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Abstract: In this paper, we introduce the concept of some new kinds of connected domination number of a  

fuzzy graphs. We determine the domination numbers cs, ds ,lsc , rsc and the total domination number of tcs, tds 

for several classes of fuzzy graphs and obtain bounds for the same. We also obtain the Nordhaus – Gaddum type 

result for these parameters. 
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I. Preliminaries 

Definition:1.1[10] 

Let V be a finite non empty set. Let E be the collection of all two element subsets of V. A fuzzy graph 

G=(σ,µ) is a set with two functions σ :V→[0,1] and µ: E→[0,1] such that µ({u ,v})≤σ(u)σ(v) for all u ,v V. 

 

Definition:1.2[10] 

 Let G=( σ,µ) be a fuzzy graph on V and V1 V. Define σ1 on V1  by σ1(u)=σ(u)for all u V1 and µ1 on 

the collection E1 of two element subsets of V1 by µ1({u ,v}) = µ({u ,v}) for all u ,v V1,then (σ1,µ1) is called the 

fuzzy subgraph of G induced by V1 and is denoted by <V1>. 

 

Definition:1.3[10] 

 The order p and size q of a fuzzy graph G=(σ,µ) are defined to be p=∑uV σ(u) and q=∑(u ,v)E µ({u ,v}). 

 

Definition:1.4[10] 

Let G=(σ,µ) be a fuzzy graph on V and DV then the fuzzy cardinality of D is defined to be ∑uD σ(u). 

 

Definition:1.5[10] 

 An edge e={u ,v} of a fuzzy graph is called an effective edge if µ({u ,v}) = σ(u)  σ(v). 

 N(u) = { vV/ µ({u ,v}) = σ(u)  σ(v)} is called the neighborhood of u and N[u]=N(u) {u} is the 

closed neighborhood of u. 

 The effective degree of a vertex u is defined to be the sum of the weights of the effective edges incident 

at u and is denoted by dE(u).  (𝑣)𝑣𝑁 𝑢 is called the neighborhood degree of u and is denoted by dN(u). The 

minimum effective degree E(G)=min{dE(u)|uV(G)} and the  

maximum effective degree  

E(G)=max{dE(u)|uV(G)}. 

 

Definition :1.6[10] 

 The complement of a fuzzy graph G denoted by 𝐺  is defined to be 𝐺 = (, ) where   {𝑢, 𝑣} =
 𝑢  𝑣 −   𝑢, 𝑣  . 
 

 

Definition :1.7[1] 

 A set of fuzzy vertex which cover all the fuzzy edges is called a fuzzy vertex cover of G and the 

minimum cardinality of a fuzzy vertex cover is called a vertex covering number of G and denoted by (G). 

 

Definition :1.8[10] 

 Let :V→[0,1] be a fuzzy subset of V. Then the complete fuzzy graph on  is defined to be (,) 

where ({u ,v})=(u)(v) for all {u ,v}E and is denoted by K. 
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Definition :1.9[3] 

 Let G=(V,E) be a graph. A subset D of V is called a dominating set in G if every vertex in V-D is 

adjacent to some vertex in D. 

 

Definition :1.10[10] 

 Let G=(,) be a fuzzy graph on V. Let u,vV. We say that u dominates v in G if ({u,v})=(u)(v). 

A subset D of V is called a dominating set in G if for every vD, there exists uD such that u dominates v. The 

minimum fuzzy cardinality of a dominating set in G is called the domination number of G and is denoted by 

(G)or . 

 

Definition :1.11[10] 

 A fuzzy graph G=(,µ) is said to be a bipartite if the vertex V can be partitioned into two nonempty 

sets V1 and V2 such that µ(v1,v2)=0 if v1,v2V1 or v1,v2V2. Further, if (u,v)=(u) (v) for all uV1 and 

vV2 then G is called a complete bipartite graph and is denoted by𝐾1
,2  where 1 and 2 are, respectively, the 

restrictions of  to V1 and V2. 

 

Definition :1.12[10] 

A dominating set D of a fuzzy graph G=(σ,µ) is connected dominating set, if the induced fuzzy sub 

graph H=(<D>,,µ) is connected. The minimum fuzzy cardinality of a connected dominating set of G is called 

the connected dominating number of G and is denoted by 𝛾𝑐(𝐺) (or) 𝛾𝑐 . 

 

Definition :1.13[10] 

 A dominating set D of a fuzzy graph G is said to be a minimal dominating if no proper subset D of D 

is dominating set of G such that |D|<|D|. 

 

II. Fuzzy Connected Strong Domination Number 
Definition : 2.1 

 Let G=(,) be a fuzzy graph without isolated vertices. A subset Dcs of V is said to be a fuzzy 

connected strong domination set if both induced subgraphs <Dcs> and <V-Dcs> are connected. The fuzzy 

connected strong domination number cs(G) is the minimum fuzzy cardinality taken over all connected strong 

dominating sets of G. 

 

Example:2.1 

 
Fig.(1) 

 

Dcs = {v1,v3},  

V – Dcs= {v2,v4} 

cs(G) = 0.3 

<Dcs>, <V – Dcs> are connected. 

 

 One possible application of the concept of connected strong domination is that to consider Dcs is the 

Indian embassy and V- Dcs  is a foreign embassy to maintain better political relationship among each one has its 

own connected team for effective management. 

 

Definition : 2.2 

Let G=(,) be a fuzzy graph, A subset Dcs of V is said to be a fuzzy total connected strong domination 

set if  

(i) Dcs is connected strong dominating set  

(ii) N[Dcs]  = V 
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The fuzzy total connected strong domination numbertcs(G) is the minimum cardinality taken over all 

total connected strong dominating sets in G. 

 

Proposition 2.1 

cs(pn) = min {p-(v1), p-(vn)}, 

when v1andvn are the pendent vertices. 

 

Proposition 2.2 

cs(Cn) = min  
n 2 n 1 1

i i i
i 1 i 2 i n 2

(v ), (v ),... (v )
 

   

    
 

 

Proposition 2.3 

cs(Wn) = (v), v is the centre vertex 

 

Proposition 2.4 

cs(K) = (v), v is the vertex of minimum cardinality. 

 

Proposition 2.5 

cs(star) = (vi) + (vj), vi is a vertices adjacent with all other vertices and vj is the all pendent vertices 

of minimum  cardinality, except one pendent vertex has maximum cardinality. 

 

Proposition 2.6 

cs(
1 2,K  ) = min {(vi)} + min {(vj)} where viV1 and vjV2. 

 

Proposition 2.7 

 Let G be the Peterson graph, (i) If all fuzzy vertices having equal cardinality then cs(G) = 5(vi), for  

i=1to 10. 

(ii) If an unequal fuzzy vertex cardinality, then 

cs(G) = min

5 10

i i

i 1 i 6

(v ), (v ) 
 

 
 
 
   

  

 
Fig.(2) 

 

Theorem :2.1 

A connected strong dominating set Dcs of G is a minimal dominating set iff for each vertex d Dcs, one 

of the following condition holds. 

(i) N (d) Dcs =  

(ii) There exist c V-Dcs such that N(c) Dcs = {d} 

 

Proof : 

Suppose that Dcs is minimal and there exists a vertex vDcs such that v does not satisfy any of the 

above conditions. Then by condition (i) and (ii), D= Dcs-{v} is a dominating set of G, This implies that D is 

connected strong dominating set of G which is contradiction. 

 

 

Theorem : 2.2. 

V5
V4

V10

V6

V1

V7
V9

V8

V2

V3
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Let G=(σ,µ) be a fuzzy connected strong dominating set iff G contains a path Pn or cycle Cn, depends 

upon the number of vertices of the graph G.  

 

Proof : Let G be a fuzzy graph 

 

Let D be thecs – set of G, then<D> and <V-D> are connected graphs. 

For each u ,vG, then there exists a path. since<D> and <V-D> are connected. 

Suppose G is a path or any tree the result holds good. 

Consider G contains any cycle then there is a cycle contains u and v. since<D> and <V-D> are 

connected. 

 

Theorem :2.3 
 

For any Fuzzy graph G=(σ,µ), 

p-q ≤ cs(G) ≤ P- 

 

Proof : 

Let v be a vertex of a fuzzy graph, such that dN(v) =  then V/N(v) is a dominating set of G, so that  

cs(G)≤|V\N(v)| ≤p-. 

 

Example 2.2 

 

 
Fig.(3) 

 

D = {v1,v3,v4} 

<V-D> = {v2,v5,v6,v7} 

p = 2.1, q = 2.1,  = 0.9 

cs (G) = 0.9 

p-q ≤ cs (G) ≤ p- 

 

Theorem :2.4 

 For any fuzzy graphs G, 

cs(G) +cs (G)  ≤ 2p,  

wherecs (G) is the connected strong domination number of G and equality holds iff 0 ≤ (x ,y) <(x) (y),  

for all x , yV. 

 

Example:2.3 

 
Fig. (4) 
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Dcs = {v3,v4}, cs(G) = 0.5, P  = 1.2 

 

 
Fig.(5) 

 

Dcs = {v3,v4}, cs( G ) = 0.6 

 

cs (G) + cs ( G ) ≤ 2p  

 

Remark : 

 A fuzzy graph G=(,)has an equal cardinality of all vertices then cs( G ) does not exist. 

 

Theorem 2.5 

 For any fuzzy graph G=(,), 

cs(G)≤(G) ≤ cs(G) 

 
Fig.(6) 

 

cs(G) =0.2, cs(G)= 0.6, (G) = 0.2 

 

Remark : For equal fuzzy cardinality 

cs (G) =  (G) = cs(G) 

 

Theorem 2.6 : 

For any fuzzy graph G=(,),  

cs(G) ≤ tcs (G) ≤ 2cs(G) 

 

Proof :  Since every total connected strong dominating set is a connected strong dominating set. Therefore, 

cs(G) ≤tcs (G). Let Dcs be a connected strong dominating set with finite vertices say {v1,v2,…vn}. For each 

viDcs, choose one vertex ui V-Dcs such that vi and ui are adjacent. 

 This is possible since G has no isolated vertices. 

Now the set {v1, v2, …vn, u1, u2, …un} is a total connected strong dominating set of G,  

tcs (G) ≤ 2cs (G) 

 

Hence cs(G) ≤ tcs (G) ≤ 2cs(G) 

 

Example  2.4 

 
Fig.(7) 
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Dcs = {v2,v3}, cs = 0.5 

Dtcs= (v2,v3}, tcs = 0.5 

cs(G) ≤ tcs (G) ≤ 2cs(G) 

 

Theorem :2.7 

 Let G=(,) be a connected fuzzy graph and H be a spanning fuzzy subgraph of G. If H has a 

connected strong dominating set then tcs (G) ≤ tcs (H) 

 

Proof : 

 Let G=(,) be a fuzzy graph and H=(,) be the spanning fuzzy subgraph of G. Let Dtcs(G) be the 

fuzzy minimum total connected strong dominating set of H but not minimum. 

 

Example  2.5 

 

 
Fig.(8) 

 

 
Fig.(9) 

 

Dtcs(G) = {v1,v2,v3,v4} ; tcs(G) = 0.4 

Dtcs(H) = {v1,v2,v3,v4,v5} ; tcs(H) = 0.5 

 

Theorem 2.8 

 If G=(,) is complete thencs(G) = (vi), where vi is the vertex of minimum fuzzy cardinality. 

 

Proof :Let G be a complete fuzzy graph. 

 Every vertices are adjacent to all other,vertices,therefore each vertexdominates the other and every 

minimum dominating set of fuzzy complete graph K contains exactly one vertex having minimum cardinality 

cs(G)=(vi) where vi is a vertex of minimum fuzzy cardinality. 

 

 

Theorem : 2.9  

 If G=(,) is a path, then G has exactly two different connected strong dominating set. 

 

Proof: 

 In every Path Pn, 

V  = {v1, v2, …vn} be a fuzzy vertex set,  

by definition 2.1 

 Clearly D1 = {v1, v2, …vn-1} and 

D2 = {v2, v3,…vn} are the two fuzzy connected strong dominating sets. 

Theorem 2.10 

 Every connected strong dominating set is not an independent dominating set. 
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Proof : 

 Let G=(,) be a fuzzy graph assume that Dcs is a connected strong dominating set. Therefore Dcs is not 

independent dominating set since Dcs is connected. 

 

Theorem 2.11 

 If G is a path, all connected strong dominating set are minimal dominating set. 

Proof : By theorem 2.9,G has exactly two different connected dominating sets. 

i.e) D1 = {v1,v2,…vn-1} 

 D2 = {v2,v3,…vn} 

 

Obviously D1 – {vi} is not a connected strong dominating set, for all vi D1. 

Hence D1 is a minimal connected strong dominating set. 

Similarly for D2. 

Therefore both D1 and D2 are minimal connected strong dominating set. 

 

Theorem 2.12:The fuzzy graph G=(,) has a connected strong dominating set iff G is connected. 

 

Proof : Assume D is connected strong dominating set. 

 

By definition 2.1 

 <D> and <V-D> are connected  

To prove that G is connected. 

Suppose G is not connected, then every dominating set is not a connected dominating set.Which is 

contradiction to assumption G is connected. 

 

Conversely,assume that G is connected. 

To prove that G has a connected strong dominating set. G is connected, then there exists a set D such 

that <D> and <V-D> are connected. 

 

G has a connected strong dominating set. 

 

Theorem 2.13 

 If G=(,) is a fuzzy graph then 2(vi) ≤ cs(G) + (vi) ≤p 

 

Proof : Let G=(,) be a fuzzy graph. 

By definition of fuzzy dominating set,  

(G) ≤ p. 

Clearly (G) ≤ cs(G), 

 

Suppose all fuzzy vertices are isolated then (G) = p. Clearly cs(G) < p. 

By theorem 2.8, 

 

We have (vi) ≤ cs(G) when G is complete or not 

(vi) ≤ cs(G) ≤ P-(vi) 

 

Theorem 2.14 

 If G is connected fuzzy graph, then  

cs(G)  P- {(vi) + (vj)}, where vi , vj are the vertex having first two maximum fuzzy cardinality among the all 

vertices. 

 

III. Fuzzy Disconnected Strong Domination Number  
Definition 3.1 

 Let G=(,) be a fuzzy graphs without isolated vertices. A subset Dds of V is said to be a fuzzy 

disconnected strong domination set if both induced subgraphs<Dds> and <V-Dds>are disconnected. The fuzzy 

disconnected strong domination number ds(G) is the minimum fuzzy cardinality taken overall disconnected 

strong dominating sets of G. 

Example:3.1 
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Fig.(10) 

 

Dds = {v7,v8}, V- Dds = {v1,v2,v3,v4,v5,v6} 

<Dds>  and<V-Dds> are disconnected. 

ds(G) = 0.2 

 

Definition 3.2 

 Let G=(,) be a fuzzy graph, A subset Dtds of V is said to be a fuzzy total disconnected strong 

dominating set if. 

(i) Dtds is disconnected strong dominating set. 

(ii) N[Dtds] = V 

The fuzzy total disconnected strong dominating number tds(G) is the minimum cardinality taken over 

all total disconnected strong dominating set in G. 

Proposition : 3.1 

 ds(Pn) = i

n
(v ),

2


 
 
 

(vi)’s are equal. 

 

Proposition : 3.2 

  

ds(Cn) = 
i i

n
(v ), (v ) s are equal, n 4.

3
 

 
  

 
 

 

Proposition : 3.3 

 ds(
1 2,K  )  = min  m n

i j
i 1 j 1

(v ), (v )
 

  
 

Where vi V1and vj V2. 

 

Remark: 

 ds(Kn), ds(Wn),ds(star) does not exist. 

  

Theorem : 3.1 

 A disconnected strong dominating set Dds of a fuzzy graph G=(,) is minimal dominating set iff for 

each dDds one of the following two conditions holds. 

(i) N (d) Dds =  

(ii) There exist c  V-Dds such that N(c) Dds = {d} 

 

Proof : 

 Suppose that Dds is minimal and there exists a vertex v Dds such that v does not satisfy any of the 

above conditions, then by condition (i) and (ii), D = Dds – {v} is a dominating set of G. This implies that D is 

disconnected strong dominating set of G, which is contradiction. 

 

Theorem 3.2 

 For any fuzzy graph G=(,),  

p-q ≤ ds(G) ≤ p- 

 

 

 

Proof : 
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 Let V be a vertex of a fuzzy graph, such that dN(v) = , then V/N(v) is a dominating set of a fuzzy 

graph G(,) 

So that ds(G) ≤ |V\N(v)| = p- 

From Fig. (9) 

 

 Dds(G) = {v7,v8} 

V-D = {v1,v2,v3,v4,v5,v6} 

p = 0.8,  q = 0.8 

 = 0.4, ds(G)  = 0.2 

p – q ≤ ds(G) ≤ p- 

Theorem 3.3 

 For any fuzzy graph G=(,),  

ds(G) ≤ tds(G) ≤ 2 ds(G). 

 

 

Proof : 

 Since every total disconnected strong dominating set is a disconnected strong dominating set, therefore 

ds(G) ≤ tds(G).  Let Dds be a disconnected strong dominating set with finite vertices, say {v1,v2,…vn}. For each 

viDds, Choose one vertex uiV-Dds such that vi and ui are adjacent. 

This is possible since G has no isolated vertices. Now the set {v1,v2,…vn, u1,u2,..un} is a total 

disconnected strong dominating set of G, and hence tds(G) ≤ 2ds(G). 

Hence ds(G) ≤ tds(G) ≤ 2ds(G). 

Theorem 3.4 

 

If G=(,) has atleast one cut vertex v and having one or more blocks with v is adjacent to all other 

vertices of the blocks, then v is in every disconnected strong dominating set. 

 

IV. Fuzzy Left Semi Connected Domination Number  
Definition 4.1 

 Let G=(,) be a fuzzy graph without isolated vertices. A subset Dlsc of V is said to  be a fuzzy left 

semi connected dominating set if the induced fuzzy subgraph<Dlsc> is connected and induced fuzzy 

subgraph<V-Dlsc> is disconnected. The fuzzy left semi connected domination number lsc(G) is the minimum 

fuzzy cardinality taken over all left semi connected dominating sets of G. 

 

Example:4.1 

 

 
Fig.(11) 

 

Dlsc = {v1,v4}, V- Dlsc = {v2,v3,v5,v6,v7} 

 

<Dlsc> is connected and  

 

<V- Dlsc> is disconnected 

lsc(G) = 0.4 

 

Proposition 4.1 

 lsc(Pn) = P – ((v1) + (vn)) 

 

Proposition 4.2 
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 lsc(Cn) = 0 

 

Proposition 4.3 

lsc(Wn) = 3 (vi) , (vi)’s are equal. 

 

Proposition 4.4 

lsc(K) = does not exist. 

 

Proposition 4.5 

lsc(star)  = (vi) where vi is the fuzzy vertex having maximum effective  degree. 

 

Proposition 4.6 

lsc(
1 2,K  )  = min  

m

i j

i 1

(u ) min (v ) / j 1ton 



 


 ,  

n

j i

i 1

(v ) min (u ) / i 1tom



    


  

 

Theorem 4.1 : 

For any fuzzy graph G=(,) 

(G) lsc(G) 

 

Theorem 4.2. 

 Let G=(,) be a connected fuzzy graph and H=(,) be a spanning fuzzy subgraph of G, If H has a 

left semi connected dominating set then  

lsc (G)lsc(H). 

 

Theorem 4.3 

 For any fuzzy graph G=(,), lsc( G )+lsc( G )  2p wherelsc( G ) is the left semi connected 

domination number of G  and equality holds iff 0 (x,y) <(x) (y) for all x,y V. 

 

V. Fuzzy Right Semi Connected Domination Number 
Definition 5.1. 

 Let G=(,) be a fuzzy graph without isolated vertices. A subset Drsc of V is said to be fuzzy right semi 

connected dominating set if the induced fuzzy subgraph<Drsc> is disconnected and  induced fuzzy subgraph<V-

Drsc> is connected. The fuzzy right semi connected domination number rsc (G) is the minimum fuzzy cardinality 

taken over all right semi connected dominating sets of G. 

 

Example:4.2 

 

 
Fig.(12) 

 

Drsc= {v1,v4}, V-Drsc = {v2,v3,v5,v6,v7} 

 

<Drsc> is disconnected and 

 

<V-Drsc> is connected 

 

rsc(G) = 0.2 

 

Proposition 5.1 
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rsc(Pn) = min 
n 3 n

i n 1 i
i 1 i 4

(v ) (v ), (v ) (v )


 

     
 

 

Proposition : 5.2 

rsc(Cn) does not exist. 

 

Proposition : 5.3 

rsc(Wn) = i

n
(v )

3


 
 
 

 

for all (vi) is are equal. 

 

Theorem 5.1 

For any fuzzy graph G=(,)  

(G) rsc(G) 

 

Theorem 5.2 : 

Let G=(,) be a connected fuzzy graph and H(,) be a spanning fuzzy subgraph of G, If H has a 

left semi connected dominating set then  

rsc(G)  rsc(H) 

 

Theorem 5.3 

 For any fuzzy graph G=(,),rsc(G) + rsc( G )  2p where rsc( G ) is the right semi connected 

domination number of G  and equality holds iff 0 (x,y) <(x) (y) for all x,y V. 
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