Decomposition of Line Graph into Paths and Cycles

S. Lakshmi¹, K. Kanchana²

¹Assistant Professor, Department of mathematics, PSGR Krishnamma college for women, Coimbatore, Tamil nadu, India
²Research Scholar, Department of mathematics, PSGR Krishnamma college for women, Coimbatore, Tamil nadu, India

Abstract: Let \(P_{k+1} \) denote a path of length \(k \) and let \(C_k \) denote a cycle of length \(k \). As usual \(K_n \) denotes the complete graph on \(n \) vertices. In this paper we investigate decompositions of line graph of \(K_n \) into \(p \) copies of \(P_k \) and \(q \) copies of \(C_s \) for all possible values of \(p \geq 0 \) and \(q \geq 0 \).

Keywords: Path, Cycle, Graph Decomposition, Complete graph, Line graph.

I. Introduction

Unlike stated otherwise all graphs considered here are finite, simple, and undirected. For the standard graph-theoretic terminology the readers are referred to [7]. Let \(P_{k+1} \) denote a path of length \(k \) and let \(C_k \) denote a cycle of length \(k \). Let \(S_k \) denotes a star on \(k \) vertices, i.e. \(S_k = K_{1,k-1} \). As usual \(K_n \) denotes the complete graph on \(n \) vertices. Let \(K_{m,n} \) denote the complete bipartite graph with \(m \) and \(n \) vertices in the parts. If \(G = (V,E) \) is a simple graph then the line graph of \(G \) is the graph \(L(G) = (E,L) \), where \(L = \{ \{e,f\} | e,f \subseteq E, e \cap f \neq \emptyset \} \) = 1. For the sake of convenience, we use \(uw \) to denote an edge \{\(u,v \}\) and \(u,v \) are called the ends of the edge \{\(u,v \}\}. In general, if one allows more than one edge (but a finite number) between same pair of vertices, the resulting graph is called a multigraph. In particular, if \(G \) is a simple graph then for any \(\lambda \geq 1 \), \(G (\lambda) \) and \(\lambda G \) respectively denote the multigraph with edge-multiplicity \(\lambda \) and the disjoint union of \(\lambda \) copies of \(G \).

By a decomposition of a graph \(G \), we mean a list of edge-disjoint subgraphs \(H_1, \ldots, H_k \) of \(G \) whose union is \(G \) (ignoring isolated vertices). When each subgraph in a decomposition is isomorphic to \(H \), we say that \(G \) has an \(H \)-decomposition. It is easily seen that \(\sum e(H_m) = e(G) \) is one of the obvious necessary condition for the existence of a \(\{H_1, H_2, \ldots, H_k\} \) – decomposition of \(G \). A \(\{H_1, H_2\} \) – decomposition of \(G \) is a decomposition of \(G \) into copies of \(H_1 \) and \(H_2 \) using at least one of each. If \(G \) has a \(\{H_1, H_2\} \)-decomposition, we say that \(G \) is \(\{H_1, H_2\} \)-decomposable.

The problem of \(H \)-decomposition of \(K_n (\lambda) \) is the well-known Alspach’s conjecture [6] when \(H \) is any set of cycles of length at most \(n \) satisfying the necessary sum conditions and \(2 \mid \lambda \) (n-1) . For the case \(\lambda = 1 \), Alspach conjecture is also stated for even values of \(n \), where in this case the cycles should decompose \(K_n \) minus a factor. There are many related results, but only special cases of this conjecture are solved completely. When \(H \) is a set of paths, in this case the problem of \(H \)-decomposition has been investigated by Tarsi [19] who showed that if \((n-1) \lambda \) is even and \(H \) is any set of paths of length at most \(n - 3 \) satisfying the necessary sum condition, then \(K_n (\lambda) \) has an \(H \)-decomposition. The problem of \(H \)-decomposition of \(K_{m,n} (\lambda) \) has been investigated by Truszczyński [20] when \(m \) and \(n \) are even and \(H \) is any set of the paths with some constraints on length satisfying the necessary sum condition. It is natural to consider the problem of \(H \)-decomposition of \(K_n \), where \(H \) is a combination of paths, cycles, and some other subgraphs. We will restrict our attention to \(H \) which is any set of paths and cycles satisfying the necessary sum condition. There is several similarly known results as follows. A graph-pair of order \(t \) consists of two non-isomorphic graphs \(G \) and \(H \) on \(t \) non-isolated vertices for which \(G \cup H \) is isomorphic to \(K_{t} \).

Study on \(\{H_1, H_2\} \)-decomposition of graphs is not new. Abueva and Daven [1,3] completely determined the values of \(n \) for which \(K_n (\lambda) \) admits the \(\{H_1, H_2\} \)-decomposition such that \(H_1 \cup H_2 = K_n \), when \(\lambda \geq 1 \) and \(|V(H_1)| = |V(H_2)| = t \), where \(t \in \{4, 5\} \). Abuya and Daven [2] proved that there exists a \(\{K_k, S_{k+1}\} \)-decomposition of \(K_n \) for \(k \geq 3 \) and \(n \equiv 0 \) (mod \(k \)). Abueva and O’Neill [4] proved that for \(k \in \{3, 4, 5\} \), the \(\{C_k, S_k\} \)-decomposition of \(K_n (\lambda) \) exists, whenever \(n \geq k + 1 \) except for the ordered triples \((k,n,\lambda) \in \{(3,4,1), (4,5,1), (5,6,1), (5,6,2), (5,6,4), (5,7,1), (5,8,1)\} \). Abueva and Daven [2] obtained necessary and sufficient conditions for the \(\{C_5, (2K_3)\} \)-decomposition of the Cartesian product and tensor product of paths, cycles, and complete graphs. Shyu [14] obtained a necessary and sufficient condition for the existence of a \(\{P_a, C_b\} \)-decomposition of \(K_n \). Shyu [15] proved that \(K_n \) has a \(\{P_a, S_b\} \)-decomposition if and only if \(n \geq 6 \) and \(3(p+q) \geq 25 \). Also he proved that \(K_n \) has a \(\{P_a, S_b\} \)-decomposition with a restriction \(p \geq k/2 \), when \(k \) even (resp., \(p \geq k \), when \(k \) odd). Shyu [16] obtained a necessary and sufficient condition for the existence of a \(\{P_a, K_b\} \)-decomposition of \(K_n \). Shyu [17] proved that \(K_n \) has a \(\{C_4, S_3\} \)-decomposition if and only if \(4(p+q) = \binom{a}{2} \).
$q \neq 1$, when n is odd and $q \geq \max \{\frac{3n}{4}\}$, when n is even. Shyu [18] proved that $K_{m,n}$ has a $\{P_s, S_k\}$-decomposition for some m and n and also obtained some necessary and sufficient condition for the existence of a $\{P_s, S_k\}$-decomposition of $K_{m,n}$. Sarvate and Zhang [13] obtained necessary and sufficient conditions for the existence of a $\{pP_q, qK_t\}$-decomposition of $K_n(\lambda)$, when $p = q$.

Chou et al. [8] proved that for a given triple (p,q,r) of nonnegative integers, G decompose into p copies of C_4, q copies of C_6, and r copies of C_8 such that $4p+6q+8r = |E(G)|$ in the following two cases: (a) $G = K_m,n$ with m and n both even and greater than four (b) $G = K_m,n - I$, where n is odd. Chou and Fu [9] proved that the existence of a $\{C_m,C_{2k}\}$-decomposition of $K_{p,2n}$, where $t/2 \leq u,v < t$, when t even (resp., $t + 1)/2 \leq u,v \leq (3t - 1)/2$, when t odd) implies such decomposition in $K_{m,n}$, when $m,n \geq t$ (resp., $m,n \geq (3t + 1)/2$). Lee and Chu [10,11] obtained a necessary and sufficient condition for the existence of a $\{P_s, S_k\}$-decomposition of $K_{m,n}$ and $K_{m,n}$. Lee and Lin [12] obtained a necessary and sufficient condition for the existence of a $\{C_k, S_{k+1}\}$-decomposition of $K_{m,n}$ when $n = 1$. Abueida and Lian [5] obtained necessary and sufficient conditions for the existence of a $\{C_k, S_{k+1}\}$-decomposition of K_n for some n.

In this paper we investigate decompositions of line graph of K_n into p copies of P_5 and q copies of C_4 for all possible values of $p \geq 0$ and $q \geq 0$.

II. $\{P_5,C_4\}$-decomposition of $L(K_n)$

In this section, we investigate the existence of $\{P_5, C_4\}$-decomposition of $L(K_n)$.

III. Construction

Let C_4^A and C_4^B be two cycles of length 4, where $C_4^A = \{abca\}$ and $C_4^B = \{wxyz\}$. If v is a only common vertex of C_4^A and C_4^B, say $c = y = v$, then we have two paths of length 4 as follows: $abvw, wxvd$.

Lemma 2.1. There exists a $\{P_5, C_4\}$-decomposition of $K_{4,4}$.

Proof. Let $V(K_{4,4}) = \{x_1, x_2, x_3, x_4\} \cup \{y_1, y_2, y_3, y_4\}$. We exhibit the $\{P_5, C_4\}$-decomposition of $K_{4,4}$ as follows:

1. $p = 0$ and $q = 4$. The required cycles are
 - $(x_1y_1x_2y_2x_1)$, $(x_1y_1x_2y_2x_3)$, $(x_2y_1x_3y_2x_3)$.
2. $p = 2$ and $q = 2$. The required paths and cycles are
 - $(x_1y_1x_2y_2y_1)$, $(x_2y_1x_3y_2y_3)$, $(x_3y_1x_4y_2x_3)$, $(x_4y_1x_3x_2y_3)$.
3. $p = 3$ and $q = 1$. The required paths and cycles are
 - $(x_2y_1x_3y_2y_1)$, $(x_3y_1x_4y_2y_3)$, $(x_4y_1x_3y_2y_3)$, $(x_3y_1x_4x_2y_3)$.
4. $p = 4$ and $q = 0$. The required paths are
 - $(x_1y_1x_2y_2y_4)$, $(x_2y_1x_3y_2y_1)$, $(x_3y_1x_4y_2y_4)$, $(x_4y_1x_3y_2y_3)$.

Lemma 2.2. There exists a $\{P_5, C_4\}$-decomposition of the complete bipartite graph $K_{8,8m}$ for all $m \geq 1$.

Proof. Let $V(K_{8,8m}) = \{X, Y\}$ with $X = \{x_1, \ldots, x_8\}$ and $Y = \{y_1, \ldots, y_{8m}\}$. Partition (X, Y) into 4-subsets $\{A_1^X, A_2^X\}$ such that $\bigcup_{i=1}^{m} A_1^X = X$, $\bigcup_{j=1}^{m} A_2^Y = Y$. Then $G[\{A_1^X, A_2^Y\}] \cong K_{4,4}$. Thus $K_{8,8m} = 4m(K_{4,4})$. By Lemma 2.1, the graph $K_{4,4}$ has a $\{P_5, C_4\}$-decomposition. Hence the graph $K_{8,8m}$ has the desired decomposition.

Lemma 2.3. There exists a $\{P_5, C_4\}$-decomposition of the graph $K_{8m} - F$ for all $m \geq 1$, where F is a 1-factor of K_{8m}.

Proof. Let $8m = 4k$, where k is a positive integer and $V(K_{4k} - I) = \{x_0, \ldots, x_{4k-1}\}$, where $I = \{x_2, x_{2i+1} : 0 \leq i \leq 2k-1\}$ and $AI = \{x_2, x_{2i+1}\}$, $0 \leq i \leq 2k-1$. We obtain a new graph G from $K_{4k} - I$, by identifying each set Ai with a single vertex ai; join two vertices ai and aj by an edge if the corresponding sets Ai and Aj form a $\{K[A]_i, A_j\}$ in K_{4k}. Then the graph $G = K_{2k}$. The graph K_{2k} has a Hamilton path decomposition $\{G_0, \ldots, G_k\}$, where each G_i, $0 \leq i \leq k$ is a Hamilton path. Each G_i decomposes some copies of P_5 or P_3. When we go back to $K_{4k} - I$, each P_3 (resp., P_5) of G_i, $0 \leq i \leq k$ will give rise to $2C_4$ or $2P_5$ (resp., $2P_5$, $1C_4$) or $3P_3$ in $K_{4k} - I$. Hence the graph $K_{8m} - I$ has the desired decomposition.

Lemma 2.4. There exist a $\{P_5, C_4\}$-decomposition of the graph $L(K_9)$.
Decomposition of Line Graph into Paths and Cycles

Proof. For $0 \leq k \leq 8$, by Lemma 2.3 there exist a $[P_5,C_4]$-decomposition $G_i \cong K_8 - F_i$, where G_i defined on the vertex set $\{i,j\}$ with $j \leq 8$, $j \neq i$ and where $F_i = \{\{i, 1+i\}, \{i, 2+i\}, \{i, 3+i\}, \{i, 7+i\}\} \cup \{\{i, 4+i\}, \{i, 8+i\}, \{i, 5+i\}, \{i, 6+i\}\}$, reducing all sums modulo 9. Then a $[P_3,C_4]$-decomposition of $L(K_8)$ on the vertex set $\{i,j\} | (i,j) \subseteq \{0,1,\ldots,8\}$ follows from the partition of the edges of $U_{j=0}^{8}$ into P_3 or C_4, $\{(j,j+1), (j+1,5+j), (5+j,2+j), (2+j,j)\} | 0 \leq j \leq 8$, again reducing all sums modulo 9.

Theorem 2.1. If $n \equiv 1 \pmod{8}$ then there exists a $[P_3,C_4]$-decomposition of $L(K_n)$.

Proof. The result is true for $n = 9$, so we proceed by induction on n. Let $n = 8m + 1$, $m \geq 2$, and let the vertex set of K_n be $\{\omega\} \cup \{1, \ldots, 8m\}$. $L(K_n)$ can be partitioned into the following edge-disjoint subgraphs:

1. $L(K_{8m}), K_3$ being defined on the vertex set $\{\omega\} \cup \{1, \ldots, 8\}$;
2. $L(K_{8m}, 0), K_{8m,7}$ being defined on the vertex set $\{\omega\} \cup \{9, \ldots, 8m\}$;
3. For $1 \leq i \leq 8$, $G_i \cong K_{8m,8} - F_i$ on the vertex set $\{i, j\} | 9 \leq j \leq 8m$, where $F_i = \{\{i, 2k-1\}, \{i, 2k\} | 5 \leq k \leq 4m$;
4. For $9 \leq j \leq 8m, G_i \cong K_8 - F_j$ on the vertex set $\{i,j\} | 1 \leq i \leq 8$, where $F_j = \{\{2k-1,j\}, \{2k,j\} | 1 \leq k \leq 4$;
5. $\bigcup_{j=1}^{8} (F_j) \cup \bigcup_{j=0}^{8m} (F_j)$;
6. $K_{8m,n}$ with b-partition $\{\{\omega\}, i\} | 1 \leq i \leq 8$ and $\{\{\omega\}, j\} | 9 \leq j \leq 8m$;
7. For $1 \leq i \leq 8, H_i \cong K_{8,8m,8}$ with bi-partition $\{\{i,k\} | k \in \{\omega, 1, 2, \ldots, 8\}\ \{\{i\}\}$ and $\{\{i,j\} | 9 \leq j \leq 8m$; and
8. $9 \leq j \leq 8m, H_j \cong K_{8,8m,8}$ with bi-partition $\{\{i,j\} | 1 \leq i \leq 8$ and $\{\{k,j\} | k \in \{\omega, 9, 10, \ldots, 8m\}\ \{\{j\}\}$.

The result now follows, since there exist $[P_3,C_4]$-decomposition of graphs defined in (1) and (2) by induction and Lemma 2.4, (3) and (4) by Lemma 2.3, (5) since these edges form vertex-disjoint C_4, and (6),(7) and (8) by Lemma 2.2. Hence the graph $L(K_n)$ has the desired decomposition.

References

[14] T.-W. Shyu Decomposition of complete graphs into paths and cycles Ars Combin. 97 2010 257-270
[16] T.-W. Shyu Decomposition of complete graphs into paths of length three and triangles Ars Combin. 107 2012 209-224
[17] T.-W. Shyu Decomposition of complete graphs into cycles and stars Graphs Combin. 29 2013 301-313
[18] T.-W. Shyu Decomposition of complete bipartite graphs into paths and stars with same number of edge Discrete Math. 313 2013 865-874

DOI: 10.9790/5728-11543133 www.iosrjournals.org 33 | Page