^{**}G α -continuous and ^{**}G α -irresolute maps in Topological Spaces

A. Singaravelan

(Research Scholar) (Department of Mathematics) (Government Arts and Science College (Autonomous), Coimbatore-641018, Tamilnadu, India)

Abstract : In this paper we introduce a new type of function called the $**g\alpha$ -continuous maps and $**g\alpha$ -irresolute maps and discuss their properties. Key words: $**g\alpha$ -continuous maps, $**g\alpha$ -irresolute maps.

I. Introduction

Levine [15] introduced g-closed sets and studied their most fundamental properties. P.Bhattacharya and B.K.Lahiri [6], S.P.Arya and T.Nour [4], H.Maki et al [17,18] introduced semi generalized-closed sets, generalized semi-closed, α -generalized closed sets and generalized α -closed sets respectively. R.Devi, et al [10] introduced semi generalized-homeomorphism and generalized semi-homeomorphism in topological spaces. R.Devi, et al [9] introduced sets and generalized-closed maps and generalized semi-closed maps. M.K.R.S Veera Kumar [23] introduced g^{*}-closed sets and M.Vigneshwaran, et al [24] introduced ^{*}g\alpha-closed sets in topological spaces.

We introduce $\frac{**}{2}\alpha$ -continuous maps and $\frac{**}{2}\alpha$ -irresolute maps and establish the relationship with the exitssting continuous maps.

II. Preliminaries

Throughout this dissertation (X, τ) , (Y, σ) and (Z, η) represent non-empty topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ) , cl(A) and int(A) denote the closure and the interior of A in X respectively. The power set of X is denoted by P(X).

Let us recall the following definitions, which are useful in the sequel.

Definition 2.1 : A subset A of a topological space (X, τ) is called

(1) a pre-open set [20] if A \subseteq int(cl(A)) and a pre-closed set if cl(int(A)) \subseteq A.

(2) a semi-open set [16] if $A \subseteq cl(int(A))$ and a semi-closed set if $int(cl(A))\subseteq A$.

(3) an α -open set [22] if A \subseteq int(cl(int(A))) and an α -closed set [22] if cl(int(cl(A))) \subseteq A.

(4) a semi pre-open set [2] (= β -open[1]) if A \subseteq cl(int(cl(A))) and a semi pre-closed set [2] (= β -closed[1]) if int(cl(int(A))) \subseteq A.

The class of all closed (respectively semi pre-closed, α -open) subsets of a space (X, τ) is denoted by C(X, τ) (respectively SPC(X, τ), $\tau\alpha$). The intersection of all semi-closed (respectively pre-closed, semi pre-closed and α -closed) sets containing a subset A of (X, τ) is called the semi-closure (respectively pre-closure, semi pre-closure and α -closure) of A and is denoted by scl(A) (respectively pcl(A), spcl(A) and α cl(A)).

Definition 2.2: A subset A of a topological space (X, τ) is called

(1) a generalized closed set (briefly g-closed) [15] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

(2) a semi-generalized closed set (briefly sg-closed) [6] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) .

(3) a generalized semi-closed set (briefly gs-closed) [4] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

(4) a generalized α -closed set (briefly g α -closed) [18] if α cl(A) \subseteq U whenever A \subseteq U and U is α -open in (X, τ).

(5) an α -generalized closed set (briefly α g-closed) [17] if α cl(A) \subseteq U whenever A \subseteq U and U is open in (X, τ).

(6) a generalized semi pre-closed set (briefly gsp-closed)[12] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

(7) a generalized pre-closed set (briefly gp-closed)[19] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

(8) a g^* -closed set [23] if cl(A) \subseteq U whenever A \subseteq U and U is open in (X, τ).

(9) a ^{*}ga-closed set [24] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is ga-open in (X, τ) .

(10) a ^{**}g α -closed set [25] if cl(A) \subseteq U whenever A \subseteq U and U is ^{*}g α -open in (X, τ).

The class of all g-closed sets (gsp-closed sets) of a space (X, τ) is denoted by $GC(X, \tau)(GSPC(X, \tau))$.

Definition 2.3: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called

(1) an α g-continuous[14] if f⁻¹(V) is an α g-closed set of (X, τ) for every closed set V of (Y, σ).

(2) a gs-continuous [9] if $f^{-1}(V)$ is a gs-closed set of (X, τ) for every closed set V of (Y, σ) .

(3) a gsp-continuous[11] if f $^{-1}(V)$ is a gsp-closed set of (X, τ) for every closed set V of (Y, σ) .

(4) a gp-continuous [24] if $f^{-1}(V)$ is a gp-closed set of (X, τ) for every closed set V of (Y, σ) .

(5) a g^{*}-continuous[3] if f⁻¹(V) is a g^{*}-closed set of (X, τ) for every closed set V of (Y, σ).

(6) $a^*g\alpha$ -continuous [15] if f⁻¹(V) is a $*g\alpha$ -closed set of (X, τ) for every closed set V of (Y, σ).

(7) a g^{*}-irresolute [5] if f $^{-1}(V)$ is a g^{*}-closed set of (X, τ) for every g^{*}-closed set V of (Y, σ) .

(8) a gs-irresolute[9] if $f^{-1}(V)$ is a gs-closed set of (X, τ) for every gs-closed set V of (Y, σ) .

(9) a *ga-irresolute [24] if f $^{-1}(V)$ is a *ga-closed set of (X, τ) for every *ga-closed set V of (Y, σ) .

Definition 2.4: A topological space (X, τ) is said to be (1) $_{\alpha}T_{1/2}^{***}$ space if every ${}^{**}g\alpha$ -closed set is closed. (2) $_{\alpha}T_{c}^{****}$ space if every α g-closed set is ${}^{**}g\alpha$ -closed. (3) ${}^{**}_{\alpha}T_{1/2}$ space if every g-closed set is ${}^{**}g\alpha$ -closed.

III. **Gα-Continuous And **Gα-Irresolute Maps In Topological Spaces We introduce the following definition

Definition 3.1: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called ^{**}ga-continuous if f⁻¹(V) is a ^{**}ga-closed set of (X, τ) for every closed set of V of (Y, σ) .

Theorem 3.2: Every continuous map is ^{**}gα-continuous.

Proof: Let V be a closed set of (Y, σ) . Since f is continuous, $f^{-1}(V)$ is closed in (X, τ) . But every closed set is **ga-closed set. Hence $f^{-1}(V)$ is **ga-closed set in (X, τ) . Thus f is **ga-continuous.

The converse of the above theorem need not be true. It can be seen by the following example

Example 3.3: Let $X = \{a, b, c\} = Y$ with $\tau = \{X, \phi, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{a\}\}$ Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = b, f(b) = a, f(c) = c. ***g α -closed sets are X, ϕ , $\{a\}, \{a, b\}, \{a, c\}$

Here f⁻¹({b, c}) = {a, c} is not a closed set in (X, τ). Therefore f is not continuous. However f is ^{**}gacontinuous.

Theorem 3.4:Every ^{*}gα-continuous map is ^{**}gα-continuous.

Proof: Let V be a closed set of (Y, σ) . Since f is ${}^*g\alpha$ -continuous, f⁻¹(V) is ${}^*g\alpha$ -closed in (X, τ) . But every ${}^*g\alpha$ -closed set is ${}^{**}g\alpha$ -closed set. Hence f⁻¹(V) is ${}^{**}g\alpha$ -closed set in (X, τ) . Thus f is ${}^{**}g\alpha$ -continuous.

The converse of the above theorem need not be true. It can be seen by the following example

Example 3.5:Let X = {a, b, c} =Y with $\tau = \{X, \phi, \{c\}\}$ and $\sigma = \{Y, \phi, \{b\}, \{a, b\}\}$ Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = b, f(b) = a, f(c) = c. ^{*}g α -closed sets are X, ϕ , {a, b} ^{**}g α -closed sets are X, ϕ , {a}, {b}, {a, b}, {b, c}, {a, c} Here f⁻¹({a, c}) = {b, c} is not a *g α -closed set in (X, τ)

Therefore f is not ${}^*g\alpha$ -continuous. However f is ${}^{**}g\alpha$ -continuous.

Theorem 3.6: Every g^{*}-continuous map is ^{**}gα-continuous.

Proof: Let V be a closed set of (Y, σ) . Since f is g^* -continuous, $f^{-1}(V)$ is g^* -closed in (X, τ) . But every g^* -closed set is ${}^{**}ga$ -closed set. Hence $f^{-1}(V)$ is ${}^{**}ga$ -closed set in (X, τ) . Thus f is ${}^{**}ga$ -continuous.

The converse of the above theorem need not be true. It can be seen by the following example

Example 3.7: Let $X = \{a, b, c\} = Y$ with $\tau = \{X, \phi, \{c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b, c\}\}$ Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = a, f(b) = b, f(c) = c. g^* -closed sets are X, ϕ , $\{a, b\}$ *** $g\alpha$ -closed sets are X, ϕ , $\{a, b\}$, $\{b, c\}, \{a, c\}$ Here f⁻¹($\{b, c\}$) = $\{b, c\}$ is not a g*-closed set in (X, τ). Therefore f is not g*-continuous. However f is *** $g\alpha$ -continuous.

Theorem 3.8: Every ^{**}gα-continuous map is gs-continuous.

Proof: Let V be a closed set of (Y, σ) . Since f is ^{**}ga-continuous, f⁻¹(V) is ^{**}ga-closed in (X, τ) . But every ^{**}ga-closed set is gs-closed set. Hence f⁻¹(V) is gs-closed set in (X, τ) . Thus f is gs-continuous.

The converse of the above theorem need not be true. It can be seen by the following example

Example 3.9: Let $X = \{a, b, c\} = Y$ with $\tau = \{X, \phi, \{a\}, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a, c\}\}$ Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = b, f(b) = c, f(c) = a. gs-closed sets are X, ϕ , $\{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}$ ***g α -closed sets are X, ϕ , $\{a\}, \{b, c\}$ Here f⁻¹($\{b, c\}$) = {a, b} is not a **g α -closed set in (X, τ). Therefore f is not **g α -continuous. However f is gs-continuous.

Theorem 3.10: Every ** ga-continuous map is gsp-continuous.

Proof: Let V be a closed set of (Y, σ) . Since f is ^{**}ga-continuous, f⁻¹(V) is ^{**}ga-closed in (X, τ) . But every ^{**}ga-closed set is gs-closed set. Hence f⁻¹(V) is gsp-closed set in (X, τ) . Thus f is gsp-continuous.

The converse of the above theorem need not be true. It can be seen by the following example

Example 3.11: Let $X = \{a, b, c\} = Y$ with $\tau = \{X, \phi, \{a\}, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a, c\}\}$ Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = b, f(b) = c, f(c) = a. gsp-closed sets are X, ϕ , $\{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}$ **g α -closed sets are X, ϕ , $\{a\}, \{b, c\}$ Here f⁻¹($\{b, c\}$) = $\{a, b\}$ is not a ^{**}g α -closed set in (X, τ) . Therefore f is not ^{**}g α -continuous. However f is gsp-continuous.

Theorem 3.12: Every ^{**}gα-continuous map is gp-continuous.

Proof: Let V be a closed set of (Y, σ) . Since f is ^{**}ga-continuous, $f^{-1}(V)$ is ^{**}ga-closed in (X, τ) . But every ^{**}ga-closed set is gp-closed set. Hence $f^{-1}(V)$ is gp-closed set in (X, τ) . Thus f is gp-continuous.

The converse of the above theorem need not be true. It can be seen by the following example

Example 3.13: Let $X = \{a, b, c\} = Y$ with $\tau = \{X, \phi, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a, c\}\}$ Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = b, f(b) = a, f(c) = c. gp-closed sets are X, ϕ , $\{a\}$, $\{b\}$, $\{c\}$, $\{a, c\}$, $\{b, c\}$

^{**} $g\alpha$ -closed sets are X, ϕ , {c}, {a, c}, {b, c}

Here $f^{-1}({b}) = {a}$ is not a ^{**}ga-closed set in (X, τ). Therefore f is not ^{**}ga-continuous. However f is gp-continuous.

Theorem 3.14: Every ^{**} $g\alpha$ -continuous map is an α g-continuous.

Proof: Let V be a closed set of (Y, σ) . Since f is ^{**}ga-continuous, f⁻¹(V) is ^{**}ga-closed in (X, τ) . But every ^{**}ga-closed set is ag-closed set. Hence f⁻¹(V) is ag-closed set in (X, τ) . Thus f is ag-continuous.

The converse of the above theorem need not be true. It can be seen by the following example

Example 3.15: Let $X = \{a, b, c\} = Y$ with $\tau = \{X, \phi, \{a\}, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{b\}, \{b, c\}\}$ Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = a, f(b) = c, f(c) = b. αg -closed sets are X, $\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}$ **g α -closed sets are X, $\phi, \{a\}, \{b, c\}$ Here f⁻¹($\{a, c\}$) = {a, b} is not a **g α -closed set in (X, τ) . Therefore f is not **g α -continuous. However f is αg -continuous.

Theorem 3.16: Every ^{**}gα-continuous map is an gpr-continuous.

Proof: Let V be a closed set of (Y, σ) . Since f is ^{**}ga-continuous, f⁻¹(V) is ^{**}ga-closed in (X, τ) . But every ^{**}ga-closed set is gpr-closed set. Hence f⁻¹(V) is gpr-closed set in (X, τ) . Thus f is gpr-continuous.

The converse of the above theorem need not be true. It can be seen by the following example

Example 3.17: Let $X = \{a, b, c\} = Y$ with $\tau = \{X, \phi, \{a\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a, b\}\}$ Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = c, f(b) = b, f(c) = a. gpr-closed sets are X, ϕ , $\{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}$ **g α -closed sets are X, ϕ , $\{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}$ Here f⁻¹({c}) = {a} is not a **g α -closed set in (X, τ) . Therefore f is not **g α -continuous. However f is gprcontinuous.

Theorem 3.18: Every ^{**}gα-continuous map is an g-continuous.

Proof: Let V be a closed set of (Y, σ) . Since f is ^{**}ga-continuous, f⁻¹(V) is ^{**}ga-closed in (X, τ) . But every ^{**}ga-closed set is g-closed set. Hence f⁻¹(V) is g-closed set in (X, τ) . Thus f is g-continuous. The converse of the above theorem need not be true. It can be seen by the following example

Example 3.19: Let $X = \{a, b, c\} = Y$ with $\tau = \{X, \phi, \{a\}, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{b\}, \{a, b\}\}$ Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = a, f(b) = c, f(c) = b. g-closed sets are X, $\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}$ **g α -closed sets are X, $\phi, \{a\}, \{b, c\}$ Here f⁻¹({a, c}) = {a, b} is not a **g α -closed set in (X, τ) . Therefore f is not **g α -continuous. However f is g-continuous.

Remark 3.20: ^{**} $g\alpha$ -continuity is independent of semi-continuity and α -continuity. It can be seen by the following example.

Example 3.21: Let $X = \{a, b, c\} = Y$ with $\tau = \{X, \phi, \{b\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a, c\}\}$ Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = b, f(b) = c, f(c) = a. **g α -closed sets are X, ϕ , $\{c\}, \{a, c\}, \{b, c\}$ semi-closed sets are X, ϕ , $\{a\}, \{c\}, \{a, c\}$ α -closed sets are X, ϕ , $\{a\}, \{c\}, \{a, c\}$ Here f⁻¹($\{b\}$) = $\{a\}$ is not a **g α -closed set in (X, τ) . Therefore f is not **g α -continuous. Ho

Here $f^{-1}(\{b\}) = \{a\}$ is not a ^{**}g α -closed set in (X, τ). Therefore f is not ^{**}g α -continuous. However f is semicontinuous and α -continuous.

Example 3.22: Let $X = \{a, b, c\} = Y$ with $\tau = \{X, \phi, \{b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b, c\}\}$ Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = a, f(b) = b, f(c) = c. **g α -closed sets are X, ϕ , $\{c\}, \{a, c\}, \{b, c\}$ semi-closed sets are X, $\phi_{\{a\},\{c\}}$, $\{a, c\}$ α -closed sets are X, $\phi_{\{a\},\{c\}}$, $\{a, c\}$ Here f⁻¹({b, c}) = {b, c} is not a ^{**}g\alpha-closed set in (X, τ). Therefore f is not semi-continuous and α -continuous. However f is ^{**}g\alpha-continuous.

Remark 3.23: ^{**} $g\alpha$ -continuity is independent of pre-continuity and semi- pre-continuity. It can be seen by the following example.

Example 3.24: Let $X = \{a, b, c\} = Y$ with $\tau = \{X, \phi, \{b\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a, b\}\}$ Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = b, f(b) = c, f(c) = a. **g α -closed sets are X, ϕ , $\{c\}, \{a, c\}, \{b, c\}$ semi-pre-closed sets are X, ϕ , $\{a\}, \{c\}, \{a, c\}$ pre-closed sets are X, ϕ , $\{a\}, \{c\}, \{a, c\}$ Here f⁻¹($\{b\}$) = $\{a\}$ is not a **g α -closed set in (X, τ). Therefore f is not **g α -continuous. However f is semi-precontinuous and pre-continuous.

Example 3.25: Let $X = \{a, b, c\} = Y$ with $\tau = \{X, \phi, \{b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b, c\}\}$ Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = a, f(b) = b, f(c) = c. **ga-closed sets are X, ϕ , {c}, {a, c}, {b, c} semi-pre-closed sets are X, ϕ , {a}, {c}, {a, c} pre-closed sets are X, ϕ , {a}, {c}, {a, c}

Here $f^{-1}(\{b, c\}) = \{b, c\}$ is not a ^{**}ga-closed set in (X, τ) . Therefore f is not semi-pre-continuous and precontinuous. However f is ^{**}ga-continuous.

Remark 3.26: The composition of two **g α -continuous map need not be a **g α -continuous. It can be seen by the following example.

Example 3.27: Let $X = \{a, b, c\} = Y = Z$ with $\tau = \{X, \phi, \{b\}, \{a, b\}\}, \sigma = \{Y, \phi, \{a\}, \{c\}, \{a, c\}\}$ and $\eta = \{Z, \phi, \{c\}, \{a, b\}\}$ Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = a, f(b) = b, f(c) = c. Define g: $(Y, \sigma) \rightarrow (Z, \eta)$ by f(a) = b, f(b) = a, f(c) = c** $G\alpha C(X, \tau) = \{X, \phi, \{c\}, \{a, c\}, \{b, c\}\}$ ** $G\alpha C(Y, \sigma) = \{Y, \phi, \{b\}, \{a, b\}, \{b, c\}\}$ Hear $\{a, b\}$ is a closed set in (Z, η) .But $(gof)^{-1}(\{a, b\}) = \{a, b\}$ is not a ^{**} $g\alpha$ -closed set in (X, τ) .Therefore gof is not ^{**} $g\alpha$ -continuous.

We introduce the following definition

Definition 3.28: A function $f: (X, \tau) \to (Y, \sigma)$ is called ^{**} $g\alpha$ -irresolute if $f^{-1}(V)$ is a ^{**} $g\alpha$ -closed set of (X, τ) for every ^{**} $g\alpha$ -closed set of V of (Y, σ) .

Theorem 3.29: Every ^{**}gα-irresolute map is ^{**}gα-continuous.

Proof: Let V be a closed set of (Y, σ) . Since every closed set is ^{**}ga-closed set, V is ^{**}ga-closed set of (Y, σ) . Since f is ^{**}ga-irresolute, Hence f⁻¹(V) is ^{**}ga-closed set in (X, τ) . Thus f is ^{**}ga-continuous.

The converse of the above theorem need not be true. It can be seen by the following example

Example 3.30: Let $X = \{a, b, c\} = Y$ with $\tau = \{X, \phi, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a\}\}$. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = a, f(b) = b, f(c) = c. Define g: $(Y, \sigma) \rightarrow (Z, \eta)$ by f(a) = b, f(b) = a, f(c) = c**gaC(X, $\tau) = \{X, \phi, \{c\}, \{a, c\}, \{b, c\}\}$ **gaC(Y, $\sigma) = \{Y, \phi, \{b\}, \{a, b\}, \{b, c\}\}$

Hear f is ^{**}g α -continuous but f is not ^{**}g α -irresolute. Since {a, b} is a ^{**}g α -closed set in (Y, σ) but f ⁻¹({a, b}) = {a, b} is not a ^{**}g α -closed set in (X, τ).

Theorem 3.31: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \eta)$ be any two functions. Then gof: $(Y, \sigma) \rightarrow (Z, \eta)$ is ${}^{**}g\alpha$ -continuous if g is continuous and f is ${}^{**}g\alpha$ -continuous.

Proof: Let V be a closed set in (Z, η) . Since g is continuous, $g^{-1}(V)$ is closed in (Y, σ) . Since f is ^{**}ga-continuous, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is ^{**}ga-closed in (X, τ) . Therefore g o f is ^{**}ga-continuous.

Theorem 3.32:Let f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \eta)$ be any two functions. Then gof: $(Y, \sigma) \rightarrow (Z, \eta)$ is ${}^{**}g\alpha$ -irresolute if both g and f are ${}^{**}g\alpha$ -irresolute.

Proof: Let V be a closed set in (Z, η) . Since g is ^{**}ga-irresolute, g⁻¹(V) is ^{**}ga-closed in (Y, σ) . Since f is ^{**}ga-irresolute, f⁻¹(g⁻¹(V)) = (gof)⁻¹(V) is ^{**}ga-closed in (X, τ) . Therefore gof is ^{**}ga-irresolute.

Theorem 3.3: Let f: $(X, \tau) \to (Y, \sigma)$ and g: $(Y, \sigma) \to (Z, \eta)$ be any two functions. Then gof: $(Y, \sigma) \to (Z, \eta)$ is ${}^{**}g\alpha$ -continuous g is ${}^{**}g\alpha$ -continuous and f is ${}^{**}g\alpha$ -irresolute.

Proof: Let V be a closed set in (Z, η) . Since g is $*^*g\alpha$ -continuous, $g^{-1}(V)$ is $*^*g\alpha$ -closed in (Y,σ) . Since f is $*^*g\alpha$ -irresolute, $f^{-1}(g^{-1}(V)) = (gof)^{-1}(V)$ is $*^*g\alpha$ -closed in (X, τ) . Therefore gof is $*^*g\alpha$ -continuous.

Theorem 3.34: Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a ^{**}g α -continuous map. If (X,τ) is an ${}_{\alpha}T_{1/2}^{****}$ space, then f is continuous.

Proof: Let V be a closed set in (Y, σ) . Since f is $*^*g\alpha$ -continuous, $f^{-1}(V)$ is $*^*g\alpha$ -closed in (X, τ) . Since $s(X, \tau)$ is an ${}_{\alpha}T_{1/2}^{***}$, $f^{-1}(V)$ is closed in (X, τ) . Therefore f is continuous.

Theorem 3.35: Let f: $(X, \tau) \to (Y, \sigma)$ be a gs-continuous map . If (X, τ) is an T_c^{***} space, then f is ${}^{**}g\alpha$ -continuous.

Proof:Let V be a closed set in (Y, σ) . Since f is gs-continuous, $f^{-1}(V)$ is gs-closed in (X, τ) . Since (X, τ) is an T_c^{***} , $f^{-1}(V)$ is ${}^{**}g\alpha$ -closed in (X, τ) . Therefore $f^{**}g\alpha$ -continuous.

Theorem 3.36: Let f: $(X,\tau) \rightarrow (Y,\sigma)$ be a αg -continuous map. If (X,τ) is ${}_{\alpha}T_{c}^{***}$ space, then f is ${}^{**}g\alpha$ -continuous.

Proof: Let V be a closed set in (Y, σ) . Since f is αg -continuous, $f^{-1}(V)$ is αg -closed in (X, τ) . Since (X, τ) is an ${}_{\alpha}T_{c}^{***}$, $f^{-1}(V)$ is ${}^{**}g\alpha$ -closed in (X, τ) . Therefore $f^{**}g\alpha$ -continuous.

Theorem 3.37: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a g-continuous map . If (X, τ) is ${}^{***}_{\alpha}T_{1/2}$ space, then f is ${}^{**}g\alpha$ -continuous.

Proof: Let V be a closed set in (Y, σ) . Since f is g-continuous, $f^{-1}(V)$ is g-closed in (X, τ) . Since (X, τ) is a **** ${}_{\alpha}T_{1/2}$, $f^{-1}(V)$ is ***ga-closed in (X, τ) . Therefore f ***ga-continuous.

Theorem 3.38: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a surjective, *g α -irresolute and a closed map. Then f (A) is **g α -closed set of (Y, σ) for every **g α -closed set A of (X, τ) .

Proof: Let A be a ^{**}ga-closed set of (X, τ) . Let U be a ^{*}ga-open set of (Y, σ) such that $f(A) \subseteq U$. Since f is surjective and ^{*}ga-irresolute, $f^{-1}(U)$ is a ^{*}ga-open set of (X, τ) . Since $A \subseteq f^{-1}(U)$ and A is ^{**}ga-closed set of (X, τ) cl(A) $\subseteq f^{-1}(U)$. Then $f(cl(A)) \subseteq f(f^{-1}(U))=U$. since f is closed, $f(cl(A)) \subseteq cl(f(cl(A)))$. This implies $cl(f(A)) \subseteq cl(f(cl(A))) \subseteq f(cl(A)) \subseteq U$. Therefore f(A) is a ^{**}ga-closed set of (Y, σ) .

cl(f(A))⊆cl(f(cl(A)))=f(cl(A))⊆U. Therefore f(A) is a ^{**}gα-closed set of (Y, σ). **Theorem 3.3**9: Let f: (X, τ) → (Y, σ) be a surjective, ^{***}gα-irresolute and a closed map. If (X, τ) is an $_{\alpha}T_{1/2}^{***}$ space, then (Y, σ) is also an $_{\alpha}T_{1/2}^{***}$ space.

Proof: Let A be a ^{**}g α - closed set of (Y, σ). Since f is ^{**}g α -irresolute, f⁻¹(A) is a ^{**}g α -closed set of (X, τ). Since (X, τ) is an $_{\alpha}T_{1/2}^{***}$, f⁻¹(A) is closed set of (X, τ). Then f(f⁻¹(A))=A is closed in (Y, σ). Therefore (Y, σ) is an $_{\alpha}T_{1/2}^{***}$ space.

Definition 3.40: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called pre-^{**}ga-closed if f(A) is a ^{**}ga-closed set of (Y, σ) for every ^{**}ga-closed set of A of (X, τ) .

Theorem 3.41: Let f: $(X,\tau) \to (Y, \sigma)$ be a surjective, gs-irresolute and pre-^{**}g α -closed map. If (X, τ) is a T_c^{***} space, then (Y, σ) is also T_c^{***} space.

Proof: Let A be a gs-closed set of (Y, σ) . Since f is gs-irresolute, $f^{-1}(A)$ is gs-closed set in (X, τ) . Since (X, τ) is a T_c^{***} space, $f^1(A)$ is a ^{**}ga-closed in (X, τ) . Since f is pre-^{**}ga -closed map, $f(f^{-1}(A))$ is ^{**}ga-closed in (Y, σ) for every ^{**}ga -closed set $f^{-1}(A)$ of (X, τ) . Thus A is a ^{**}ga-closed in (Y, σ) . Therefore (Y, σ) is a T_c^{***} space.

Theorem 3.42: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a surjective, αg -irresolute and pre-^{**} $g\alpha$ -closed map. If (X, τ) is an $_{\alpha}T_{c}^{***}$ space, then (Y, σ) is also $_{\alpha}T_{c}^{***}$ space.

Proof: Let A be a αg -closed set of (Y, σ) . Since f is αg -irresolute, $f^{-1}(A)$ is αg -closed set in (X, τ) . Since (X, τ) is an ${}_{\alpha}T_{c}^{***}$ space, $f^{-1}(A)$ is a ${}^{**}g\alpha$ -closed in (X, τ) . Since f is pre- ${}^{**}g\alpha$ -closed map, f $(f^{-1}(A))$ is ${}^{**}g\alpha$ -closed in (Y, σ) for every ${}^{**}g\alpha$ -closed set f ${}^{-1}(A)$ of (X, τ) . Since f is surjection, $A=f(f^{-1}(A))$. Thus A is a ${}^{**}g\alpha$ -closed set of (Y, σ) . Therefore (Y, σ) is an ${}_{\alpha}T_{c}^{***}$ space.

Theorem 3.43: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a surjective, gc-irresolute and pre-^{**} $g\alpha$ -closed map. If (X, τ) is a ^{****} $_{\alpha}T_{1/2}$ space, then (Y, σ) is also ^{****} $_{\alpha}T_{1/2}$ space.

Proof: Let A be a g-closed set of (Y, σ) . Since f is gc-irresolute, $f^{-1}(A)$ is g-closed set in (X, τ) . Since (X, τ) is a ^{***}_a $T_{1/2}$ space, $f^{-1}(A)$ is a ^{**}ga-closed in (X, τ) . Since f is pre-^{**}ga-closed map, f $(f^{-1}(A))$ is ^{**}ga-closed in (Y, σ) for every ^{**}ga-closed set $f^{-1}(A)$ of (X, τ) . Since f is surjection, A=f $(f^{-1}(A))$. Thus A is a ^{**}ga-closed set of (Y, σ) . Therefore (Y, σ) is a ^{***}_a $T_{1/2}$ space.

IV. Conclusion

The class of ^{**} $g\alpha$ -continuous map and ^{**} $g\alpha$ -irresolute map defined using ^{**} $g\alpha$ -closed set. The ^{**} $g\alpha$ -closed sets can be used to derive a new homeomorphism, connectedness, compactness and new separation axioms. This concept can be extended to soft topological space and nano topological spaces.

References

- M.E.Abd El-Monsef, S.N.El-Deeb and R.A.Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12(1983), 77-90.
- [2]. D.Andrijevic, Semi-preopen sets, Mat. Vesnik, **38**(1) (1986), 12-32.
- [3]. I.Arokiarani, K.Balachandran and J.Dontchev, Some characterizations of gp-irresolute and gp-continuous maps between topological spaces, Mem. Fac. Sci. Kochi. Univ Ser.A. Math., 20(1999), 93-104.
- [4]. S.P.Arya and T.Nour, Characterizations of s-normal spaces, Indian J. Pure. Appl. Math., 21(8) (1990), 717-719.
- [5]. K.Balachandran, P.Sundaram and H.Maki, On generalized continuous maps in topological spaces, Mem. Fac. Kochi Univ. Ser.A, Math., 12(1991), 5-13.
- [6]. P.Bhattacharya and B.K.Lahiri, Semi-generalized closed sets in topology, Indian J.Math., 29(3)(1987), 375-382.
- [7]. N. Biswas, On characterization of semi-continuous functions, Atti. Accad.Naz.Lincei. Rend. Cl. Sci. Fis. Mat. Natur.48(8) (1970),399-402.
- [8]. R.Devi, K.Balachandran and H.Maki, Generalized α-closed maps and α-generalized closed maps, Indian J. Pure. Appl. Math., 29(1) (1998), 37-49.
- [9]. R.Devi H.Maki and K.Balachandran, Semi-generalized closed maps and generalized closed maps, Mem. Fac. Sci. Kochi Univ. Ser.A. Math., 14(1993), 41-54.
- [10]. R.Devi, H.Maki and K.Balachandran, Semi-generalized homeomorphisms and generalized semi-homeomorphism in topological spaces, Indian J. Pure. Appl. Math., 26(3) (1995), 271-284.
- [11]. J.Dontchev, On generalizing semi-preopen sets, Mem.Fac.Sci.Kochi Ser.A, Math., 16(1995), 35-48.
- [12]. J.Dontchev. On some separation axioms associated with the α -topology, Mem. Fac. Sci. Kochi Univ. Ser.A, Math., 18(1997), 31-35.
- [13]. W.Dunham, T₁₂-spaces, Kyungpook Math. J., 17(1977), 161-169.
- [14]. Y.Gnanambal, On generalized preregular closed sets in topological spaces, Indian J.Pure. Appl. Math., 28(3) (1997), 351-360.
- [15]. N.Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2) (1970), 89-96.
- [16]. N.Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [17]. H.Maki, R.Devi and K.Balachandran, Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser.A, Math., 15(1994), 51-63.
- [18]. Maki, R.Devi and K.Balachandran, Generalized α-closed sets in topology, Bull. Fukuoka Univ. Ed. Part III, 42(1993), 13-21.
- [19]. H.Maki, J.Umehara and T.Noiri, Every topological space is pre-T₁₂, Mem. Fac. Sci. Koch. Univ. Ser.A, Math., 17(1996), 33-42.

- [20]. A.S.Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb, On pre-continuous and weak pre-continuous mappings, Proc. Math. and Phys. Soc. Egypt, 53(1982), 47-53.
- [21]. A.S.Mashhour, I.A.Hasanein and S.N.El-Deeb, α -continuous and α -open mappings. Acta Math. Hung., 41(3-4) (1983), 213-218.
- [22]. O.Njastad, On some classes of neraly open sets, Pacific J.Math., 15(1965), 961-970.
- [23]. M.K.R.S. Veerakumar, between closed sets and g-closed sets, Mem. Fac. Sci. Kochi. Univ.Ser. A, Math., 21(2000), 1-19.
- [24]. M.Vigneshwaran & R.Devi, On Gαo-kernel in the digital plane, International Journal of Mathematical Archive-3(6) (2012), 2358-2373.
- [25]. M. Vigneshwaran and A.Singaravelan, On properties of $**g\alpha$ -closed sets and some application, International Journal of Mathematical Archive5(10), (2014), 139-150.