On Supra Regular Generalized Star b-Closed Sets

L.Chinnapparaj¹, P. Sathishmohan², V. Rajendran³ and K. Indirani⁴

¹Research scholar, Department of Mathematics, Nirmala College for Women, Coimbatore, (T.N.), India. ^{2,3}Assistant Professor and Head, Department of Mathematics, KSG college of Arts and Science, Coimbatore, (T.N.), India. ⁴Associate professor and Head, Department of Mathematics, Nirmala College for Women,

Coimbatore, (T.N.), India.

Abstract: In this paper, the recent developments of topology contributed by various authors are mentioned and definitions cited by them are also presented and rg*b-closed sets, and rg*b-continuous functions are studied in Supra Topological Spaces.

Keywords: rg^*b^{μ} -closed set, rg^*b^{μ} -open set

I. Introduction

In 1970, Levine [3], introduced the concept of generalized closed set and discussed the properties of sets, closed and open maps, compactness, normal and separation axioms. In 1983, Mashhour et al [4] introduced supra topological spaces and studied S-continuous maps and S*-continuous maps. In 2008, Devi et al [1] introduced and studied a class of sets called supra α -open and a class of maps called s α -continuous between topological spaces, respectively. In 2010, Sayed and Noiri [7] introduced and studied a class of sets called supra β -open and a class of maps called supra b-open and a class of maps called supra β -continuous, respectively. Ravi et al [6] introduced and studied a class of sets called supra g-closed and a class of maps called supra g-continuous respectively. In this paper, we introduce the concepts of rg*b-closed sets and rg*b-continuous functions in Supra Topological Spaces and studied their some properties.

II. Preliminaries

Definition 2.1: Let (X, μ) be a supra topological space. A subset A of X is called 1) g^{μ} -closed set [6] if $cl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is supra open in X. 2) sg^{μ}-closed set [2] if scl^{μ}(A) \subseteq U whenever A \subseteq U and U is supra semi open in X. 3) gs^{μ} -closed set [5] if $scl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is supra open in X. 4) $g\alpha^{\mu}$ -closed set if $\alpha cl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is supra α -open in X. 5) αg^{μ} -closed set if $\alpha cl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is supra open in X. 6) gp^{μ} -closed set if $pcl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is supra open in X. 7) gpr^{μ} -closed set if $pcl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is supra r-open in X. 8) gsp^{μ}-closed set if spcl^{μ}(A) \subseteq U whenever A \subseteq U and U is supra open in X. 9) rg^{μ} -closed set if $cl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is supra regular open in X. 10) gr^{μ} -closed set if $\operatorname{rcl}^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is supra open in X. 11) $g^{*_{\mu}}$ -closed set if $cl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is g^{μ} -open in X. 12) $g^{*}s^{\mu}$ -closed set if $scl^{\mu}(A)\subseteq U$ whenever $A\subseteq U$ and U is g^{μ} -open in X. 13) g^{μ} -closed set if $cl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is αg^{μ} -open in X. 14) $g^{\#}$ s-closed set if scl^µ(A) \subseteq U whenever A \subseteq U and U is αg^{μ} -open in X. 15) gb^{μ} -closed set if $bcl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is supra open in X. 16) g^*b^{μ} -closed set if $bcl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is supra open in X. 17) rgb^{μ}-closed set if bcl^{μ}(A) \subseteq U whenever A \subseteq U and U is supra regular open in X.

The complements of the above mentioned closed sets are called their respective open sets.

III. Supra Regular Generalized Star B-Closed Sets

In this section we introduce supra regular generalized star b-closed set and investigate some of their properties. **Definition 3.1:** A subset A of a supra topological space (X, μ) is called supra regular generalized star b-closed set (briefly rg^*b^{μ} -closed set) if $bcl^{\mu}(A)\subseteq U$ whenever $A\subseteq U$ and U is rg^{μ} -open in X.

Theorem 3.2:1) Every supra closed set is rg^*b^{μ} -closed.

2) Every supra α -closed set is a rg^{*}b^µ-closed set.

3) Every supra semi-closed set is a rg^*b^{μ} -closed set.

- 4) Every supra g^* -closed set is a rg^*b^{μ} -closed set.
- **5**) Every supra ga-closed set is a rg^*b^{μ} -closed set.
- 6) Every supra regular-closed set is a rg^*b^{μ} -closed set.
- 7) Every supra g-closed set is rg^*b^{μ} -closed.
- **8**) Every supra gs-closed set is rg^*b^{μ} -closed.
- 9) Every supra sg-closed set is rg^*b^{μ} -closed. **10**) Every supra α g-closed set is rg^{*}b^{μ}-closed.
- **11**) Every supra gr-closed set is rg^*b^{μ} -closed.
- **12**) Every supra gr^* -closed set is rg^*b^{μ} -closed.
- **13**) Every supra g^{*}s-closed set is rg^*b^{μ} -closed.
- 14) Every supra $g^{\#}$ -closed set is $rg^{*}b^{\mu}$ -closed. 15) Every supra $g^{\#}$ s-closed set is $rg^{*}b^{\mu}$ -closed.
- **16**) Every rg^*b^{μ} -closed set is a rgb^{μ} -closed set.
- 17) Every rg^*b^{μ} -closed set is a rg^{μ} -closed set.
- **18**) Every rg^*b^{μ} -closed set is a αgr^{μ} -closed set

The converses of the above need not be true as seen from the following examples.

Example 3.3: 1) Let X = {a, b, c} with $\mu = \{\phi, \{a, b\}, \{a, c\}, X\}$. Then the subset {a} is rg^{*}b^{μ}-closed set but not a supra closed set. 2) Let X = {a, b, c, d} with $\mu = \{\phi, \{a, c, d\}, \{b, c, d\}, X\}$. Then the subset {b, c} is a rg^{*}b^{μ}-closed set but not a supra α -closed set. 3) Let X = {a, b, c, d} with $\mu = \{\phi, \{b, c, d\}, \{a, b, d\}, X\}$. Then the subset {c, d} is a rg^{*}b^{μ}-closed set but not a supra semi-closed set. 4) Let X = {a, b, c} with $\mu = \{\phi, \{a, c\}, \{b, c\}, X\}$. Then the subset {c} is rg^*b^{μ} -closed set but not a supra g^* closed set. 5) Let X = {a, b, c, d} with $\mu = \{\phi, \{b, c, d\}, \{a, b, d\}, X\}$. Then the subset {b, d} is a rg^{*}b^µ-closed set but not a supra gα-closed set. 6) Let X = {a, b, c} with $\mu = \{\phi, \{b, c\}, X\}$. Then the subset {a, b} is rg^{*}b^µ-closed set but not a supra regularclosed set. 7) Let X = {a, b, c} with $\mu = \{\phi, \{a, b\}, X\}$. Then the subset {a} is a rg^{*}b^{μ}-closed set but not a supra g-closed set. 8) Let X = {a, b, c} with $\mu = \{\phi, \{b, c\}, X\}$. Then the subset {b} is a rg^*b^{μ} -closed set but not a supra gs-closed set. 9) Let X = {a, b, c} with $\mu = \{\phi, \{a, b, c\}, \{b, c, d\}, X\}$. Then the subset {b, c} is $\operatorname{rg}^* b^{\mu}$ -closed set but not a supra sg-closed set. 10) Let $X = \{a, b, c\}$ with $\mu = \{\phi, \{a, b\}, \{b, c\}, X\}$. Then the subset $\{b\}$ a is rg^*b^{μ} -closed set but not a supra αg closed set. 11) Let X = {a, b, c} with $\mu = \{\phi, \{a, b\}, X\}$. Then the subset {a} is a rg^{*}b^{μ}-closed set but not a supra gr-closed set. 12) Let X = {a, b, c, d} with $\mu = \{\phi, \{b, c, d\}, \{a, b, d\} X\}$. Then the subset {b, d} is a rg^{*}b^µ-closed set but not a supra gr^{*}-closed set. 13) Let X = {a, b, c, d} with $\mu = \{\phi, \{b, c, d\}, \{a, c, d\} X\}$. Then the subset {d} is a rg^{*}b^{μ}-closed set but not a supra g^{*}s-closed set. 14) Let X = {a, b, c} with $\mu = \{\phi, \{b, c\}, X\}$. Then the subset {c} is a rg^*b^{μ} -closed set but not a supra $g^{\#}$ -closed set. **15)** Let $X = \{a, b, c\}$ with $\mu = \{\phi, \{a, c\}, \{b, c\}, X\}$. Then the subset $\{c\}$ is a rg^*b^{μ} -closed set but not a supra g[#]s-closed set. **16**) Let X = {a, b, c, d} with $\mu = \{\phi, \{a, b, c\}, \{a, c, d\}, X\}$. Then the subset {a, c, d} is a rgb^{μ}-closed set but not a rg^*b^{μ} -closed set. 17) Let X = {a, b, c} with $\mu = \{\phi, \{a, c\}, \{b, c\}, X\}$. Then the subset {b, c,} is a rg^{μ}-closed set but not a rg^{*}b^{μ}closed set. **18)** Let X = {a, b, c, d} with $\mu = \{\phi, \{a, b, c\}, \{a, b, d\}, X\}$. Then the subset {a, b, c,} is a αgr^{μ} -closed set but not a rg^{*}b^{μ}-closed set.

Theorem 3.4: A set A is rg^*b^{μ} -closed set iff bcl^{μ}(A)-A contains no non empty rg^{μ} -closed set. **Proof:** Necessity: Let A be an rg^*b^{μ} -closed set in (X, μ). Let F be a rg^{μ} -closed set in X such that $F \subseteq bcl^{\mu}(A)$ -A and X – F is rg^{μ}-open, Since A is and bcl^{μ}(A) \subseteq X – F. (i.e) F \subseteq (X - bcl^{μ}(A)) \cap (bcl^{μ}(A)-A). Therefore F = ϕ .

Sufficiency: Let us assume that $bcl^{\mu}(A)$ -A contains no non empty rg^{μ} -closed set. Let $A \subseteq U$, U is rg^{μ} -open. Suppose that $bcl^{\mu}(A)$ is not contained in U, $bcl^{\mu}(A) \cap U^{C}$ is non-empty rg^{μ} -closed set of $bcl^{\mu}(A)$ -A which is a contradiction. Therefore $bcl^{\mu}(A)\subseteq U$. Hence A is $rg^{*}b^{\mu}$ -closed.

Remark 3.5: The intersection of any two subsets of rg^*b^{μ} -closed sets in X is rg^*b^{μ} -closed in X.

Remark 3.6: The union of any two subsets of rg^*b^{μ} -closed sets in X need not to be rg^*b^{μ} -closed in X.

Example 3.7: Let $X = \{a, b, c, d\}$ with $\mu = \{\phi, \{b, c, d\}, \{a, b, d\}\}$. The sets $\{\phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, c, d\}\}$ are rg^*b^{μ} -closed. Then the union of the sets $\{b, c\}$ and $\{b, d\}$ is $\{b, c, d\}$, which is not rg^*b^{μ} -closed and the intersection of the sets $\{a, b\}$ and $\{a, c\}$ is $\{a\}$, which is rg^*b^{μ} -closed.

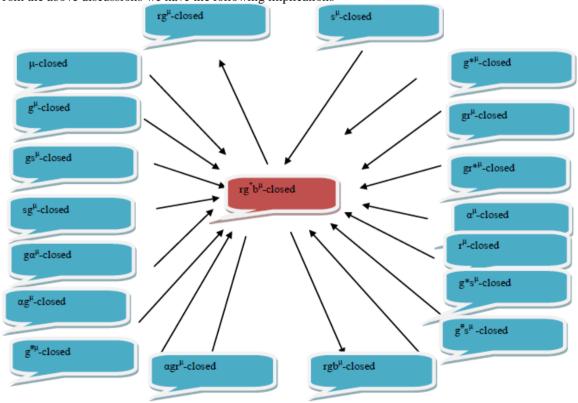
Theorem 3.8: If A is rg^*b^{μ} -closed set in X and $A \subseteq B \subseteq bcl^{\mu}(A)$, then B is a rg^*b^{μ} -closed set in X. **Proof:** Since $B \subseteq bcl^{\mu}(A)$, we have $bcl^{\mu}(B) \subseteq bcl^{\mu}(A)$ then $bcl^{\mu}(B)$ -B $\subseteq bcl^{\mu}(A)$ -A. By Theorem 3.38, $bcl^{\mu}(A)$ -A contains no non empty supra rg-closed set. Hence $bcl^{\mu}(B)$ -B contains no empty supra rg-closed set. Therefore B is a rg^*b^{μ} -closed set in X.

Theorem 3.9: If $A \subseteq Y \subseteq X$ and suppose that A is rg^*b^{μ} -closed in X, then A is rg^*b^{μ} -closed relative to Y. **Proof:** Given that $A \subseteq Y \subseteq X$ and A is a rg^*b^{μ} -closed set in X. To prove that A is a rg^*b^{μ} -closed set relative to Y. Let us assume that $A \subseteq Y \cap U$, where U is supra rg-open in X. Since A is a rg^*b^{μ} -closed set, $A \subseteq U$ implies $bcl^{\mu}(A) \subseteq U$. It follows that $Y \cap bcl^{\mu}(A) \subseteq Y \cap U$. That is A is a rg^*b^{μ} -closed set relative to Y.

Definition 3.10: A subset A of a supra topological space (X, μ) is called supra regular generalized star b-open set (briefly rg^*b^{μ} -open set) if A^C is rg^*b^{μ} -closed in X. The family of all rg^*b^{μ} -open sets in X is denoted by RG^*B^{μ} -O(X).

Theorem 3.11: If $\operatorname{int}^{\mu}(A) \subseteq B \subseteq A$ and if A is $\operatorname{rg}^* b^{\mu}$ -open in X, then B is $\operatorname{rg}^* b^{\mu}$ -open in X. **Proof:** Suppose that $\operatorname{int}^{\mu}(A) \subseteq B \subseteq A$ and A is $\operatorname{rg}^* b^{\mu}$ -open in X, then $A^c \subseteq B^c \subseteq \operatorname{bcl}^{\mu}(A^c)$. Since A^c is $\operatorname{rg}^* b^{\mu}$ -closed in X, by Theorem 3.8 is $\operatorname{rg}^* b^{\mu}$ -open in X.

From the above discussions we have the following implications



IV. rg^{*}b^µ-Continuous Functions

This chapter is devoted to introduce and study the concepts of rg*b-continuous functions in supra topological spaces.

Definition 4.1: A function $f: X \to Y$ is called rg^*b^{μ} -continuous if $f^{-1}(V)$ is rg^*b^{μ} -closed in X for every supra closed set V in Y.

Remark 4.2: Since every supra closed set is rg^*b^{μ} -closed, every supra continuous function is rg^*b^{μ} -continuous. But the converse need not true, which is verified by the following example.

Example 4.3: Let $X = Y = \{a, b, c\}, \mu_1 = \{\phi, \{a\}, X\}$ and $\mu_2 = \{\phi, \{a, b\}, Y\}$. Let $f : (X, \mu_1) \rightarrow (Y, \mu_2)$ be an identity map. Then $rg^*b^{\mu}C(X, \mu_1) = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}$. Hence f is rg^*b^{μ} -continuous. But f is not supra continuous, since for the supra closed set $\{c\}$ in Y, $f^{-1}(\{c\}) = \{c\}$ is not supra closed in X.

Theorem 4.4: Let $f: X \to Y$ be a function where X and Y are supra topological spaces. Then the following are equivalent:

1) f is rg^*b^{μ} -continuous.

2) For each point $x \in X$ and each supra open set V in Y with $f(x) \in V$, there is a rg^*b^{μ} -open set U in X such that $x \in U$ and $f(U) \subseteq V$.

Proof: (1) \rightarrow (2): Let V be a supra open set in Y and let $f(x) \in V$, where $x \in X$. Since f is rg^*b^{μ} -continuous, $f^{-1}(V)$ is a rg^*b^{μ} -open set in X. Also $x \in f^{-1}(V)$. Take $U = f^{-1}(V)$. Then $x \in U$ and $f(U) \subseteq V$.

(2) \rightarrow (1): Let V be a supra open set in Y and let $x \in f^{-1}(V)$. Then $f(x) \in V$ and there exists a rg^*b^{μ} -open set U in X such that $x \in U$ and $f(U) \subseteq V$. Then $x \in U \subseteq f^{-1}(V)$. Hence $f^{-1}(V)$ is a rg^*b^{μ} -nbhd of x and it is rg^*b^{μ} -open. Then $f^{-1}(V) = U$. Hence f is rg^*b^{μ} -continuous.

Theorem 4.5: Let $f : X \to Y$ be a function where X and Y are supra topological spaces. Then the following are equivalent:

1) f is rg^*b^{μ} -continuous.

2) The inverse of each supra open set in Y is rg^*b^{μ} -open in X.

3) For each supra subset A of X, $f(rg^*b^{\mu}-cl(A)) \subseteq cl^{\mu}(f(A))$.

Proof: (1) \rightarrow (2): Let B be a supra open subset of Y. Then Y-B is supra closed in Y. Since f is rg^*b^{μ} -continuous, $f^{-1}(Y-B)$ is rg^*b^{μ} -closed in X. That is, X-f⁻¹(B) is rg^*b^{μ} -closed in X. Hence $f^{-1}(B)$ is rg^*b^{μ} -open in X.

(2) \rightarrow (1): Let G be a supra closed subset of Y. Then Y-G is supra open in Y. Then $f^{-1}(Y-B)$ is rg^*b^{μ} -open in X. That is, X-f⁻¹(G) is rg^*b^{μ} -open in X. Hence $f^{-1}(G)$ is rg^*b^{μ} -closed in X, which implies that f is rg^*b^{μ} -continuous. (1) \rightarrow (3): Let A be a supra subset of X. Since $A \subset f^{-1}(f(A))$, $A \subset f^{-1}(cl^{\mu}(f(A)))$. Now $cl^{\mu}(f(A))$ is a supra closed in Y. Then by (1), $f^{-1}(cl^{\mu}(f(A)))$ is rg^*b^{μ} -closed in X containing A. But rg^*b^{μ} -cl(A) is the smallest rg^*b^{μ} -closed in X containing A. Therefore rg^*b^{μ} -cl(A) $\subseteq f^{-1}(cl^{\mu}(f(A)))$. Hence $f(rg^*b^{\mu}-cl(A)) \subseteq cl^{\mu}(f(A))$.

containing A. Therefore rg^*b^{μ} -cl(A) \subseteq $f^{-1}(cl^{\mu}(f(A)))$. Hence $f(rg^*b^{\mu}-cl(A)) \subseteq cl^{\mu}(f(A))$. (3) \rightarrow (1): Let B be a closed subset of Y. Then $f^{-1}(B)$ is a subset of X. By (3) $f(rg^*b^{\mu}-cl(f^{-1}(B))) \subseteq cl^{\mu}(f(f^{-1}(B))) \subseteq cl^{\mu}(f(f^{-1}(B)))$. Hence $f^{-1}(B) = rg^*b^{\mu}$ -cl($f^{-1}(B)$) and $f^{-1}(B)$ is rg^*b^{μ} -closed in X. This implies that f is rg^*b^{μ} -continuous.

Corollary 4.6: Let $f : X \to Y$ be a function where X and Y are supra topological spaces. Then the following are equivalent:

1) f is rg^*b^{μ} -continuous.

2) For each subset B of Y, rg^*b^{μ} -cl(f⁻¹(B)) \subseteq f⁻¹(cl^{μ}(B)).

Proof: (1) \rightarrow (2): Let B be a supra subset of Y. Then $f^{-1}(B)$ is a subset of X. Since f is rg^*b^{μ} -continuous, $f(rg^*b^{\mu}-cl(f^{-1}(B))) \subseteq cl^{\mu}(f(B))$, for each subset A of X, Therefore $f(rg^*b^{\mu}-cl(f^{-1}(B))) \subseteq cl^{\mu}(f(f^{-1}(B))) \subset cl^{\mu}(B)$. Hence $rg^*b^{\mu}-cl(f^{-1}(B)) \subseteq f^{-1}(cl(B))$.

(2) \rightarrow (1): Let B be a closed subset of Y. Then by (2), rg^*b^{μ} -cl(f⁻¹(B)) \subseteq f⁻¹(cl^{μ}(B)). This implies, f(rg^{*}b^{μ}-cl(f⁻¹(B))) \subseteq cl^{μ}(f(f⁻¹(B)) \subseteq cl^{μ}(B). Take B = f(A), where A is subset of X. Then f(rg^{*}b^{μ}-cl(f⁻¹(B))) \subseteq cl^{μ}(f(A)). Hence f is rg^{*}b^{μ}-continuous.

Remark 4.7: The composition of two rg^*b^{μ} -continuous functions need not to be a rg^*b^{μ} -continuous function in general as seen from the following example:

Example 4.8: Let $X = Y = Z = \{a, b, c\}, \mu_1 = \{\phi, \{a, c\}, \{b, c\}, X\}, \mu_2 = \{\phi, \{a, b\}, Y\}, \text{ and } \mu_3 = \{\phi, \{a\}, Z\}.$ Let $f : (X, \mu_1) \rightarrow (Y, \mu_2)$ and $g : (Y, \mu_2) \rightarrow (Z, \mu_3)$ be identity maps. Then $rg^*b^{\mu}C(X, \mu_1) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, X\}, rg^*b^{\mu}C(Y, \mu_2) = \{\phi, \{a\}, \{b\}, \{c\}, \{b, c\}, \{a, c\}, Y\}$ and $rg^*b^{\mu}C(Z, \mu_3) = \{\phi, \{b\}, \{c\}, \{b, c\}, Z\}$. Then f

and g are rg^*b^{μ} -continuous but $g \circ f$: $(X, \mu_1) \rightarrow (Z, \mu_3)$ is not rg^*b^{μ} -continuous, since the subset $\{b, c\}$ is supra closed in (Z, μ_3) but $(g \circ f)^{-1}(\{b, c\}) = \{b, c\}$ is not rg^*b^{μ} -closed in (X, μ_1) .

Definition 4.9: A function $f: X \to Y$, where X and Y are supra topological spaces, is called rg^*b^{μ} -irresolute if the inverse image of each rg^*b^{μ} -closed set in Y is a rg^*b^{μ} -closed set in X.

Theorem 4.10: A function $f: X \to Y$ is rg^*b^{μ} -irresolute if and only if $f^{-1}(V)$ is rg^*b^{μ} -open in X for every rg^*b^{μ} -open set V in Y.

Proof: Necessity: Let V be a rg^*b^{μ} -open set in Y. Then V^C is rg^*b^{μ} -closed in Y. Since f is rg^*b^{μ} -irresolute, f ${}^{-1}(V^C)$ is rg^*b^{μ} -closed in X. But f ${}^{-1}(V^C) = (f {}^{-1}(V))^C$. Hence $(f {}^{-1}(V))^C$ is rg^*b^{μ} -closed in X and hence f ${}^{-1}(V) rg^*b^{\mu}$ -open in X.

Sufficiency: Let V be a rg^*b^{μ} -closed in Y. Then V^C is is rg^*b^{μ} -open in Y. Since the inverse image of each rg^*b^{μ} -open set in Y is a rg^*b^{μ} -open set in X, $f^{-1}(V^C)$ is rg^*b^{μ} -open in X. Also $f^{-1}(V^C) = (f^{-1}(V))^C$. Hence $(f^{-1}(V))^C$ is rg^*b^{μ} -open in X and hence $f^{-1}(V)$ is rg^*b^{μ} -closed in X. Hence f is rg^*b^{μ} -irresolute.

Remark 4.11: Every rg^*b^{μ} -irresolute function is rg^*b^{μ} -continuous but not the converse, which is shown by the following example.

Example 4.12: $X = \{a, b, c, d\}$ and $Y = \{a, b, c, d\}$, $\mu_1 = \{\phi, \{a, b, c\}$, $\{a, c, d\}$, $X\}$ and $\mu_2 = \{\phi, \{a, b, c\}$, $\{b, c, d\}$, $Y\}$. Then $rg^*b^{\mu}C(X, \mu_1) = \{\phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{b, c\}, \{d\}, \{a, b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{b, c, d\}, \{A, c, d\}, Y\}$. Define $f : (X, \mu_1) \rightarrow (Y, \mu_2)$ by $f(\{a\}) = \{a\}$, $f(\{b\}) = \{b\}$, $f(\{c\}) = \{c\}$ and so on. Then f is rg^*b^{μ} -closed in (Y, μ_2) and $f^{-1}(\{a, c, d\}) = \{a, c, d\}$, is not rg^*b^{μ} -closed in (X, μ_1) . Therefore f is not rg^*b^{μ} -irresolute.

Theorem 4.13: If $f: X \to Y$ and $g: Y \to Z$ are both rg^*b^{μ} -irresolute, then $g \circ f: X \to Z$ is also rg^*b^{μ} -irresolute. **Proof:** Let A be a rg^*b^{μ} -closed set in Z. Then $g^{-1}(A)$ is rg^*b^{μ} -closed set in Y and $f^{-1}(g^{-1}(A))$ is also rg^*b^{μ} -closed in X, since f and g are rg^*b^{μ} -irresolute. Thus $(g \circ f)^{-1}(A) = f^{-1}(g^{-1}(A))$ is rg^*b^{μ} -closed in X and hence $g \circ f$ is also rg^*b^{μ} -irresolute.

Theorem 4.14: Let X, Y and Z be any supra topological spaces. For any rg^*b^{μ} -irresolute function $f: X \to Y$ and for any rg^*b^{μ} -continuous function $g: Y \to Z$, the composition $g \circ f: X \to Z$ is is rg^*b^{μ} -continuous.

Proof: Let A be a supra closed set in Z. Then $g^{-1}(A)$ is rg^*b^{μ} -closed set in Y, since g is rg^*b^{μ} -continuous and $f^{-1}(g^{-1}(A))$ is also rg^*b^{μ} -closed in X, since f is rg^*b^{μ} -irresolute.But $f^{-1}(g^{-1}(A)) = (g \circ f)^{-1}(A)$, so that $(g \circ f)^{-1}(A)$ is rg^*b^{μ} -closed set in X. Hence $g \circ f$ is rg^*b^{μ} -continuous.

Theorem 4.15: Let $f : X \to Y$ be a function, where X and Y are supra topological spaces. Then the following are equivalent:

1) f is rg^*b^{μ} -irresolute.

2) For each point $x \in X$ and each rg^*b^{μ} -open set V in Y with $f(x) \in V$, there is a rg^*b^{μ} -open set U in X such that $x \in U$ and $f(U) \subseteq V$.

Proof: (1) \rightarrow (2): Let V be a supra open set in Y and let $f(x) \in V$, where $x \in X$.. Since f is rg^*b^{μ} -irresolute, $f^{-1}(V)$ is a rg^*b^{μ} -open set in X. Also $x \in f^{-1}(V)$. Take $U = f^{-1}(V)$. Then $x \in U$ and $f(U) \subseteq V$.

(2) \rightarrow (1): Let V be an open set in Y and let $x \in f^{-1}(V)$. Then $f(x) \in V$ and there exists a rg^*b^{μ} -open set U in X such that $x \in U$ and $f(U) \subseteq V$. Then $x \in U \subseteq f^{-1}(V)$. Hence $f^{-1}(V)$ is a rg^*b^{μ} -nbhd of x and let it be rg^*b^{μ} -open. Then $f^{-1}(V) = U$. Hence f is rg^*b^{μ} -irresolute.

References

- [1]. R. Devi, S. Sampathkumar and M. Caldas, On supra α -open sets and s α -continuous maps, General Mathematics, 16(2) (2008), 77-84.
- [2]. M. Kamaraj, G. Ramkumar and O. Ravi, Supra sg-closed sets and supra gs-closed sets, International Journal of Mathematical Archive,2(11) (2011), 2413-2419.
- [3]. N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo. 19(2)(1970), 89-96.
- [4]. A. S. Mashhour, A. A. Allam, F. S. Mahmoud and F. H. Khedr, On supra topological spaced, Indian J. Pure and Appl. Math., 14(4) (1983), 502-510.
- [5]. N. Palaniappan and K. C. Rao, Regular generalized closed sets, Kyungpook Math 33(2)(1993), 211-219.
- [6]. O. Ravi, G. Ramkumar and M. Kamaraj, On supra g-closed sets, International Journal of Advances in Pure and Applied Mathematics, 1(2)(2011), 52-66.
- [7]. O. R. Sayed and T. Noiri, On subra b-open sets and supra b-continuity on topological spaces, European J. Pure and Applied Math., 3(2) (2010), 295-302.