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Abstract: In this paper, the recent developments of topology contributed by various authors are mentioned and 

definitions cited by them are also presented and rg*b-closed sets, and rg*b-continuous functions are studied in 

Supra Topological Spaces. 

Keywords: rg*bμ –closed set, rg*bμ –open set 

 

I. Introduction 

In 1970,  Levine [3], introduced the concept of generalized closed set and discussed the properties of 

sets, closed and open maps, compactness, normal and separation axioms. In 1983, Mashhour et al [4] introduced 
supra topological spaces and studied S-continuous maps and S*-continuous maps. In 2008, Devi et al [1] 

introduced and studied a class of sets called supra α-open and a class of maps called sα-continuous between 

topological spaces, respectively. In 2010, Sayed and Noiri [7] introduced and studied a class of sets called supra 

b-open and a class of maps called supra β-open and a class of maps called supra β-continuous, respectively. 

Ravi et al [6] introduced and studied a class of sets called supra g-closed and a class of maps called supra g-

continuous respectively.In this paper, we introduce the concepts of rg*b-closed sets and rg*b-continuous 

functions in Supra Topological Spaces and studied their some properties.  

 

II. Preliminaries 

Definition 2.1: Let (X, μ) be a supra topological space. A subset A of X is called 

1) gμ-closed set [6] if clμ(A) ⊆U  whenever A⊆U and U is supra open in X. 

2) sgμ-closed set [2] if sclμ(A) ⊆ U whenever A⊆U and U is supra semi open in X. 

3) gsμ-closed set [5] if sclμ (A) ⊆ U whenever A⊆U and U is supra open in X. 

4) gαμ-closed set if αclμ(A) ⊆ U whenever A⊆U and U is supra α-open in X. 

5) αgμ-closed set if αclμ(A) ⊆ U whenever A⊆U and U is supra open in X. 

6) gpμ-closed set if pclμ(A) ⊆ U whenever A⊆U and U is supra open in X. 

7) gprμ-closed set if pclμ(A) ⊆ U whenever A⊆U and U is supra r-open in X. 

8) gspμ-closed set if spclμ(A) ⊆ U whenever A⊆U and U is supra open in X. 

9) rgμ-closed set if clμ(A)⊆U whenever A⊆U and U is supra regular open in X. 

10) grμ-closed set if rclμ(A)⊆U whenever A⊆U and U is supra open in X. 

11) g*μ-closed set if clμ(A) ⊆ U whenever A ⊆ U and U is gμ-open in X. 

12) g
*
s

μ
-closed set if scl

μ
(A)⊆U whenever A⊆U and U is g

μ
-open in X. 

13) g#μ-closed set if clμ(A)⊆U whenever A⊆U and U is αgμ-open in X. 

14) g#s-closed set if sclμ(A)⊆U whenever A⊆U and U is αgμ-open in X. 

15) gbμ-closed set if bclμ(A)⊆U whenever A⊆U and U is supra open in X. 

16) g*bμ-closed set if bclμ(A)⊆U whenever A⊆U and U is supra open in X. 

17) rgbμ-closed set if bclμ(A)⊆U whenever A⊆U and U is supra regular open in X. 

 

The complements of the above mentioned closed sets are called their respective open sets. 

 

III. Supra Regular Generalized Star B-Closed Sets 
In this section we introduce supra regular generalized star b-closed set and investigate some of their properties. 

Definition 3.1: A subset A of a supra topological space (X, μ) is called supra regular generalized star b-closed 

set (briefly rg*bμ-closed set) if bclμ(A)⊆U whenever A⊆U and U is rgμ-open in X. 

 

Theorem 3.2:1) Every supra closed set is rg*bμ-closed. 

2) Every supra α-closed set is a rg
*
b

μ
-closed set. 

3) Every supra semi-closed set is a rg*bμ-closed set. 
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4) Every supra g*-closed set is a rg*bμ-closed set. 

5) Every supra gα-closed set is a rg*bμ-closed set. 

6) Every supra regular-closed set is a rg*bμ-closed set. 
7) Every supra g-closed set is rg*bμ-closed. 

8) Every supra gs-closed set is rg
*
b

μ
-closed. 

9) Every supra sg-closed set is rg*bμ-closed. 

10) Every supra αg-closed set is rg*bμ-closed. 

11) Every supra gr-closed set is rg*bμ-closed. 

12) Every supra gr*-closed set is rg*bμ-closed. 

13) Every supra g*s-closed set is rg*bμ-closed. 

14) Every supra g#-closed set is rg*bμ-closed. 

15) Every supra g#s-closed set is rg*bμ-closed. 

16) Every rg*bμ-closed set is a rgbμ-closed set. 

17) Every rg*bμ-closed set is a rgμ-closed set. 
18) Every rg*bμ-closed set is a αgrμ-closed set 

 

The converses of the above need not be true as seen from the following examples. 

 

Example 3.3: 1) Let X = {a, b, c} with μ = {ϕ, {a, b}, {a, c}, X}. Then the subset {a} is rg*bμ-closed set but not 

a supra closed set. 

2) Let X = {a, b, c, d} with μ = {ϕ, {a, c, d}, {b, c, d}, X}. Then the subset {b, c} is a rg*bμ-closed set but not a 

supra α-closed set. 

3) Let X = {a, b, c, d} with μ = {ϕ, {b, c, d}, {a, b, d}, X}. Then the subset {c, d} is a rg*bμ-closed set but not a 

supra semi-closed set. 

4) Let X = {a, b, c} with μ = {ϕ, {a, c}, {b, c}, X}. Then the subset {c} is rg*bμ-closed set but not a supra g*-

closed set. 
5) Let X = {a, b, c, d} with μ = {ϕ, {b, c, d}, {a, b, d}, X}. Then the subset {b, d} is a rg*bμ-closed set but not a 

supra gα-closed set. 

6) Let X = {a, b, c} with μ = {ϕ, {b, c}, X}. Then the subset {a, b} is rg*bμ-closed set but not a supra regular-

closed set. 

7) Let X = {a, b, c} with μ = {ϕ, {a, b}, X}. Then the subset {a} is a rg*bμ-closed set but not a supra g-closed 

set. 

8) Let X = {a, b, c} with μ = {ϕ, {b, c}, X}. Then the subset {b} is a  rg*bμ-closed set but not a supra gs-closed 

set. 

9) Let X = {a, b, c} with μ = {ϕ, {a, b, c}, {b, c, d}, X}. Then the subset {b, c} is rg*bμ-closed set but not a 

supra sg-closed set. 

10) Let X = {a, b, c} with μ = {ϕ, {a, b}, {b, c}, X}. Then the subset {b} a is rg*bμ-closed set but not a supra αg-
closed set. 

11) Let X = {a, b, c} with μ = {ϕ, {a, b}, X}. Then the subset {a} is a  rg*bμ-closed set but not a supra gr-closed 

set. 

12) Let X = {a, b, c, d} with μ = {ϕ, {b, c, d}, {a, b, d} X}. Then the subset {b, d} is a rg*bμ-closed set but not a 

supra gr*-closed set. 

13) Let X = {a, b, c, d} with μ = {ϕ, {b, c, d}, {a, c, d} X}. Then the subset {d} is a rg
*
b

μ
-closed set but not a 

supra g*s-closed set. 

14) Let X = {a, b, c} with μ = {ϕ, {b, c}, X}. Then the subset {c} is a  rg*bμ-closed set but not a supra g#-closed 

set. 

15) Let X = {a, b, c} with μ = {ϕ, {a, c}, {b, c}, X}. Then the subset {c} is a rg*bμ-closed set but not a supra 

g#s-closed set. 

16) Let X = {a, b, c, d} with μ = {ϕ, {a, b, c}, {a, c, d}, X}. Then the subset {a, c, d} is a rgbμ -closed set but not 
a rg*bμ-closed set. 

17) Let X = {a, b, c} with μ = {ϕ, {a, c}, {b, c}, X}. Then the subset {b, c,} is a rgμ-closed set but not a rg*bμ-

closed set. 

18) Let X = {a, b, c, d} with μ = {ϕ, {a, b, c}, {a, b, d}, X}. Then the subset {a, b, c,} is a αgrμ-closed set but not 

a rg*bμ-closed set. 

 

Theorem 3.4: A set A is rg*bμ-closed set iff bclμ(A)-A contains no non empty rgμ-closed set. 

Proof: Necessity: Let A be an rg*bμ-closed set in (X, μ). Let F be a rgμ-closed set in X such that F⊆bclμ(A)-A 

and X – F is rgμ-open, Since A is and bclμ(A)⊆X – F. (i.e) F ⊆ (X - bclμ(A)) ∩ (bclμ(A)-A). Therefore F = ϕ. 
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Sufficiency: Let us assume that bclμ(A)-A contains no non empty rgμ-closed set. Let A⊆U, U is rgμ-open. 

Suppose that bclμ(A) is not contained in U, bclμ(A) ∩ UC is non-empty rgμ-closed set of bclμ(A)-A which is a 

contradiction. Therefore bclμ(A)⊆U. Hence A is rg*bμ-closed. 

 

Remark 3.5: The intersection of any two subsets of rg
*
b

μ
-closed sets in X is rg

*
b

μ
-closed in X. 

 

Remark 3.6: The union of any two subsets of rg*bμ-closed sets in X need not to be  rg*bμ-closed in X. 

 

Example 3.7: Let X = {a, b, c, d} with μ={ ϕ, {b, c, d}, {a, b ,d} }. The sets {ϕ, {a}, {b}, {c}, {d}, {a, b}, {a, 

c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, c, d}} are rg*bμ-closed. Then the union of the sets {b, c} and {b, 

d} is {b, c, d}, which is not rg*bμ-closed and the intersection of the sets {a, b} and {a, c} is {a}, which is rg*bμ-

closed. 

 

Theorem 3.8: If A is rg*bμ-closed set in X and A⊆B⊆bclμ(A), then B is a rg*bμ-closed set in X. 

Proof: Since B⊆bclμ(A), we have bclμ(B)⊆bclμ(A) then bclμ(B)-B ⊆ bclμ(A)-A. By Theorem 3.38, bclμ(A)-A 

contains no non empty supra rg-closed set. Hence bclμ(B)-B contains no empty supra rg-closed set. Therefore B 

is a rg*bμ-closed set in X. 

 

Theorem 3.9: If A⊆Y⊆X and suppose that A is rg*bμ-closed in X, then A is rg*bμ-closed relative to Y. 

Proof: Given that A⊆Y⊆X and A is a rg
*
b

μ
-closed set in X.  To prove that A is a rg

*
b

μ
-closed set relative to Y. 

Let us assume that A⊆Y∩U, where U is supra rg-open in X. Since A is a rg*bμ-closed set, A⊆U implies 

bclμ(A)⊆U. It follows that Y∩ bclμ(A)⊆Y∩U. That is A is a rg*bμ-closed set relative to Y. 

 

Definition 3.10: A subset A of a supra topological space (X, μ) is called supra regular generalized star b-open 

set (briefly rg*bμ-open set) if AC is rg*bμ-closed in X. The family of all rg*bμ-open sets in X is denoted by  

RG*Bμ-O(X). 

 

Theorem 3.11: If intμ(A)⊆B⊆A and if A is rg*bμ-open in X, then B is rg*bμ-open in X. 

Proof: Suppose that intμ(A)⊆B⊆A and A is rg*bμ-open in X, then Ac⊆Bc⊆bclμ (Ac). Since Ac is rg*bμ-closed in 

X, by Theorem 3.8 is rg*bμ-open in X. 
 

From the above discussions we have the following implications 
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IV. rg
*
b

μ
-Continuous Functions 

This chapter is devoted to introduce and study the concepts of rg*b-continuous functions in supra topological 

spaces. 

Definition 4.1:  A function f : X → Y is called rg*bμ-continuous if f -1 (V) is rg*bμ-closed in X for every supra 

closed set V in Y. 

 

Remark 4.2: Since every supra closed set is rg*bμ-closed, every supra continuous function is rg*bμ-continuous. 

But the converse need not true, which is verified by the following example. 

 

Example 4.3: Let X = Y = {a, b, c}, μ1 = {ϕ, {a}, X} and μ2 = {ϕ, {a, b}, Y}. Let f : (X, μ1) → (Y, μ2) be an 

identity map. Then rg*bμC(X, μ1) = {ϕ, {b}, {c}, {b, c}, X}. Hence f is rg*bμ-continuous. But f is not supra 

continuous, since for the supra closed set {c} in Y, f -1({c}) = {c} is not supra closed in X. 

 

Theorem 4.4: Let f : X → Y be a function where X and Y are supra topological spaces. Then the following are 

equivalent: 

1) f is rg*bμ-continuous. 

2) For each point x∈X and each supra open set V in Y with f(x)∈V, there is a rg*bμ-open set U in X such that x 

∈ U and f(U)⊆V. 

Proof: (1) → (2): Let V be a supra open set in Y and let f(x)∈V, where x∈X. Since f is rg*bμ-continuous, f -1(V) 

is a rg
*
b

μ
-open set in X. Also x∈f 

-1
(V). Take U = f 

-1
(V). Then x ∈ U and f(U)⊆V. 

(2) → (1): Let V be a supra open set in Y and let x∈f -1(V). Then f(x)∈V and there exists a rg*bμ-open set U in X 

such that x ∈ U and f(U)⊆V. Then x ∈ U ⊆ f -1(V). Hence f -1(V) is a rg*bμ-nbhd of x and it is rg*bμ-open. Then 

f -1(V) = U. Hence f is rg*bμ-continuous. 

 

Theorem 4.5: Let f : X → Y be a function where X and Y are supra topological spaces. Then the following are 

equivalent: 

1) f is rg*bμ-continuous. 

2) The inverse of each supra open set in Y is rg*bμ-open in X. 

3) For each supra subset A of  X, f(rg*bμ-cl(A))⊆clμ(f(A)). 

 
Proof: (1) → (2): Let B be a supra open subset of Y. Then Y-B is supra closed in Y. Since f is rg*bμ-continuous, 

f -1(Y-B) is rg*bμ-closed in X. That is, X-f -1(B) is rg*bμ-closed in X. Hence f -1(B) is rg*bμ-open in X. 

(2) → (1): Let G be a supra closed subset of Y. Then Y-G is supra open in Y. Then f -1(Y-B) is rg*bμ-open in X. 

That is, X-f -1(G) is rg*bμ-open in X. Hence  f -1(G) is rg*bμ-closed in X, which implies that f is rg*bμ-continuous. 

(1) → (3): Let A be a supra subset of X. Since A⊂f -1(f(A)), A⊂f -1(clμ(f(A))). Now clμ(f(A)) is a supra closed in 

Y. Then by (1), f -1(clμ(f(A))) is rg*bμ-closed in X containing A. But rg*bμ-cl(A) is the smallest rg*bμ-closed in X 

containing A. Therefore rg*bμ -cl(A) ⊆ f -1(clμ(f(A))). Hence f(rg*bμ -cl(A)) ⊆ clμ(f(A)). 

(3) → (1): Let B be a closed subset of Y. Then f -1(B) is a subset of X. By (3) f(rg*bμ-cl(f -1(B))) ⊆ clμ(f(f -1(B)) 

⊂ clμ(B) = B. This implies, rg*bμ-cl(f -1(B)) ⊆     f -1(B). But f -1(B) ⊆ rg*bμ-cl(f -1(B)). Hence f -1(B) = rg*bμ-cl(f -
1(B)) and f -1(B) is rg*bμ-closed in X. This implies that f is rg*bμ-continuous. 

 

Corollary 4.6: Let f : X → Y be a function where X and Y are supra topological spaces. Then the following are 

equivalent: 

1) f is rg*bμ-continuous. 

2) For each subset B of Y, rg*bμ-cl(f -1(B))  ⊆ f -1(clμ(B)). 

 

Proof: (1) → (2): Let B be a supra subset of Y. Then f -1(B) is a subset of X. Since f is rg*bμ-continuous, f(rg*bμ-

cl(f -1(B))) ⊆ clμ(f(B)), for each subset A of X, Therefore f(rg*bμ-cl(f -1(B))) ⊆ clμ(f(f -1(B)) ⊂ clμ(B). Hence 

rg*bμ-cl(f -1(B)) ⊆      f -1(cl(B)) . 

(2) → (1): Let B be a closed subset of Y. Then by (2), rg*bμ-cl(f -1(B)) ⊆                f -1(clμ(B)). This implies, 

f(rg*bμ -cl(f -1(B))) ⊆ clμ(f(f -1(B)) ⊆ clμ(B). Take B = f(A), where A is subset of X. Then f(rg*bμ--cl(f -1(B))) ⊆ 

clμ(f(A)). Hence f is rg*bμ-continuous. 

 

Remark 4.7: The composition of two rg*bμ-continuous functions need not to be a rg*bμ-continuous function in 

general as seen from the following example: 

 

Example 4.8: Let X = Y = Z = {a, b, c}, μ1= {ϕ, {a, c}, {b, c}, X}, μ2 = {ϕ, {a, b}, Y}, and μ3 = {ϕ, {a}, Z}. 
Let f : (X, μ1) → (Y, μ2) and g : (Y, μ2) → (Z, μ3) be identity maps. Then rg

*
b

μ
C(X, μ1) = {ϕ, {a}, {b}, {c}, {a, 

b}, X}, rg*bμC(Y, μ2) = {ϕ, {a}, {b}, {c}, {b, c}, {a, c}, Y} and rg*bμC(Z, μ3) = {ϕ, {b}, {c}, {b, c}, Z}. Then f 
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and g are rg*bμ-continuous but g ∘ f: (X, μ1) →(Z, μ3) is not rg*bμ-continuous, since the subset {b, c} is supra 

closed in (Z, μ3) but (g ∘ f) -1({b, c}) = {b, c} is not rg*bμ-closed in (X, μ1). 

 

Definition 4.9: A function f : X → Y, where X and Y are supra topological spaces, is called rg*bμ-irresolute if 

the inverse image of each rg
*
b

μ
-closed set in Y is a rg

*
b

μ
-closed set in X. 

 

Theorem 4.10: A function f : X → Y is rg*bμ-irresolute if and only if f -1(V) is rg*bμ-open in X for every rg*bμ-

open set V in Y. 

Proof: Necessity: Let V be a rg*bμ-open set in Y. Then VC is rg*bμ-closed in Y. Since f is rg*bμ-irresolute, f -

1(VC) is rg*bμ-closed in X. But f -1(VC) = (f -1(V))C. Hence (f -1(V))C is rg*bμ-closed in X and hence f -1(V) rg*bμ-

open in X. 

Sufficiency: Let V be a rg*bμ-closed in Y. Then VC is is rg*bμ-open in Y. Since the inverse image of each rg*bμ-

open set in Y is a rg*bμ-open set in X, f -1(VC) is rg*bμ-open in X. Also f -1(VC) = (f -1(V))C. Hence (f -1(V))C is 
rg*bμ-open in X and hence f -1(V) is rg*bμ-closed in X. Hence f is rg*bμ-irresolute. 

 

Remark 4.11: Every rg*bμ-irresolute function is rg*bμ-continuous but not the converse, which is shown by the 

following example. 

 

Example 4.12: X = {a, b, c, d} and Y = {a, b, c, d}, μ1 = {ϕ, {a, b, c}, {a, c, d}, X} and μ2 = {ϕ, {a, b, c}, {b, c, 

d}, Y}. Then rg
*
b

μ
C(X, μ1) = {ϕ, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d},{a, b, d}, {b, c, 

d}, X} and rg*bμC(Y, μ2) = {ϕ, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d},{a, b, d}, {a, c, d}, 

Y}. Define f : (X, μ1) → (Y, μ2) by f({a}) = {a}, f({b}) = {b}, f({c}) = {c} and so on. Then f is rg*bμ-

continuous. However {a, c, d}, which is rg*bμ-closed in (Y, μ2) and f -1({a, c, d}) = {a, c, d}, is not rg*bμ-closed 

in (X, μ1). Therefore f is not rg*bμ-irresolute. 

 

Theorem 4.13: If f : X → Y and g : Y → Z are both rg*bμ-irresolute, then g∘f : X → Z is also rg*bμ-irresolute. 

Proof: Let A be a rg*bμ-closed set in Z. Then g-1(A) is rg*bμ-closed set in Y and    f -1(g -1(A)) is also rg*bμ-

closed in X, since f and g are rg*bμ-irresolute. Thus (g∘f) -1(A) = f -1(g -1(A)) is rg*bμ-closed in X and hence g ∘ f 
is also rg*bμ-irresolute. 

 

Theorem 4.14: Let X, Y and Z be any supra topological spaces. For any rg*bμ-irresolute function f : X → Y and 

for any rg*bμ-continuous function g : Y → Z, the composition g∘f : X → Z is is rg*bμ-continuous. 

Proof: Let A be a supra closed set in Z. Then g-1(A) is rg*bμ-closed set in Y, since g is rg*bμ-continuous and f -

1(g -1(A)) is also rg*bμ-closed in X, since f is rg*bμ-irresolute.But f -1(g -1(A)) = (g ∘ f) -1(A), so that (g ∘ f)-1(A) is 

rg*bμ-closed set in X. Hence g ∘ f is rg*bμ-continuous.  

 

Theorem 4.15: Let f : X → Y be a function, where X and Y are supra topological spaces. Then the following 

are equivalent: 

1) f is rg*bμ-irresolute. 

2) For each point x∈X and each rg*bμ-open set V in Y with f(x)∈V, there is a rg*bμ-open set U in X such that x 

∈ U and f(U)⊆V. 

Proof: (1) → (2): Let V be a supra open set in Y and let f(x)∈V, where x ∈ X.. Since f is rg*bμ-irresolute, f -1(V) 

is a rg
*
b

μ
-open set in X. Also x ∈ f

-1
(V). Take    U = f 

-1
(V). Then x∈U and f(U)⊆V. 

(2) → (1): Let V be an open set in Y and let x∈f -1(V). Then f(x)∈V and there exists a rg*bμ-open set U in X 

such that x∈U and f(U)⊆V. Then x∈U⊆f -1(V). Hence f -1(V) is a rg*bμ-nbhd of x and let it be rg*bμ-open. Then 

f -1(V) = U. Hence f is rg*bμ-irresolute. 
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