On Q*g closed sets in Supra Topological Spaces

 $C.R.Parvathy^1$ and $U.Remya^2$

Assistant professor, Department of mathematics, PSGR Krishnammal college for women, Coimbatore-641004. Research Scholar, Department of mathematics, PSGR Krishnammal college for women, Coimbatore-641004.

Abstract: The aim of this paper is to introduce and study some properties of supra topological spaces. We introduce the concepts of supra Q^*g closed sets, Supra Q^*g open sets, Supra $Q^*closed$ sets and supra Q^*open sets.

Keywords : supra Q^*g closed sets, supra Q^*g open sets, supra $Q^*closed$ sets, supra Q^* open sets.

I. Introduction

Levin[2] introduced generalized closed set in topological spaces in the year 1970. In 1983, Mashhour et al[3] introduced supra topological spaces. Closed sets are fundamental objects in a topological space. The notion of Q* closed sets in a topological spaces was introduced by Murugalingam and lalitha[4] in 2010. In this paper introduced Q*g closed sets in supra topological space. P.Padma and S.Udayakumar[6]introduced Q*g closed sets in topological space in the year 2015.

II. Preliminaries

Definition 2.1 :[2] A topological Space (X, τ) is said to be generalized closed (briefly g-closed) set if cl(A) U whenever A \subseteq U and U is open (X, τ).

Definition 2.2 :[8] A topological space (X, τ) is said to be generalized star closed (briefly g*- closed) set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open(X, τ).

Definition 2.3 :[7] A topological space (X, τ) is said to be generalized star star closed (briefly g**-closed) set if cl(A) \subseteq U whenever A \subseteq U and U is g*-open(X, τ).

Definition 2.4 :[2] Let X be a non empty set. The subfamily $\mu \subseteq p(X)$ where p(X) is the power set of X is said to be a supra topology on X if $X \in \mu$ and μ is closed under arbitrary unions. The pair (X, μ) is called a supra topological space. The elements of μ are said to be supra open in (X, μ) . Complements of supra open sets are called supra closed sets.

Definition 2.5 :[9] Let A be a subset of (X, μ) . Then the supra closure of A is denoted by $cl^{\mu}(A) = \bigcap \{B \mid B \text{ is a supra closed set and } A \subseteq B\}.$

Definition 2.6 :[9] Let A be a subset of (X, μ). Then the supra interior of A is denoted by int^{μ}(A)= U{ B / B is a supra open set and A \supseteq B}.

Definition 2.7 :[1] Let (X, μ) be a topological space and μ be a supra topology on X. μ is supra topology associated with τ if $\tau \subseteq \mu$.

III. On Q*G Closed Sets In Supra Topological Spaces

Definition 3.1 : A subset A of a supra topological space (X,μ) is called

(1) a supra Q^{*} - closed if int^{μ} (A) = Ø and A is closed.

(2) a supra Q^* - open if $cl^{\mu}(A) = X$ and A is open.

Definition 3.2 : A subset A of supra topological space (X, μ) is called a supra Q*g closed if $cl^{\mu}(A) \subseteq U$. whenever $A \subseteq U$ and U is Q* - open in (X, μ). The complement of a supra Q*g closed set is called supra Q*g open set.

Theorem 3.3: Every supra closed set is supra Q*g closed.

Proof : Let $A \subseteq X$ be a supra closed set and $A \subseteq U$ and U is supra Q* open. Since A is supra closed, $cl^{\mu}(A) = A$ and hence $cl^{\mu}(A) = U$. Therefore A is supra Q*g closed.

Converse part :Every supra Q*g closed set is not supra closed. **Proof :**

Let A be supra Q*g closed set .since $cl^{\mu}(A) \subseteq U$. whenever $A \subseteq U$. And U is Q* open in (X, μ) . Since the elements of μ are called supra open in (X, μ) . Therefore every supra Q*g closed set is not supra closed.

Remark 3.3: The converse of the theorem is not true as shown in the following example. **Example 3.4:** Let $X = \{a,b,c,d,e\}$, $\mu = \{\emptyset, X, \{a,b\}, \{a,b,d\}, \{b,c,d\}, \{c,d,e\}\}$ $A = \{a,b,c\}$ is supra Q*g closed but not supra closed.

Corollary 3.5: Every closed set is supra Q*g closed.

Proof : Every closed set is supra closed. By the theorem "Every Supra closed set is supra Q*g closed". **Theorem 3.6:** A subset A of X is supra Q*g closed if and only if $cl^{\mu}(A) \setminus A$ contains no non empty supra Q*-closed set.

Proof :

Necessity : Let F be a supra Q* closed set of $cl^{\mu}(A) \setminus A$ that is $F \subseteq cl^{\mu}(A) \setminus A$. Now $A \subseteq F^{c}$. Where F^{c} is supra Q* open. Since A is supra Q*g closed. $cl^{\mu}(A) \subseteq F^{c} \Rightarrow F \subseteq [cl^{\mu}(A)]^{c}$. Therefore $F \subseteq cl^{\mu}(A) \cap [cl^{\mu}(A)]^{c} = \emptyset$. Hence F^{c} is supra Q* open, $cl^{\mu}(A) = X$ and A is open. Therefore $F^{c} \neq \emptyset$.

Sufficiency :Suppose $A \subseteq U$ and U is supra Q* open. Suppose $cl^{\mu}(A) \not\subset U$. Then $cl^{\mu}(A) \cap U^{c}$ is supra Q* closed subset of $cl^{\mu}(A) \setminus A$. Hence $cl^{\mu}(A) \cap U^{c} = \emptyset$. And hence $cl^{\mu}(A) \subseteq U$. Therefore A is supra Q*g closed. **Corollary 3.7 :**A supra Q*g closed set A of X is supra closed if and only if $cl^{\mu}(A) \setminus A$ is supra Q* closed.

Proof :

The supra Q*g closed set A is supra closed. Then $cl^{\mu}(A) = A$. and hence $cl^{\mu}(A) \setminus A = \emptyset$ is supra Q*closed. Conversely, Suppose that $cl^{\mu}(A) \setminus A$ is supra Q* -closed. Since A is supra Q*g - closedcl^{μ}(A) \ A does not contain a non empty Q* closed set. But since $cl^{\mu}(A) \setminus A$ is itself supra Q* -closed, $cl^{\mu}(A) \setminus A = \emptyset$. Which implies $cl^{\mu}(A) = A$. Therefore A is supra closed.

References

- R.Devi, S.Sampathkumar, M.Caldas, On supra ∝- open sets and S ∝- continuous functions, General Mathematics, 16(2)(2008), 77-84.
- [2]. N.Levine, Generalized closed sets in Topology, Rend. Circ. Palermo, 19(2)(1970), 89-96.
- [3]. A.S.Mashhour, A.A.Allam, F.S.Mohmoud and F.H.Khedr, On Supratopological spaces, Indian J. Pure and Appl.Math., 14(4)(1983), 502-510.
- [4]. M. Murugalingam and N. Lalitha, "Q* sets ", Bulletin of pure and applied sciences, Volume 29E issue 2 (2010), 369-376.
- [5]. Pauline Mary Helen, Veronica Vijayan, PunithaTharani, "on supra g* closed sets ", International journal of Computer application, vol1(feb2013), 18-27.
- [6]. P.Padma and S.Udayakumar, "Q*g closed sets in topological space", international journal of Advance Research in Engineering and Applied Sciences. Vol.2, No.1(January 2015), 97-105.
- [7]. O.Ravi, G.Ramkumar, and M.Kamaraj, on Supra g-closed sets, International journal of advances and Applied mathematics, 1(12)(2011), 52-66.
- [8]. O.R.Sayed and T.Noiri, On supra b-open sets and supra b-continuity on topological spaces, European J.Pure and Appl.Math., 3(2)(2010), 295-302.
- [9]. M.K.R.S. Veerakumar, mem.Fac.sci.kochiUniv.(Math.), 21(2001), 1-19.