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I. Introduction 
 The modern theory of differential or integral calculus began in the 17th century with the works of Newton 

and Leibnitz. In 1989, K.S.Miller and Ross [11] introduced the discrete analogue of the Riemann-Liouville 

fractional derivative and proved some properties of the fractional derivative operator. In 2011, M.Maria Susai 

Manuel, et.al, [8, 11] extended the definition of   to 
( )   defined on ( )u k  as 

( ) ( ) = ( ) ( )v k v k v k     , where 0  , > 0  are fixed and [0, )k   is variable. The results 

derived in [11] are coincide with the results in [7] when =1 . An equation involving both   and   is 

called mixed difference equation. Oscillatory behaviour of solutions certain types of mixed difference equations 
have been dicussed in [3, 4, 6, 12]. In 2014, G.Britto Antony Xavier, et al. [2], [3] proved several interesting 

results of geometric progression using generalized difference operator and q-difference operator. 

     In this paper, we obtain infinite summation form and closed form solution of higher order backward 

 difference equation for getting formula of infinite multi-series of polynomials.  

 

II. Preliminaries 
   In this section, we define the generalized backward alpha difference operator and we presents certain 

results on its inverse alpha difference operator with polynomial and polynomial factorials for positive and 

negative variable k . 

 Definition 2.1 If ( )v k is a real valued function on [0, ) , then the generalized difference operator for 

negative   denoted by 
( )    is defined as  

 
( ) ( ) = ( ) ( ), (0, )v k v k v k       

                    
(1) 

 If 
( ) ( ) = ( )v k u k    then the inverse generalized  difference equation is defined as  

 
1

( )( ) = ( )v k u k



   

Definition 2.2 The higher order generalized i  difference equation is defined as  

  
( ) ( )

1 1 2 2
( ) = ( ), [0, ), > 0iu k k               (2) 
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III. Infinite   Summation On Positive Variable k  
 In this section we derive infinite alpha summation formula for positive variable k  using the inverse of 

generalized backward alpha difference operator  

 

Theorem 3.1  (Infinite  -summation formula for > 0k ) For , > 0  

if 
[ ]

1

( ) ( [ ] ) = 0lim

k

r

k
u k 




 
 


, then we have 

 
1 1

( )

=1

( ) = ( )r

r

u k u k r 


 

  
       

 (3) 

Proof: By taking 
1 ( ) = ( )u k v k

  , we have ( ) = ( )v k u k  , which gives  

( ) = ( ) ( )v k u k v k        (4) 

 Replacing k  by k    in (4), we get  

( ) = ( ) ( )v k u k v k   
 

     (5) 

 Substituting (5) in (4), we get  

 
2( ) = ( ) ( ) ( )v k u k u k v k            (6) 

 Replacing k  by k    in (12),we obtain  

 
2( ) = ( ) ( 2 ) ( 2 )v k u k u k v k       

     
 (7) 

 Substituting (7) in (4), we get  

 
2 3( ) = ( ) ( ) ( 2 ) ( 2 )v k u k u k u k v k                (8) 

 Replacing k  by k    in (8)  

 
2 3( ) = ( ) ( 2 ) ( 3 ) ( 3 )v k u k u k u k v k                (9) 

 Proceeding like this we get 

 
2 3( ) = ( ) ( 2 ) ( 3 ) ( 3 ) ...v k u k u k u k u k                  (10) 

which gives (3).  

  

Corollary 3.2  Let [0, )k   and if 
1 ( ) = 0lim

r

u k




  , then we have  

 
1

=1

( ) | = ( )k

r

u k u k r


 

          (11) 

Proof: The proof follows by taking 1 (3).in   

Theorem 3.3  If 1 2, 1, (0, )k     , then we have  

 
1 11 1 1 2

( ) ( ) 1 2 1 1 2 2
2 2 1 1

=1 =1
1 2

( ) = ( )
r r

r r

u k u k r r   
 

  

            (12) 

Proof: Replacing ,  by 2 2,  in (3), we get 

  
1

2 2 2
( )

2 2

( ) = ( ) ( 2 ) ...u k u k u k



    


   

Replacing k  by 1k    

  
1 2

1 1 2 2 1 2 2 1 2
2( )

2

( ) = ( ) ( 2 ) ( 3 ) ...u k u k u k u k  


          


        

Replacing k  by 12k    and multiplying 1  on both sides, we get 

  
1

( ) 1 1 2 2 1 2
2 2

( 2 ) = ( 2 ) ( 2 2 ) ...u k u k u k 

              

Replacing k  by 13k    and multiplying 
2

1 on both sides, we get 

  
1

1 1 2 2 1 2
2( )

2

( 3 ) = ( 3 ) ( 3 2 ) ...u k u k u k 


       


      
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Replacing k  by 14k    and multiplying 
3

1  on both sides, we get 

  
1

1 1 2 2 1 2
2( )

2

( 4 ) = ( 4 ) ( 4 2 ) ...u k u k u k 


       


      

Replacing k  by 1 1k r   and multiplying 
1

1
1

r



 on both sides, we get 

  
1

( ) 1 1 1 1 2 2 1 1 2
2 2

( ) = ( ) ( 2 ) ...u k r u k r u k r 

               

Proceeding like this we get (12).  

Corollary 3.4  If > 0, (0, )k   , then we have  

 
21 1 1 2

( ) ( ) 1 1 2 2
2 1

=1 =1
1 2

( ) = ( )
r r

r r

u k u k r r  
 

  

            (13) 

Proof: The proof follows by taking 1 2= =    in Theorem 3.3.  

Corollary 3.5  If =1> 0, (0, )k   , then we have  

 
1 1

( ) ( ) 1 1 2 2
2 1

=1 =1
1 2

( ) = ( )
r r

u k u k r r
 

 

             (14) 

Proof: The proof follows by taking =1  in corollary 3.4.  

Theorem 3.6  If > 0, (0, )k   , then we have  

 
11 11 1 1 31 1

( ) ( ) ( ) 1 2 3 1 1 2 2 3 3
1 2 3 3

=1 =1 =1
1 2 3

( ) = ( )
rr r

r r r

u k u k r r r     
  

   

               (15) 

Proof: Replacing 1 2,r r  by 2 3,r r  and 1 2,   by 2 3,   and 1 2,   by 2 3,  in(12),we get 

  
111 1 32

( ) ( ) 2 3 2 2 3 3
3 3 2 2

=1 =1
2 3

( ) = ( )
rr

r r

u k u k r r   
 

 

         

Replacing k  by 1k    and multiplying 1  on both sides, we get 

  

1 1 2 2[ ][ ]

2 2
111 1 32

( ) ( ) 1 2 3 1 2 2 3 3
3 3 2 2

=1 =1
2 3

( ) = ( )

k k r

rr

r r

u k u k r r   

  

 

       

  

 

       

Replacing k  by 12k    and multiplying 
2

1  on both sides, we get 

  

2 2
1 1 2 2[ ][ ]

2 2
111 1 32

( ) ( ) 1 2 3 1 2 2 3 3
3 3 2 2

=1 =1
2 3

( 2 ) = ( 2 )

k k r

rr

r r

u k u k r r   

  

 

       

  

 

       

Proceeding like this and replacing k  by 1 1k r   and multiplying 
1

1

r 
 we get (15).  

Corollary 3.7  If > 0, (0, )k   , then we have  

 

31 1 1 1 2 3
( ) ( ) ( ) 1 1 2 2 3 3

1 2 3
=1 =1 =1

1 2 3

( ) = ( )
r r r

r r r

u k u k r r r   
  

    

               

Proof: The proof follows by taking 1 2 3= = =     in Theorem 3.6.  

Corollary 3.8  If > 0, (0, )k   , then we have 

  
1 1 1

( ) ( ) ( ) 1 1 2 2 3 3
1 2 3

=1 =1 =1
1 2 3

( ) = ( )
r r r

u k u k r r r
  

  

               

Proof: The proof follows by taking =1  in corollary 3.9.  

Theorem 3.9  ( i - higher order summation formula) If [0, )k   and > 0i , then  
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11

( )

=1 =1=1 =1[1 ]

( ) = ( )
t t t

r
n

n n n
n n

r nn nn

u k u k r 








          (16) 

Proof: The proof follows by Theorem 3.6, Theorem 3.3 and Theorem 3.1.  

Corollary 3.10  If [0, )k   and > 0i , then we have  

 
11

( )

=1 =1=1 =1[1 ]

( ) = ( )
t t t

r
n

n n
n

r nn nn

u k u k r 








           (17) 

Proof: The proof follows by taking =n   in Corollary 3.9.  

Corollary 3.11 If (0, )k   and > 0i , then we have  

 
1

( )

=1 =1=1 =1[1 ]

( ) = ( )
t t t

n n
n

r nn nn

u k u k r








            (18) 

Proof: The proof follows by taking =1  in Corollary 3.10.  

Theorem 3.12  (Infinite 
1


-summation formula for < 0k ) For > 0  , 

if 
1

( )
[ ] 1

1
( ([ ] 1) ) = 0lim k

r

k
u k






 

   






, then we have 

 
1

( ) 1
=0

1
( ) = ( )

r
r

u k u k r





 


           (19) 

Proof: By taking 
1 ( ) = ( )u k v k

  , we have ( ) = ( )v k u k  , which gives  

 
1 1

( ) = ( ) ( )v k u k v k
 


           (20) 

 Replacing k  by k    in (20), we get  

 
1 1

( ) = ( ) ( 2 )v k u k v k
 


             (21) 

 Substituting (21) in (20)  

 
2 2

1 1 1
( ) = ( ) ( ) ( 2 )v k u k u k v k

  


           (22) 

 Replacing k  by k    in (22), we get  

 
2 2

1 1 1
( ) = ( ) ( 2 ) ( 3 )v k u k u k v k

  


              (23) 

 Substituting (23) in (20), we obtain 

  
2 3 3

1 1 1 1
( ) = ( ) ( ) ( 2 ) ( 3 )v k u k u k u k v k

   


         

Proceeding like this we get 

2 3 4

1 1 1 1
( ) = ( ) ( ) ( 2 ) ( 3 ) ...v k u k u k u k u k

   


          which gives (19).  

Corollary 3.13  (Infinite summation formula for < 0k  ) For > 0  , 

if 
1

( ) ( ([ ] 1) ) = 0lim
r

k
u k




    


, then we have  

 
1

( )

=0

( ) = ( )
r

u k u k r




         (24) 

Proof: The proof follows by =1  in Theorem 3.12.  

Theorem 3.14  If 1 2, 0, (0, )k     , then we have  
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1 1

( ) ( ) 1 1 2 21 12 2 1 1 1 2
=0 =0 1 21 2

1 1
( ) = ( )

r r
r r

u k u k r r 
 

 
 

   

 
           (25) 

  

Proof: Replacing 1=   and 1=   in (24) 

  
1

( ) 1 12 31 1
1 1 1

1 1 1
( ) = ( ) ( ) ( 2 )...u k u k u k u k

  





 
        

Replacing 1  by 2  and 1  by 2  and multiplying 

1

1




 on both sides, we get  

  
1

( ) 2 22 32 2
2 2 2

1 1 1
( ) = ( ) ( ) ( 2 )...u k u k u k u k

  





 
        

Replacing k  by 1k    and multiplying 
2

1

1




 on both sides, we get  

 

1

( ) 1 1 1 222 2
2 2

1 1
( ) = ( ) ( )u k u k u k

 






           

1 23

2

1
( 2 )...u k


     

Replacing k  by 12k    and multiplying 
3

1

1




 on both sides, we get  

 

1

( ) 1 1 1 222 2
2 2

1 1
( 2 ) = ( 2 ) ( 2 )u k u k u k

 






          1 23

2

1
( 2 2 )...u k


     

Replacing k  by 13k   and multiplying 
4

1

1




 on both sides, we get  

 

1

( ) 1 1 1 222 2
2 2

1 1
( 3 ) = ( 3 ) ( 3 )u k u k u k

 






          1 23

2

1
( 3 2 )...u k


     

Replacing k  by 1k r   and multiplying 
1

1
1

1
r





 on both sides, we get  

 

1

( ) 1 1 1 1 1 1 222 2
2 2

1 1
( ) = ( ) ( )u k r u k r u k r

 






          1 1 23

2

1
( 2 )...u k r


     

Proceeding like this we get (25).  

Corollary 3.15  If > 0, (0, )k   , then we have  

 
1 1

( ) ( ) 1 1 2 21 12 1 1 2
=0 =0

1 2

1 1
( ) = ( )

r r
r r

u k u k r r 
 

 
 

   

 
          (26) 

Proof: The proof follows by Theorem 3.14, when 1 2= =   .  

Corollary 3.16  If > 0, (0, )k  , then we have  

 
1 1

( ) ( ) 1 1 2 2
2 1

=0 =0
1 2

( ) = ( )
r r

u k u k r r
 

 

             (27) 

Proof: The proof follows by corollary3.15, when =1 .  

Theorem 3.17  If 
1

> 0, (0, )k


  , then we have  

 
1 1 1

( ) ( ) ( ) 1 1 2 2 3 31 1 11 1 2 2 3 3 1 2 3
=0 =0 =0 1 2 31 2 3

1 1 1
( ) = ( )

r r r
r r r

u k u k r r r  
  

  
  

     

  
            (28) 

Proof: Replacing 1 2,r r  by 2 3,r r  and 1 2,   by 2 3,   and 1 2,   by 2 3,   in (25), 

we get 



  Infinite Series Obtained By Backward Alpha Difference Operator With Real Variable  

DOI: 10.9790/5728-115195101                        www.iosrjournals.org                         100 | Page 

 
1 1

( ) ( ) 2 2 3 31 13 3 2 2 2 3
=0 =0 2 32 3

1 1
( ) = ( )

r r
r r

u k u k r r 
 

 
 

   

 
        

Replacing k  by 1k    and multiplying 

1

1


 on both sides  

 
1 1

( ) ( ) 1 1 2 2 3 31 13 3 2 2 2 3
=0 =0 2 32 3

1 1
( ) = ( )

r r
r r

u k u k r r 
 

 
 

   

 
            

Replace k  by 12k    and multiplying 
2

1

1
( )


 on both sides  

 
1 1

( ) ( ) 1 1 2 2 3 31 13 3 2 2 2 3
=0 =0 2 32 3

1 1
( 2 ) = ( 2 )

r r
r r

u k u k r r 
 

 
 

   

 
            

Procuding like this and replacing k  by 1 1k r   and multiplying 
1

1

1
r 

 we get (25).  

Theorem 3.18  ( - higher order summation formula) If (0, )k   

and > 0i , then we have 

   
11

( )

=1=1 =1[1 ]

( ) = ( )
t t t

r
n

n t t
n n

r nn nt

u k u k r 








     , where =1,2,3...,t    

Proof: The proof follows by Lemma 3.12, Theorem 3.14 and Theorem 3.17.  

Corollary 3.19  If [0, )k   and > 0i , then we have 

  
11

( )

=1=1 =1[1 ]

( ) = ( )
t t t

r
n

t t
n

r nn nt

u k u k r 








     , where =1,2,3...,t    

Proof: The proof follows by Theorem 3.18, when =i  .  

Theorem 3.20 If 1, (0, )    ,then we have  

 
1

( )( ) ( 1)

1 (1 ) (( 1) )
| = |

( )

k k

j jn n

k n

k k


 

 

 

    
  

 


 




      (29) 

Proof: From the Definition    we have 

  
( ) (1) (1) (1)

1 1 1
=

( )k k k
 

  

 




  
 

1

( )(1) (2)

1 (1 )
=

( )

k

k k


 



 

  
   

 


 




 

Second 

  ( ) (2) (2) (2)

1 1 1
=

( )k k k
 

  

 
   

  


  
 

( )

1 (

1 (1 ) (3 )
=

( ) 1)

k

k k n

 



 

   
   

  



 

 


 

Third 

  ( ) (3) (3) (3)

1 1 1
=

( )k k k
 

  

 
   

  


  
 

( )

1(3) (4)

1 (1 ) (2 )
| = |

( )

k k

j j

k

k k

  



 

   
   

 



 




 

Similarly  

( )

1(4) (5)

1 (1 ) (3 )
| = |

( )

k k

j j

k

k k

  



 

   
  

 



 




  which gives (29).  
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IV. Conclusion 
   We have obtained formulas for several infinite    series on polynomial using inverse of generalized 

alpha difference operator.   
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