models with the
neighbor effects, many optimality results of block designs are established for treatment and neighbor effects
separately. Hedayat and Afsarinejad (1978), Cheng and Wu (1980), Kunert (1984b) and Kushner (1997) for
cross-over designs, Kunert (1984a) and AzaA3s, Bailey and Monod(1993), Druilhet (1999). After studying the
characters of neighboring effects, it was reasonable to make the assumptions on the dependency of the
observations, because practically speaking, in many of the experiments,the observations are dependent on each
other, if not overall within block at least. Hence the researches have invoked their thoughts to the models where
the observations are dependent.

The optimal designs or highly efficient experiments (when the observations are dependent) have been
studied by many authors. H.B.Kushner (1997) derived the necessary and sufficient condition for the universal
optimality in the case repeated measurement designs. Kunert and Martin (2000b) have generalized the
Kushner’s condition by demonstrating the method of deriving the optimal designs in the case of two
dimensional neighboring models. Filipiak and Markiewicz (2005) were dealt with circular neighbor- balanced
designs.

It is very important to determine which treatment combination in a block will be optimal for the better
result. Hence many authors have stepped into the next level of finding out the optimal continuous sequences.
For example see Kunert and Martin (2000), Filipiak and Markiewicz (2005) and Ai, He and Yu (2009). Ai, Yu
and He (2009) have discussed the optimality and efficiency of one dimensional and two dimensional
neighboring designs when the errors are correlated according to first order circular auto regressive process.

In this paper we study the universal optimality of circular neighbor-balanced designs for total effects,
but when the observation errors are correlated according to a second-order circular autoregressive process.

In this paper, Section 2 deals with some definitions and preliminaries. Section 3 presents the main
results that circular neighbor- balanced designs are universally optimal under some conditions for the total
effects in linear models when the observation errors are correlated according to a second-order circular
autoregressive process. In order to discuss the efficiency of circular neighbor-balanced designs among all
possible block designs with the same parameters, the optimal continuous block designs are characterized in
Section 4. Section 5 presents the efficiency of circular neighbor-balanced designs with blocks of small size
based on the previous structure of optimal equivalence classes of sequences.

Il.  Model And Definition
Consider a set of circular block designs Q . For a design d &2 ., the linear effect additive model
with the left and two sided neighbor effects can be written in the vector form as
M)=>Y =1 u+Tyt+ LA+, QL )B+¢ - (1)
M)=>Y = 1,u+Tyt+LgA+Ryp+ U, ® L)L+ ¢ --(2)
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Where Y =(Y 3., Yy, Yppo Yii) 7, Y5518 the observation response on plot j of block i, p is the
general mean, t, A and p are, respectively, the t-dimensional vectors of the direct effects, left-Neighbor effects
and right-Neighbor effects of the t treatments, T, L, and R, are the corresponding incidence matrices, f is

the b-dimensional vector of the block effects, and € is the vector of random errors and 1 denotean n-
dimensional vector of ones and the symbol ®denote the Kro- Necker product.

Information Matrix, as an inverse of variance - co variance matrix:

As like many cases of design of experiments, the amount of information obtained from the experiment
is measured in terms of information matrix. Also we know that, the information matrix can also be viewed as the
inverse of variance co- variance matrix. Hence in this research work, we consider the inverse of Variance Co-
Variance matrix.

For any m x n matrix A, we defineQ, =1, — A(A'A)” A", where (A'A)~ denotes the generalized

inverse of (A" A) . Then from Kunert and Martin (2000a) the information matrix of d for estimating 7 in the
model (1) under normality is,

C,=T,(,®S)"*Q I, ®S)™?*T,

(Ih®8)'“2(Ld:(lb®1k>(

Where (I, ® S)fl/2 is an bkxbk matrix with the property ( gs)* (I, ®S)*=(1, ®S)™

Definition:
A block design is said to be a circular block design neighbor-balancedat distance i<k-1 if it is a
circular binary block design in Qi and is a BIBDsuch that for each ordered pair of distinct treatments, there

exist exactly m plots suchthat each of these plots receives the first chosen treatment and the right-neighbor of
it at distance i receives the second treatment. A circular block design is said to beneighbor-balanced at distances
up to y, abbreviated by CNBD( y ), if it is neighborbalanced at distance i for all 1<i<y .

Here assume that the errors in each block are correlated according to a second-order circular
autoregressive process, denoted by AR(2,C),as in the case of Kunert and Martin (1987), Richard Cutler (1993)
for first order and Martin.O.Grodona (1989) for second order. The AR (2, C) process can be represented in the

recursive form e, = p,&,, + p,&, , +n; With |pil<1, i=1,2. where the #;’s are uncorrelated noises with

E(#;)=0 and Var (ni)=02, and E(g,)=0.Then E(¢) = 0 Cov (&) = azlb ®Sand The covariance function of
a second order autoregressive process satisfies the difference equation(Fuller, 1976 p.53)
c,()-po,(h-1)-p,0,(h-2)=0;h>0
O-a)(h) _plo-a)(h _1) _pZO-(u(h_z) = O-Z’h =0
Where, & (h) = cov(w;, @, ;), foralli=1.2,..
Let S= var(e ) where @; s the error vector from the j —th block. Then S, the inverse of S, is given by
(Wise, 1955;Siddiqui 1958, Martin D.Gronda 1985)

c’STt =+ p! + ) + (Pl + pIH, + A+ pIH, = p(H+H) = p,(H+H) +(p, + p,)H,

+p,Hg + _ @)
2

(1 a, a, O 0 0]
a, a; a, a, 0 0
a, a, a a, a, 0 0
a, a, a a, 0 O
o251 a; a, a 0 0
0 a, a, 0 0
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a, =1+ p{ +p;

Where’ a‘Z :_pl(l_pZ)

a3 =—p;
a=-p
as =1+ p/
Where H denotes the kxkmatrix with h,,= 1 and the (i,j)"element hijzlifi—jzl and 0 otherwise,
and
[1 000 . 0 O] [0 0 00 .0 0] [0 000 .0 1]
000O0.00O0 0100.00 000O0.00
000O0O.00O0 000O0.00O0 000O0.00O0
H,=[0 0 0 0.0 0/H,={0 000 .0 O0lH,=[0000 .00
0000.00 0000.10 0000.00
0000 | 0000 .00 |1 000 .0 0
[0000.00 T[0100.0 0]
000O0.10 1000 .00
0000.00 0000.00
H¢=|0 0 0 0 .0 O|H,=(0 000 .00
0100.00 0 0.01
0000 .0 0 0000 .1 0]

Note that when p;,p,= 0, the structure of errors is reduced to the popular i.i.d. case.

I11.  Universal Optimality Of CNBD (2):
In this paper we follow the universal optimality criterion defined byKiefer (1975).
LEMMA 1:

Let C,[] be the information matrix for some effect o based on a designd. Assume that a design

d € Q) hasits information matrix completely symmetric, Then, dis universally optimal for the effect o

over aclass € of designs if and onlyiftr(C . []) = max ;_, tr(C, [@])

Let ¢ and w denote the total effects of the t treatments in the models (M;) and (M,), respectively,

that is p=z+A and y=r+A+p. Thus, we can obtainthe following universal optimality results of CNBD’s for
the total effects.

THEOREM 1
For3<k<t,aCNBD (2)in Q(t,b,k) is Universally Optimal for the total effects in the model (M;) among

all the designs with no treatment Neighbor of itself when 0 < p < 1, and among all the designs with no treatment
Neighbor ofitself at distance 1 or 2 when —1 <p <0.

PROOF:
We already have,

S=S*'-(@S',)*s',L, s
s_g1_Q=p=p)' Ut pi =2p =Py + pip) A+ i + 5 =2 =2p, =2p1p5 | 4

- k=k

2(k—=DA+p +p3)—2(k=3)p, A—p,)—2(k—2)p, —4p, +2(1+ p{)

But,
St=@+pl + ) + (Pl +P)H; + A+ pP)H, —p(H+H) = p,(H+H )+ (o, + p,)H;

H7

1
+ p,H; +1

2
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Hence,
S =(1+,012 +p22)|k +(/012 +p22)H3 +(l+p12)H4 -p(H+ HI)_pz(H + HI)+(,D1 +p,)Hs

1 .
+P2H6+l H, - ALl

2
Where,

A &=p=p) At pl =2p =y + i) Ut Py + 3 = 2P = 2P, =2Pip,
2(k=A)A+ pf +p3)—2(k=3)p, 1-p,) —2(k =2)p, —4p;, +2(1+ p;)
For a design,d e Q¢ )+ the information matrix Cq[a] for the effect o=[t’,A’]" in the model (1) can
be expressed as,

Cylad =T L) (1, ®S ) pr! . (1,®5 *)(T,.L,)
= (Cy, 1<, j<2,

Where the submatrices (Cd“_ )1<1i, j <2, have the forms

Cd11 :le (Ib ®é)Td
C,. =T;(1, ®S)L,

Cy, = L, (I, ®S)L,
Since S is a cyclic matrix, so HSH = H SH = S.For acircular design d, L,, = HT,,,1<u <b.Itimplies
that C, =C, .

For a CNBD (2) d*, we have

. , . . - bk . ..
T.(L®OH)T,. =T (I, ®H)T,. =T..(1, ® H HT,. =m(1t1t ~1,)

Then, N
Cdf1 =Td*(lb ® S)Td*

=T(;*{|b ®(1‘*'/)12 "’pzz)lk +(p12+p22)H3+(1+p12)H4—p1(H +HI)_pz(H +HI)+(p1+p2)H5
H, — ALL)IT..

1
+ p,Hq +1_

2
=@+ o0 + )T (1, @I, + (0 + p)T - (1, ®H)T . + A+ p)T - (1, ® H,)T,.
T, ®H)T,. —pT (I, ®H )T, = p, T (1, ®H)T,. — p,T.. (I, ® H)T,.
, . 1 .
(o P )T (1, ®HOT . + p, T (1, ® H)T,. +§T{(|b ®H,)T,.
2
—AT..(1, ®LL)T,.
Similarly,
Cp. =Ta(l, ®S)Ly =T, (I, ®S)HT,.

=L+ o+ p)Ty (1, ®VIHT .+ (of + p5)T- (1, @ HHT . + (L+ p{)T - (1, ® H,)HT,.
=P T (ly ® H)HT . = p T (I, ® HOHT,. = p, T (1, ® H)HT,. = p, T (1, @ H)HT,.
1

2

(0, + )T (1, @ HOHT,. + p,T . (1, ® Ho)HT,. + T.(I, ®H,)HT,. - AT (I, ®LL)HT,.
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=@+ pl + p )T (1, O H)T . +(pf + p2)T,. (1, ® H H)T,. + @+ )T - (I, ® H,H)T .
T (I, ®HH)T . = p T . (1, ®H H)T . — p,T_. (I, ®HH)T . — p, T . (I, ® H H)T..
. . 1 . . .
+(py+ p )T (1, ®HH)T . + p,T . (1, ® HGH)T,. +gTd*(lb ®H, H)T. - AT . (I, ®11L H)T .

2
= (1+,012 +,022)Td'*(|b ®H)T . —ple'*(Ib @ HH)T . —pleL(Ib 1 )T, —,oszL(Ib ® HH)T ..
—p, T (1, ® )T, = AT . (1, ®LL)T,.
Hence all Cdf (1£1,j<2) are completely symmetric.
ij
Rewrite ¢ = K awith K =1, ® I, . Itis obvious that K 'K = 21,
Hence,

Cl#1< 4 K C,alK

)

d22

= %(Cdn + Cdlz + Cle +C

:%(Td'(lb ®S)T, +T, (I, ®S)L, +L,(1, ®S)T, + L, (I, ®S)L,
:%{(1+p12+p22)Tdﬂ(lb®Ik)Td*—pleL(Ib®H)Td*—ple'*(Ib®H')Td*—pszL(Ib®H)Td*
=P, T (1, @H)T . = AT . (I, ®LL)T . + U+ pf + p2)T. (I, @ L )T,. = p,T.. (I, ®H)T,.
T (L, ®H)T,. = p, T (I, ®H)T,. — p,T. (I, ®H T . = AT . (I, ®LL)T,.

+ @+ ol + T (1, ®H)T,. = p, T (I, ®HH)T . = p, T (I, ® L)T,. = p,T.. (1, ® HH)T .
=P, T (1, ® L )T, = AT . (I, ®LL)T . + U+ pf + p2)T. (I, ®H)T . — pT. (I, ® HH)T .
=T (I, ® LT = p, T (1, ®HH)T . = p, T (I, ® 1 )T . = AT . (I, ®1,1,)T .}

. | , .
= 20+ pf + =29, = 2p,)T;- (1, ®1)T, —4AT,. (I, BLLT, i

+ @+ ol +p; =2 =2p,)T (I, OH)T,. = 2(p, + )T (1, ® HH)T .}

Since C.(I< i, j <2) are completely symmetric Cd* =Cd*. So C,.[a]commutes with
ij 12 21
1, .
Pl 25(1212 ®1,).Then

C,-[4] =%K'Cd*[a]K Z%(Cd; +C,. +C,. +C..)

and consequently Cd*[¢] is also completely symmetric. Consider now (4). When -1<p<0, for a design d in
Q. ,  With no treatment neighbor of itself at distance 1 or 2, the traces of Ty (I, ® H)T,, T, (1, ® H)T,,
T, (I, ®HH)T, T, (I, ® H H')T, are all zero, and tr(T, (I, ® I, )T,) is a constant. So tr{C, [4]}
depends only on tr T, (1, ®1,1, )T, . Moreover, a CNBD(2) is a balanced block design, so it also minimizestr
T, (I, ®1,1,)T, among all possible designs of the same size. Therefore tr{C [¢]}attains the maximum,
When0 < p <1, the traces of both T, (I, ® HH)T, T, (I, ® H H )T, must be non-negative. However,
for a CNBD(2) d*, they are all zero. So for a design with no treatment neighbor of Therefore tr {C, [¢]} attains

the maximum. When0 < p <1, the traces of both T, (I, ® HH)T, T, (I, ® H H )T, must be non-
negative. However, for a CNBD(2) d*, they are all zero. So for a design with no treatment neighbor of itself at
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distance 1, it still holds that tr{C . [¢]} > tr{C , [¢]}
Hence the theorem follows from Lemma 1.

THEOREM

For 4 <k <t,a CNBD (3) in Q, k)is Universally Optimal for the total effects in the model (M;) among
all the designs with no treatment Neighbor of itself when 0 < p < 1, and among all the designs with no treatment
Neighbor ofitself at distance 1 or 2 when —1 <p <0.

PROOF:

For adesign,d e Q¢ p )+ the information matrix Cq[o] for the effect o=[1",A’] in the model (1) can
be expressed as,

Cylad =T L) (1, ®S ) pr! . (1,®5 *)(T,.L,)
= (C, 1< j<2,
Where the submatrices (Cd“_ )1<1i, j <2, have the forms
C,. =T, (1, ®S)T,
C, =T,(I, ®S)L,

Co. =T, (I, ®S)R,

C,. =L, (I, ®S)L,
C,. =L,(I, ®S)R,
C,. =Ri(l, ®S)R,

Since S is a cyclic matrix, so HSH' = H SH = S.For a circular design d, Ly, = HT,,, 1 <u <b.It implies
that C, =C, .

For a CNBD (3) d*, we have

Td'*(lb ® HHH)T .. =le*(|b ® H'H'H")Td* =

Then, N
Cd;3 :Cd;1 :Td*(lb ®S)Rdx

bk

M(ltlt - It)

=T AL, QU+ pf + )1+ (o + p5)H, + (Lt p)H, = p(H+H) = py(H+H ) + (o, + p,)H,
+p,He +

——H, - ALL)IR,-

2
=1+ pf +p22)le*(|b ® )R, +(pf +P22)le*(|b ®H )R, +(1+P12)le*(|b ®H, )R,
—,01le*(|b ®H)R . —pleL(Ib ®H')Rd* _pszl*(Ib ®H)R . —/oszl*(Ib ®H')Rd*
+(or + )T (I, ®H)R . + o, T (1, ®HE)R . +gde(|b ®H,;)R,. —AT. (I, ®L1,)R,.

2

=@+ P2+ AT (1L, OH)T,. = pT . (1, ®HH)T,. —pT. (I, ®H H )T,
—p, T (1, ®HH)T . — p, T (1, ® H H)T,. — AT . (1, ®1L,1,)T..
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=@+ o) + )T (1, @H)T = (o + p)T,- (1, ® 1T = (o, + )T, (1, ®H H)T.
— AT (I, ®LL)T,.
Cp =Cy =Lo(l, ®S)R,.

d

= le*{lb ®(1+,012 +p22)|k 'I'(/012 +p22)H3 -I-(1+p12)H4 -p(H+ H')_pz(H + HI)"’(pl +p,)Hs

1 .

+,02H6+—1 H, - ALL)IR,
—F2

=(1+p! +p22)|—vd*(|b ® Ik)Rd* +(pf +p22)|—ld*(|b ® Hs)Rd* +(1+/012)le*(|[) ® H4)Rd*

—plL'd,,(lb ®H)R,. —plL'd*(lb ®H')Rd, —sz'd*(Ib ®H)R,. —szld*(lb ®H')Rd*

+ (o, +p)L- (1, ®H R . + p, L. (1, ®H)R +ng*(|b ®H;)R,. —AL. (I, ®L1)R..

2
=@+ ol + )T (1, ® LT = (o + )T, (1, @ H)T . = (o + p,)T . (1, ®H )T,
— AT (I, ®LL)T,
Hence all Cdf (1<1, j<2) are completely symmetric.
Rewrite ¥ = K'a with K = 1, ®1,.1t is obvious that K’K=2I. By Lemma and equation, for any

design d € Q.
1 .
Caly]< K CylalK

= 1(Cdll +Cdlz +Cd13 +Cle +Cdzz +Cd23 +Cdsl +Cdsz +C

4

=%[3Td;(|b ®S)T,. + 2T, (1, ®S)L. +2Ly. (1, ®S)T,. + Ly (1, ®S)R,. + Ly (I, ®S)L,.

)

d33

1 . ,
=§{(3+3/712 +3p; —4p, —4p,) Ty (1, ® L )T, + (2+2p +2p; —3p, —4p,)T, (I, ®H)T, +

(2+2p, +2p; =Tp, =7p)T4 (1, ®H )T, =2(py, + p,)Ty (1, ® HH)T, +
(2+2p] +2p; =2p,=2p,)Ty (I, ® H H )Ty = 2(p, + p,)T, (I, ® H H H )T, —9AT, (I, ®11,)T,
For any design in d € Q(t'b'k) with no treatment neighbor of itself at distance upto 3,

tr (T, (1, ® H)T,),tr (Ty (1, ® H)T,), tr (T, (1, ®© HH)T,), tr (T, (1, ® H H)T),

tr(T, (1, ® HHH)T,),tr(T, (1, ® H H H )T, ) areall zero. Moreover, both

tr(T, (I, ® HHH)T,),tr (T, (I, ® H H H )T, ) are non-negative. The remainder of the proof follows from the

proof of the previous theorem.
IV.  Optimal Equivalence Classes Of Sequences

In the present section we discuss the optimality of continuous block designs, by applying the method
derived by Kunert and Martin (2000b). Foru=1,2,..., b, let T, be the incidence matrix of the direct effects

of the treatment in block u, 1<u <b.Then T, =(T, T, ,... T, ) is just the incidence matrix of the
direct effects. For each u, define Ly, =HT, R, =H'T,,- Thus, it is obvious that
Ly =, ®H)T, and |, = (I, ® H")T,are exactly the incidence matrices ofthe left-Neighbor effects and

of the right-Neighbor effects.Now consider,
Cylg] < Cy[K oK]
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HOEDYH

whete C, = {20+ pf + o} ~20, - 20, )Ty Ty, ~4ATLLLT,

+ 20+ pf + p3 = 2P, =2, Tg,Lay —2(01 + )T HHT, 3
Now deriving the trace of the matrix Cq,, We get,

1 . . .
tr(Cy) = Etr{(l"' Plz + P22 —=2p, = 2p,) Ty, Tgu —2AT L L, Ty,
+ @+ pf + 05 —2P, =20, Ty, Lgy — (01 + ) To HHT, 3

1 t
> W(Cy) =AU+l +p: ~2p =2p,)k —2AY 0!

i=1

t t
+(1+ ol +p; —2p,—-2p,)> M — (o, +p,) D Pi}

i=1 i=1

Two sequencesoftreatmentsonablockareequivalentifonesequence can be obtained from the other by
relabeling the treatments and denote by s the equivalence class of the sequence | on the block u. Because
tr(C,,)are in variant under permutations of treatment labels, so the value tr(C,,) remains the same for any

sequence in the same equivalence class. Thus, we can define,
1 t t t
C8)=tr(Co) = | Lt oL + o7 = pu=po )kt (Lt ol + 97 =20, =20) ), =y +2)), Pi—ZAZniZ}
i=1 i=1

i=1

Where,
A U=pi=p) W+ pl =2p = py + pipy) L+ oL + 3 =2 = 2P, = 2p1p;

2(k =81+ p + p3) - 2(k =3) o, (1 p,) —2(k = 2) p, —4p; +2(1+ p})

n;is the number of occurrences of treatment i in the sequence I,

m;is thenumber of times treatment i is on the left-hand side of itself in the sequence |

piis the number of plots having treatment i both on the left-hand side and on theright-hand side.

In this section our ultimate aim would be in finding out the optimal equivalence classes of sequence.
This optimal sequence is the sequence which maximizes the c(s) in (5) as explained by Kushner(1997).
PROPOSITION:

When o1 P, €(0.2199,1) for any positive integer k > 5, if k is odd, then the optimal sequence has

the form of ‘a;a,8,3,8; a3k » While if Kk is even, then the optimal sequence has the form of
“a,8;3,8, " Apy21 31727 WHETeay ..., ag o) are distinct treatments.

)20

PROOF:

t t
If Z p; decreases by one unit, then Zmi decreases definitely by one unit, and
i=1 i=1
correspondingly c(s) (5) will increase by (o, + p,) — 20+ p? + p? —2p, —2p,) - Also for the value p; and
p2 between 0.2199 and 1, the above increment takes the positive value. Thus from the Proposition 3 of
Ai, Yu and He (2009), we have the proof of this theorem.
Now consider the blocks of size k=6. It contains the possible treatment sequences for k=6. Out of
which we are going to consider the optimal treatment sequence.
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Table 1.0ptimal sequences for all possible pairs of {v,v,} for k=6

SNo | spouence | Z tr (Ca)
2 2
1 aaabbb 2 0 5/01 +5P2 —8/)1 —8,02 -18A+5
% (102 +10p2 —17p, —17 p, —52A +10)
2 aabbbb 2 1
3
3 aabbce 3 0 5@pf +3p7 —4p, —4p, —8A+3)
4 abbece 3 0 % 907 +9p; —12p, —12p, —28A+9)
2 2
5 abcdef 6 0 3(pr +p; —p— P, —2A+])

Here, A — aQ-p - P2)4(1+ p12 —2p, —pp + p1p2)4(1+ P12 + p22 —2p, —2p, — 2/01/02)4
6p; +4p; —10p, —8p, +6p,p, +6
From the above sequences, the sequence “aabbcc” is the optimal sequence by Proposition 3.

The below table represents all the optimal sequences for 6 < k < 11. Also Note that the below table
shows the optimal sequence and the last column lists the values tr(Cg,) of a CNBD (2) d.

leiozzk Optimal sequence c(s*) tr(Cau)
6 aabbcc 13(p*p+1) 312 (p>2p+ 1)
aabbccc 1/7(27p>33p+27) 2.
! abbeedd 1/7(2692-31p+26) 2p"2pt1)
8 aabbccdd 5p°-6p+5 52(p*-2p+1)
aaabbbcce 6p>-9p+6
9 aabbccddd 1/9(15p2-11p+15) 3(p2-2p+1)
abbccddee 1/9(51p°-66p+51)
aabbcceddd 1/10(71p%-102p+71) 2.
10 aabbccddee Tp2-9p+7 72(p%2pt1)
aabbbcceddd 1/11(99p>-144p+99)
11 aabbccddeee 1/11(89p*123p+89) 4(p*2p+1)
abbccddeeff 1/11(84p>113p+84)

5. Efficiency of CNBD (2) with blocks of size 6<k <11

In this section we are going to discuss the Efficiency of CNBD (2) for various block size. In previous
section we showed that for different block size k, the CNBD(2) is universally optimal over the class of all
designs from Q(Lb‘k)for lol< 1. Here the efficiency of CNBD (2) is demonstrated by having the optimal

continuous block design as the base. Since the values tr(Cg,) are invariant to any block u for aCNBD (2), so we
can define the efficiency of aCNBD (2) d relative to the optimal continuous block design d “as
tr(C tr(C
L CI G

tr(Cq)  c(s?)
We will demonstrate the calculation of tr(Cy,) by making use of the expression derived in the previous

sections just by substituting different values for p,, p, and we can find out the efficiency for various block

size. We are going to assume the values for both p,, o, to be -1 to +1 with 0.2 increments, avoiding the other

combinations of p, , p, since these combinations giving the negative values for the efficiency. The below tables
show the calculations of tr(Cy,) and c(s*) for k=6, 7,..., 11
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Table 2 Efficiency of CNBD (2) when the block size k=6

P1 p= tr(Ca) tr(Ca") Eff(d)

-1 -1 | -62,934.60 -31,462.80 0.4999
-0.8 -0.8 | -17,131.43 -8,562.29 0.4998
-0.6 -0.6 -3,796.02 -1,895.43 0.4993
-0.4 -0.4 -623.20 -309.62 0.4968
-0.2 -0.2 -57.20 -26.98 0.4716

0 0 5.00 4.00 0.8
0.2 0.2 4.87 4.05 0.8329
0.4 0.4 2.28 3.12 1.3684
0.6 0.6 1.08 3.12 2.8888
0.8 0.8 1.32 4.08 3.0915

1 1 3.00 6.00 2

Now we present the efficiency of CNBD(2) corresponding to the optimal continuous block design for

different block size.

Table 3 Efficiency of CNBD (2)

Block Size
P p2 5 6 7 8 9 10 11
1 1| 05555 0.4999 0.5384 0.4999 0.4283 0.4998 0.4397
0.8 08 | 05554 0.4998 0.5382 0.4997 0.4279 0.4996 0.4392
0.6 0.6 | 05651 0.4993 05376 0.4989 0.4265 0.4985 0.4374
04 04 | 05533 0.4968 05343 0.4949 0.4189 0.4929 0.4277
0.2 02 | 05372 0.4717 0.4987 0.4469 0.3352 04113 0.2990
0 0| 1.0000 0.8000 0.7778 0.7273 0.7895 0.7059 0.7476
0.2 02 | 0.8646 0.8329 0.8522 0.8311 0.8974 0.8305 0.8838
04 04 | 05556 1.3684 1.3000 1.3684 1.6957 1.3684 1.6250
06 0.6 | 2.0968 2.8889 2.2750 2.8889 6.1579 2.8889 51071
038 08 | 21789 3.0916 2.3801 3.0011 7.2867 3.0910 58441
1 1| 1.6667 2.0000 1.7500 2.0000 3.0000 2.0000 2.7500

V.  Conclusion
In this research paper, the Optimality and efficiency of the circular neighbor balanced design have been

investigated by having the assumption that the errors in each block are correlated according to second order
circular auto regressive process. Few results pertaining to the universal optimal designs have been proved for
second order model. The traces of optimal sequence of treatments for different block size have been derived.
Also the efficiency factor for CNBD (2) corresponding to the optimal continuous block design was calculated.

1.
2.
[31.
[4].
[5].
[6].
[71.

[8].
9.

[10].

[11].
[12].

[13].
[14].

References
AZA IS, J.M., BAILEY, R.A. and MONOD, H., (1993). Acatalogue of efficient Neighbor- designs with border plots. Biometrics
49,
Al, M.-y., GE, G.-n.andCHAN, L.-y. (2007). Circular neighbor-balanced designs universally optimal for total effects.Sci. China
Ser. A 50 821-828.MR2353065
Al, M., YU, Y. and HE, S. (2009). Optimality of circular neighbor-balanced designs fortotal effects with autoregressive correlated
observations. J. Statist. Plann.Inference 1392293-2304.MR2507991
BAILEY, R.A. and DRUILHET, P., (2004). Optimality of Neighbor-balanced designs for total effects. Ann. Statist. 32(4),1650-
1661.
BOX, G.E.P., HUNTER, J.S. and HUNTER, W.G., (2005).Statistics for Experimenters. John Wiley & Sons, New Jersey.
CHENG, C.S. and WU, C.F.J.,(1980). Balanced repeated measurements designs. Ann. Statist. 8, 1272-1283.
D. RICHARD CUTLER.(1990) Efficient block designs for comparing testtreatments to a control when the errors are correlated.
Journal of Statistical Planning and Inference 37 (1993) 393-412 North-Holland
DRUILHET,P., (1999). Optimality of Neighbor balanced designs. J. Statist. Plann.Inference 81,141-152.
FILIPIAK, K.and MARKIEWICZ, A., (2005). Optimality and efficiency of circular Neighbor balanced designs for correlated
observations.Metrika61,17-27.
FILIPIAK, K. (2012). Universally optimal designs under an interference model with equal left- and right-neighbor effects.
Statist.Probab. Lett. 82 592-598.MR2887476
HEDAYAT,A. and AFSARINEJAD, K., (1978). Repeated measurements design Il. Ann. Statist. 6, 619 - 628.
KUNERT, J. and MARTIN, R.J., (2000). On the determination of optimal designs for an interference model. Ann. Statist.28,1728-
1742.
KUNERT, J., (1984a). Design balanced for circular residual effects. Comm.Statist. A-TheoryMethods13, 2665-2671.
KUNERTJ., (1984b). Optimality of balanced uniform repeated measurements de-signs. Ann. Statist.12, 1006-1017.

DOI: 10.9790/5728-11516373 www.iosrjournals.org 72 | Page



Optimality and Efficiency of Circular Neighbor Balanced Design for Second Order Circular...

[15].
[16].
[17].
[18].

[19].

KUSHNER, H.B., (1997). Optimal repeated measurements designs: The linear optimality equations. Ann. Statist.25,2328-2344.
MAGDA, C.D., (1980). Circular balanced repeated measurements design. Comm. Statist. A- Theory Methods 9, 1901-1918.
PIERRE DRUILHET and TINSSON WALTER (2013). Efficient Circular neighbor designs for spatial interference model. Journal
Of Statistical Planning and Inference. 1161 — 1169.

SANTHARAM, C, PONNUSAMY, K.N., AND CHANDRASEKAR B., 1996: Universal Optimality of nearest Neighbor balanced
block designs using ARMA models. Biometrical J. 38, 725 — 730.

SANTHARAM, C, and PONNUSAMY, K.N., 1997: On the efficiencies of nearest Neighbor balanced block design with correlated
error structure. Biometrical J. 39, 85 — 98.

DOI: 10.9790/5728-11516373 www.iosrjournals.org 73 | Page



