Some New kinds of Connected Domination in Fuzzy Graphs

C.Y.Ponnappan¹, P.Surulinathan², R.Muthuraj³

¹Department of Mathematics, Government Arts College Paramakudi, Tamilnadu, India ²Department of Mathematics, Lathamathavan Engineering college, Kidaripatti, Alagarkovil, Madurai-625301, Tamilnadu, India.

³*P.G and Research Department of Mathematics, H.H.The Rajah's College, Pudukkottai*–62200,

Abstract: In this paper, we introduce the concept of some new kinds of connected domination number of a fuzzy graphs. We determine the domination numbers γ_{cs} , γ_{ds} , γ_{lsc} , γ_{rsc} and the total domination number of γ_{cs} , γ_{tds} for several classes of fuzzy graphs and obtain bounds for the same. We also obtain the Nordhaus – Gaddum type result for these parameters.

Keywords: Fuzzy graphs, fuzzy domination, connected strong domination, disconnected strong domination, total connected strong domination, total disconnected strong domination, left semi connected domination, right semi connected domination.

I. Preliminaries

Definition:1.1[10]

Let V be a finite non empty set. Let E be the collection of all two element subsets of V. A fuzzy graph $G=(\sigma,\mu)$ is a set with two functions $\sigma: V \rightarrow [0,1]$ and $\mu: E \rightarrow [0,1]$ such that $\mu(\{u,v\}) \leq \sigma(u) \land \sigma(v)$ for all $u, v \in V$.

Definition:1.2[10]

Let G=(σ,μ) be a fuzzy graph on V and V₁ \subseteq V. Define σ_1 on V₁ by $\sigma_1(u)=\sigma(u)$ for all $u \in V_1$ and μ_1 on the collection E₁ of two element subsets of V₁ by $\mu_1(\{u,v\}) = \mu(\{u,v\})$ for all $u, v \in V_1$, then (σ_1,μ_1) is called the fuzzy subgraph of G induced by V₁ and is denoted by $<V_1>$.

Definition:1.3[10]

The order p and size q of a fuzzy graph $G=(\sigma,\mu)$ are defined to be $p=\sum_{u\in V} \sigma(u)$ and $q=\sum_{(u,v)\in E} \mu(\{u,v\})$.

Definition:1.4[10]

Let $G=(\sigma,\mu)$ be a fuzzy graph on V and $D\subseteq V$ then the fuzzy cardinality of D is defined to be $\sum_{u\in D} \sigma(u)$.

Definition:1.5[10]

An edge $e=\{u, v\}$ of a fuzzy graph is called an effective edge if $\mu(\{u, v\}) = \sigma(u) \land \sigma(v)$.

 $N(u) = \{ v \in V/ \ \mu(\{u \ ,v\}) = \sigma(u) \land \sigma(v) \} \text{ is called the neighborhood of } u \text{ and } N[u]=N(u) \cup \{u\} \text{ is the closed neighborhood of } u.$

The effective degree of a vertex u is defined to be the sum of the weights of the effective edges incident at u and is denoted by dE(u). $\sum_{v \in N(u)} \sigma(v)$ is called the neighborhood degree of u and is denoted by dN(u). The minimum effective degree $\delta_E(G) = \min\{dE(u)|u \in V(G)\}$ and the maximum effective degree

 $\Delta_{E}(G) = \max\{dE(u)|u \in V(G)\}.$

Definition :1.6[10]

The complement of a fuzzy graph G denoted by \overline{G} is defined to be $\overline{G} = (\sigma, \overline{\mu})$ where $\overline{\mu}(\{u, v\}) = \sigma(u) \wedge \sigma(v) - \mu(\{u, v\})$.

Definition :1.7[1]

A set of fuzzy vertex which cover all the fuzzy edges is called a fuzzy vertex cover of G and the minimum cardinality of a fuzzy vertex cover is called a vertex covering number of G and denoted by $\beta(G)$.

Definition :1.8[10]

Let $\sigma: V \rightarrow [0,1]$ be a fuzzy subset of V. Then the complete fuzzy graph on σ is defined to be (σ,μ) where $\mu(\{u,v\})=\sigma(u)\wedge\sigma(v)$ for all $\{u,v\}\in E$ and is denoted by K_{σ} .

Definition :1.9[3]

Let G=(V,E) be a graph. A subset D of V is called a dominating set in G if every vertex in V-D is adjacent to some vertex in D.

Definition :1.10[10]

Let $G=(\sigma,\mu)$ be a fuzzy graph on V. Let $u,v \in V$. We say that u dominates v in G if $\mu(\{u,v\})=\sigma(u)\wedge\sigma(v)$. A subset D of V is called a dominating set in G if for every $v \notin D$, there exists $u \in D$ such that u dominates v. The minimum fuzzy cardinality of a dominating set in G is called the domination number of G and is denoted by $\gamma(G)$ or γ .

Definition :1.11[10]

A fuzzy graph $G=(\sigma,\mu)$ is said to be a bipartite if the vertex V can be partitioned into two nonempty sets V_1 and V_2 such that $\mu(v_1,v_2)=0$ if $v_1,v_2 \in V_1$ or $v_1,v_2 \in V_2$. Further, if $\mu(u,v)=\sigma(u) \land \sigma(v)$ for all $u \in V_1$ and $v \in V_2$ then G is called a complete bipartite graph and is denoted by K_{σ_1,σ_2} where σ_1 and σ_2 are, respectively, the restrictions of σ to V_1 and V_2 .

Definition :1.12[10]

A dominating set D of a fuzzy graph $G=(\sigma,\mu)$ is connected dominating set, if the induced fuzzy sub graph $H=(\langle D \rangle, \sigma', \mu')$ is connected. The minimum fuzzy cardinality of a connected dominating set of G is called the connected dominating number of G and is denoted by $\gamma_c(G)$ (or) γ_c .

Definition :1.13[10]

A dominating set D of a fuzzy graph G is said to be a minimal dominating if no proper subset D' of D is dominating set of G such that |D'| < |D|.

II. Fuzzy Connected Strong Domination Number

Definition : 2.1

Let G=(σ , μ) be a fuzzy graph without isolated vertices. A subset D_{cs} of V is said to be a fuzzy connected strong domination set if both induced subgraphs $\langle D_{cs} \rangle$ and $\langle V \cdot D_{cs} \rangle$ are connected. The fuzzy connected strong domination number $\gamma_{cs}(G)$ is the minimum fuzzy cardinality taken over all connected strong dominating sets of G.

Example:2.1

$$\begin{split} & D_{cs} = \{v_1, v_3\}, \\ & V - D_{cs} = \{v_2, v_4\} \\ & \gamma_{cs}(G) = 0.3 \\ & < D_{cs} >, < V - D_{cs} > \text{ are connected.} \end{split}$$

One possible application of the concept of connected strong domination is that to consider D_{cs} is the Indian embassy and V- D_{cs} is a foreign embassy to maintain better political relationship among each one has its own connected team for effective management.

Definition : 2.2

Let $G=(\sigma,\mu)$ be a fuzzy graph, A subset D_{cs} of V is said to be a fuzzy total connected strong domination set if

(i) D_{cs} is connected strong dominating set

(ii) $N[D_{cs}] = V$

The fuzzy total connected strong domination number $\gamma_{tcs}(G)$ is the minimum cardinality taken over all total connected strong dominating sets in G.

Proposition 2.1

$$\begin{split} \gamma_{cs}(p_n) &= min \; \{p\text{-}\sigma(v_1), \, p\text{-}\sigma(v_n)\}, \\ \text{when } v_1 and v_n \; \text{are the pendent vertices}. \end{split}$$

Proposition 2.2

$$\gamma_{cs}(\mathbf{C}_n) = \min \left\{ \sum_{i=1}^{n-2} \sigma(\mathbf{v}_i), \sum_{i=2}^{n-1} \sigma(\mathbf{v}_i), \dots \sum_{i=n-2}^{l} \sigma(\mathbf{v}_i) \right\}$$

Proposition 2.3

 $\gamma_{cs}(W_n) = \sigma(v)$, v is the centre vertex

Proposition 2.4

 $\gamma_{cs}(K_{\sigma}) = \sigma(v)$, v is the vertex of minimum cardinality.

Proposition 2.5

 $\gamma_{cs}(star) = \sigma(v_i) + \sigma(v_j)$, v_i is a vertices adjacent with all other vertices and v_j is the all pendent vertices of minimum cardinality, except one pendent vertex has maximum cardinality.

Proposition 2.6

 $\gamma_{cs}(\mathbf{K}_{\sigma_1,\sigma_2}) = \min \{\sigma(v_i)\} + \min \{\sigma(v_j)\} \text{ where } v_i \in V_1 \text{ and } v_j \in V_2.$

Proposition 2.7

Let G be the Peterson graph, (i) If all fuzzy vertices having equal cardinality then $\gamma_{cs}(G) = 5\sigma(v_i)$, for i=1to 10.

(ii) If an unequal fuzzy vertex cardinality, then

$$\gamma_{cs}(G) = \min\left\{\sum_{i=1}^{5} \sigma(\mathbf{v}_{i}), \sum_{i=6}^{10} \sigma(\mathbf{v}_{i})\right\}$$

Theorem :2.1

A connected strong dominating set D_{cs} of G is a minimal dominating set iff for each vertex $d \in D_{cs}$, one of the following condition holds.

(i) $N(d) \cap D_{cs} = \phi$

(ii) There exist $c \in V-D_{cs}$ such that $N(c) \cap D_{cs} = \{d\}$

Proof :

Suppose that D_{cs} is minimal and there exists a vertex $v \in D_{cs}$ such that v does not satisfy any of the above conditions. Then by condition (i) and (ii), $D' = D_{cs} \{v\}$ is a dominating set of G, This implies that D' is connected strong dominating set of G which is contradiction.

Theorem : 2.2.

Let $G=(\sigma,\mu)$ be a fuzzy connected strong dominating set iff G contains a path P_n or cycle C_n , depends upon the number of vertices of the graph G.

Proof : Let G be a fuzzy graph

Let D be the γ_{cs} – set of G, then $\langle D \rangle$ and $\langle V \cdot D \rangle$ are connected graphs. For each u , $v \in G$, then there exists a path. since $\langle D \rangle$ and $\langle V \cdot D \rangle$ are connected.

Suppose G is a path or any tree the result holds good.

Consider G contains any cycle then there is a cycle contains u and v. since $\langle D \rangle$ and $\langle V \cdot D \rangle$ are connected.

Theorem :2.3

For any Fuzzy graph G=(σ , μ), p-q $\leq \gamma_{cs}(G) \leq P-\Delta$

Proof:

Let v be a vertex of a fuzzy graph, such that $d_N(v) = \Delta$ then V/N(v) is a dominating set of G, so that $\gamma_{cs}(G) \leq |V \setminus N(v)| \leq p - \Delta$.

Example 2.2

$$\begin{split} D &= \{v_1, v_3, v_4\} \\ <\!V\text{-}D\!> &= \{v_2, v_5, v_6, v_7\} \\ p &= 2.1, \ q = 2.1, \ \Delta = 0.9 \\ \gamma_{cs} \ (G) &= 0.9 \\ p\text{-}q &\leq \gamma_{cs} \ (G) \leq p\text{-}\Delta \end{split}$$

Theorem :2.4

For any fuzzy graphs G,

 $\gamma_{cs}(G) + \gamma_{cs}(\overline{G}) \leq 2p,$

where $\gamma_{cs}(\overline{G})$ is the connected strong domination number of \overline{G} and equality holds iff $0 \le \mu(x, y) < \sigma(x) \land \sigma(y)$, for all $x, y \in V$.

Example:2.3

 $D_{cs} = \{v_3, v_4\}, \, \gamma_{cs}(G) = 0.5, \, P \, = 1.2$

$$D_{cs} = \{v_3, v_4\}, \gamma_{cs}(\overline{G}) = 0.6$$

 $\gamma_{cs}\left(G\right) + \gamma_{cs}\left(\,\overline{G}\,\,\right) \leq 2p$

Remark:

A fuzzy graph G=(σ , μ)has an equal cardinality of all vertices then $\gamma_{cs}(\overline{G})$ does not exist.

Theorem 2.5

For any fuzzy graph $G=(\sigma,\mu)$, $\gamma_{cs}(G) \leq \beta(G) \leq \Gamma_{cs}(G)$

 $\gamma_{cs}(G) = 0.2, \Gamma_{cs}(G) = 0.6, \beta(G) = 0.2$

Remark : For equal fuzzy cardinality $\gamma_{cs}(G) = \beta(G) = \Gamma_{cs}(G)$

Theorem 2.6 :

For any fuzzy graph G=(σ , μ), $\gamma_{cs}(G) \le \gamma_{tcs}(G) \le 2\gamma_{cs}(G)$

Proof : Since every total connected strong dominating set is a connected strong dominating set. Therefore, $\gamma_{cs}(G) \leq \gamma_{tcs}(G)$. Let D_{cs} be a connected strong dominating set with finite vertices say $\{v_1, v_2, \dots v_n\}$. For each $v_i \in D_{cs}$, choose one vertex $u_i \in V$ - D_{cs} such that v_i and u_i are adjacent.

This is possible since G has no isolated vertices. Now the set $\{v_1, v_2, ... v_n, u_1, u_2, ... u_n\}$ is a total connected strong dominating set of G, $\therefore \gamma_{tcs}$ (G) $\leq 2\gamma_{cs}$ (G)

Hence $\gamma_{cs}(G) \leq \gamma_{tcs}(G) \leq 2\gamma_{cs}(G)$

Example 2.4

 $\begin{array}{l} D_{cs} = \{v_2, v_3\}, \, \gamma_{cs} = 0.5 \\ D_{tcs} = (v_2, v_3\}, \, \gamma_{tcs} = 0.5 \\ \gamma_{cs}(G) \leq \gamma_{tcs} \, (G) \leq 2\gamma_{cs}(G) \end{array}$

Theorem :2.7

Let G=(σ,μ) be a connected fuzzy graph and H be a spanning fuzzy subgraph of G. If H has a connected strong dominating set then γ_{tcs} (G) $\leq \gamma_{tcs}$ (H)

Proof:

Let $G=(\sigma,\mu)$ be a fuzzy graph and $H=(\sigma',\mu')$ be the spanning fuzzy subgraph of G. Let $D_{tcs}(G)$ be the fuzzy minimum total connected strong dominating set of H but not minimum.

Example 2.5

$$\begin{split} D_{tcs}(G) &= \{v_1, v_2, v_3, v_4\} \ ; \ \gamma_{tcs}(G) = 0.4 \\ D_{tcs}(H) &= \{v_1, v_2, v_3, v_4, v_5\} \ ; \ \gamma_{tcs}(H) = 0.5 \end{split}$$

Theorem 2.8

If $G=(\sigma,\mu)$ is complete then $\gamma_{cs}(G) = \sigma(v_i)$, where v_i is the vertex of minimum fuzzy cardinality.

Proof :Let G be a complete fuzzy graph.

Every vertices are adjacent to all other, vertices, therefore each vertex dominates the other and every minimum dominating set of fuzzy complete graph K_{σ} contains exactly one vertex having minimum cardinality $\therefore \gamma_{cs}(G) = \sigma(v_i)$ where v_i is a vertex of minimum fuzzy cardinality.

Theorem: 2.9

If $G=(\sigma,\mu)$ is a path, then G has exactly two different connected strong dominating set.

Proof:

In every Path P_n, $V = \{v_1, v_2, ..., v_n\}$ be a fuzzy vertex set, by definition 2.1 Clearly D₁ = $\{v_1, v_2, ..., v_{n-1}\}$ and D₂ = $\{v_2, v_3, ..., v_n\}$ are the two fuzzy connected strong dominating sets. **Theorem 2.10**

Every connected strong dominating set is not an independent dominating set.

Proof :

Let $G=(\sigma,\mu)$ be a fuzzy graph assume that D_{cs} is a connected strong dominating set. Therefore D_{cs} is not independent dominating set since D_{cs} is connected.

Theorem 2.11

If G is a path, all connected strong dominating set are minimal dominating set.

Proof : By theorem 2.9,G has exactly two different connected dominating sets. i.e) $D_1 = \{y_1, y_2, \dots, y_{p-1}\}$

 $D_1 = \{v_1, v_2, \dots v_{n-1}\}$ $D_2 = \{v_2, v_3, \dots v_n\}$

Obviously $D_1 - \{v_i\}$ is not a connected strong dominating set, for all $v_i \in D_1$. Hence D_1 is a minimal connected strong dominating set. Similarly for D_2 . Therefore both D_1 and D_2 are minimal connected strong dominating set.

Theorem 2.12: The fuzzy graph $G=(\sigma,\mu)$ has a connected strong dominating set iff G is connected.

Proof : Assume D is connected strong dominating set.

By definition 2.1

 $<\!\!D\!\!>$ and $<\!\!V\!\!-\!\!D\!\!>$ are connected

To prove that G is connected.

Suppose G is not connected, then every dominating set is not a connected dominating set. Which is contradiction to assumption \therefore G is connected.

Conversely, assume that G is connected.

To prove that G has a connected strong dominating set. G is connected, then there exists a set D such that $\langle D \rangle$ and $\langle V \cdot D \rangle$ are connected.

 \therefore G has a connected strong dominating set.

Theorem 2.13

If G=(σ , μ) is a fuzzy graph then $2\sigma(v_i) \leq \gamma_{cs}(G) + \sigma(v_i) \leq p$

Proof : Let $G=(\sigma,\mu)$ be a fuzzy graph. By definition of fuzzy dominating set, $\gamma(G) \le p$. Clearly $\gamma(G) \le \gamma_{cs}(G)$,

Suppose all fuzzy vertices are isolated then $\gamma(G) = p.$ Clearly $\gamma_{cs}(G) < p.$ By theorem 2.8,

We have $\sigma(v_i) \leq \gamma_{cs}(G)$ when G is complete or not $\therefore \sigma(v_i) \leq \gamma_{cs}(G) \leq P$ - $\sigma(v_i)$

Theorem 2.14

If G is connected fuzzy graph, then

 $\gamma_{cs}(G) \leq P-\{\sigma(v_i) + \sigma(v_j)\}$, where v_i , v_j are the vertex having first two maximum fuzzy cardinality among the all vertices.

III. Fuzzy Disconnected Strong Domination Number

Definition 3.1

Let $G=(\sigma,\mu)$ be a fuzzy graphs without isolated vertices. A subset D_{ds} of V is said to be a fuzzy disconnected strong domination set if both induced subgraphs $\langle D_{ds} \rangle$ and $\langle V-D_{ds} \rangle$ are disconnected. The fuzzy disconnected strong domination number $\gamma_{ds}(G)$ is the minimum fuzzy cardinality taken overall disconnected strong dominating sets of G.

Example:3.1

 $\begin{array}{l} D_{ds} = \{v_7, v_8\}, \, V\text{-} \, D_{ds} = \{v_1, v_2, v_3, v_4, v_5, v_6\} \\ <\!D_{ds}\!\!> \, and <\!\!V\text{-} D_{ds}\!\!> are \ disconnected. \\ \gamma_{ds}(G) = 0.2 \end{array}$

Definition 3.2

Let $G=(\sigma,\mu)$ be a fuzzy graph, A subset D_{tds} of V is said to be a fuzzy total disconnected strong dominating set if.

(i) D_{tds} is disconnected strong dominating set.

(ii) $N[D_{tds}] = V$

The fuzzy total disconnected strong dominating number $\gamma_{tds}(G)$ is the minimum cardinality taken over all total disconnected strong dominating set in G.

Proposition : 3.1

$$\gamma_{ds}(\mathbf{P}_n) = \left\lfloor \frac{n}{2} \right\rfloor \sigma(\mathbf{v}_i), \ \sigma(\mathbf{v}_i)$$
's are equal.

Proposition : 3.2

$$\gamma_{ds}(C_n) = \left\lceil \frac{n}{3} \right\rceil \sigma(v_i), \sigma(v_i)'s \text{ are equal, } n \ge 4.$$

Proposition : 3.3

$$\gamma_{ds}(K_{\sigma_1,\sigma_2}) = min \left\{ \sum_{i=1}^{m} \sigma(v_i), \sum_{j=1}^{n} \sigma(v_j) \right\}$$

Where $v_i \in V_1$ and $v_j \in V_2$.

Remark:

 $\gamma_{ds}(K_n), \gamma_{ds}(W_n), \gamma_{ds}(\text{star})$ does not exist.

Theorem: 3.1

A disconnected strong dominating set D_{ds} of a fuzzy graph $G=(\sigma,\mu)$ is minimal dominating set iff for each $d\in D_{ds}$ one of the following two conditions holds.

(i) $N(d) \cap D_{ds} = \phi$

(ii) There exist $c \in V-D_{ds}$ such that $N(c) \cap D_{ds} = \{d\}$

Proof:

Suppose that D_{ds} is minimal and there exists a vertex $v \in D_{ds}$ such that v does not satisfy any of the above conditions, then by condition (i) and (ii), $D' = D_{ds} - \{v\}$ is a dominating set of G. This implies that D' is disconnected strong dominating set of G, which is contradiction.

Theorem 3.2

For any fuzzy graph G=(\sigma,\mu), $p\text{-}q \leq \gamma_{ds}(G) \leq p\text{-}\Delta$

Proof:

Let V be a vertex of a fuzzy graph, such that $dN(v) = \Delta$, then V/N(v) is a dominating set of a fuzzy graph $G(\sigma,\mu)$

So that $\gamma_{ds}(G) \leq |V \setminus N(v)| = p \cdot \Delta$ From Fig. (9)

$$\begin{split} D_{ds}(G) &= \{v_7, v_8\} \\ V\text{-}D &= \{v_1, v_2, v_3, v_4, v_5, v_6\} \\ p &= 0.8, \ q = 0.8 \\ \Delta &= 0.4, \gamma_{ds}(G) = 0.2 \\ p &- q \leq \gamma_{ds}(G) \leq p\text{-}\Delta \\ \textbf{Theorem 3.3} \\ & \text{For any fuzzy graph } G\text{=}(\sigma, \mu), \end{split}$$

 $\gamma_{ds}(G) \leq \gamma_{tds}(G) \leq 2 \ \gamma_{ds}(G).$

Proof :

Since every total disconnected strong dominating set is a disconnected strong dominating set, therefore $\gamma_{ds}(G) \leq \gamma_{tds}(G)$. Let D_{ds} be a disconnected strong dominating set with finite vertices, say $\{v_1, v_2, \dots v_n\}$. For each $v_i \in D_{ds}$, Choose one vertex $u_i \in V$ - D_{ds} such that v_i and u_i are adjacent.

This is possible since G has no isolated vertices. Now the set $\{v_1, v_2, ..., v_n, u_1, u_2, ... u_n\}$ is a total disconnected strong dominating set of G, and hence $\gamma_{tds}(G) \leq 2\gamma_{ds}(G)$.

Hence $\gamma_{ds}(G) \leq \gamma_{tds}(G) \leq 2\gamma_{ds}(G)$. Theorem 3.4

If $G=(\sigma,\mu)$ has atleast one cut vertex v and having one or more blocks with v is adjacent to all other vertices of the blocks, then v is in every disconnected strong dominating set.

IV. Fuzzy Left Semi Connected Domination Number

Definition 4.1

Let $G=(\sigma,\mu)$ be a fuzzy graph without isolated vertices. A subset D_{lsc} of V is said to be a fuzzy left semi connected dominating set if the induced fuzzy subgraph $\langle D_{lsc} \rangle$ is connected and induced fuzzy subgraph $\langle V-D_{lsc} \rangle$ is disconnected. The fuzzy left semi connected domination number $\gamma_{lsc}(G)$ is the minimum fuzzy cardinality taken over all left semi connected dominating sets of G.

Example:4.1

 $D_{lsc} = \{v_1, v_4\}, \text{ V- } D_{lsc} = \{v_2, v_3, v_5, v_6, v_7\}$

 $< D_{lsc} >$ is connected and

 $<\!\!V\text{-} D_{lsc}\!\!>\!is \text{ disconnected} \\ \gamma_{lsc}(G)=0.4$

Proposition 4.1 $\gamma_{lsc}(P_n) = P - (\sigma(v_1) + \sigma(v_n))$

Proposition 4.2

 $\gamma_{lsc}(C_n) = 0$

Proposition 4.3

 $\gamma_{lsc}(W_n) = 3 \sigma(v_i)$, $\sigma(v_i)$'s are equal.

Proposition 4.4

 $\gamma_{lsc}(K_{\sigma}) = does not exist.$

Proposition 4.5

 $\gamma_{lsc}(star) = \sigma(v_i)$ where v_i is the fuzzy vertex having maximum effective degree.

Proposition 4.6

$$\gamma_{lsc}(\mathbf{K}_{\sigma_1,\sigma_2}) = \min\left\{\sum_{i=1}^{m} \sigma(\mathbf{u}_i) + \min\left\{\sigma(\mathbf{v}_j) / j = 1 \text{ to } n\right\}, \sum_{i=1}^{n} \sigma(\mathbf{v}_j) + \min\left\{\sigma(\mathbf{u}_i) / i = 1 \text{ to } m\right\}\right\}$$

Theorem 4.1 :

For any fuzzy graph $G=(\sigma,\mu)$ $\gamma(G) \leq \gamma_{lsc}(G)$

Theorem 4.2.

Let $G=(\sigma,\mu)$ be a connected fuzzy graph and $H=(\sigma',\mu')$ be a spanning fuzzy subgraph of G. If H has a left semi connected dominating set then

 $\gamma_{lsc}(G) \leq \gamma_{lsc}(H).$

Theorem 4.3

For any fuzzy graph $G=(\sigma,\mu)$, $\gamma_{lsc}(\overline{G}) + \gamma_{lsc}(\overline{G}) \leq 2p$ where $\gamma_{lsc}(\overline{G})$ is the left semi connected domination number of \overline{G} and equality holds iff $0 \leq \mu(x,y) < \sigma(x) \land \sigma(y)$ for all $x,y \in V$.

V. Fuzzy Right Semi Connected Domination Number

Definition 5.1.

Let $G=(\sigma,\mu)$ be a fuzzy graph without isolated vertices. A subset D_{rsc} of V is said to be fuzzy right semi connected dominating set if the induced fuzzy subgraph $< D_{rsc}>$ is disconnected and induced fuzzy subgraph< V- $D_{rsc}>$ is connected. The fuzzy right semi connected domination number γ_{rsc} (G) is the minimum fuzzy cardinality taken over all right semi connected dominating sets of G.

Example:4.2

 $D_{rsc} = \{v_1, v_4\}, V-D_{rsc} = \{v_2, v_3, v_5, v_6, v_7\}$

 $<\!\!D_{rsc}\!\!>$ is disconnected and

<V-D_{rsc}> is connected

$$\gamma_{\rm rsc}(G) = 0.2$$

Proposition 5.1

$$\gamma_{\rm rsc}(\mathbf{P}_n) = \min\left\{\sum_{i=1}^{n-3} \sigma(\mathbf{v}_i) + \sigma(\mathbf{v}_n), \, \sigma(\mathbf{v}_1) + \sum_{i=4}^n \sigma(\mathbf{v}_i)\right\}$$

Proposition : 5.2

 $\gamma_{rsc}(C_n)$ does not exist.

Proposition : 5.3

$$\gamma_{\rm rsc}(\mathbf{W}_{\rm n}) = \left\lceil \frac{\rm n}{\rm 3} \right\rceil \sigma(\mathbf{v}_{\rm i})$$

for all $\sigma(v_i)$ is are equal.

Theorem 5.1

For any fuzzy graph $G=(\sigma,\mu)$ $\gamma(G) \leq \gamma_{rsc}(G)$

Theorem 5.2 :

Let $G=(\sigma,\mu)$ be a connected fuzzy graph and $H(\sigma',\mu')$ be a spanning fuzzy subgraph of G, If H has a left semi connected dominating set then

 $\gamma_{rsc}(G) \leq \gamma_{rsc}(H)$

Theorem 5.3

For any fuzzy graph $G=(\sigma,\mu),\gamma_{rsc}(G) + \gamma_{rsc}(\overline{G}) \le 2p$ where $\gamma_{rsc}(\overline{G})$ is the right semi connected domination number of \overline{G} and equality holds iff $0 \le \mu(x,y) < \sigma(x) \land \sigma(y)$ for all $x,y \in V$.

Acknowledgement

Thanks are due to the referees for their valuable comments and suggestions.

References

- [1]. C.Y.Ponnappan, P.Surulinathan, S.BasheerAhamad,(2014). The strong split domination number of fuzzy graphs. International Journal of Computer &Organisation Trends, 3(1).
- [2]. Harary, E., 1969. Graph Theory. Addison Wesley, Reading, MA. McAlester, M.L.N., 1988. Fuzzy intersection graphs. Comp. Math. Appl. 15(10), 871-886.
- [3]. Haynes, T.W., Hedetniemi S.T. and Slater P.J. (1998). Domination in Graphs : Advanced Topics, Marcel Dekker Inc. New York, U.S.A.
- [4]. Haynes, T.W., Hedetniemi S.T. and Slater P.J. (1998). Fundamentals of domination in graphs, Marcel Dekker Inc. New York, U.S.A.
- [5]. Kulli, V.R. and Janakiram B. (1997). The split domination number of graph. Graph Theory notes of New York. New York Academy of Sciences, XXXII, pp. 16-19.
- [6]. Kulli, V.R. and Janakiram B. (2000). The non-split domination number of graph. The Journal of Pure and Applied Math. 31(5). Pp. 545-550.
- [7]. Kulli, V.R. and Janakiram B. (2003). The strong non-split domination number of a graph. International Journal of Management and Systems. Vol. 19, No. 2, pp. 145-156.
- [8]. Ore, O. (1962). Theory o Graphs. American Mathematical Society Colloq. Publi., Providence, RI, 38.
- [9]. Rosenfeld, A., 1975. Fuzzy graphs. In :Zadeh, L.A., Fu, K.S., Shimura, M. (Eds.), Fuzzy Sets and Their Applications. Academic Press, New York.
- [10]. Somasundaram, A., and Somasundaram, S., Domination in fuzzy graphs, Pattern Recognit. Lett. 19(9) 1998), 787-791.