Co – Isolated Locating Domination Number For Unicyclic Graphs

S. Muthammai1, N. Meenal2
1(PG & Research Department of Mathematics, Government Arts College for Women (Autonomous), Tamilnadu, India)
2(Department of Mathematics & Statistics, J.J. College of Arts and Science(Autonomous), Tamilnadu, India)

Abstract: Let G (V, E) be a simple, finite, undirected connected graph. A non – empty set S ⊆ V of a graph G is a dominating set, if every vertex in V – S is adjacent to at least one vertex in S. A dominating set S ⊆ V is called a locating dominating set, if for any two vertices v, w ∈ V – S, N(v) ∩ S ≠ N(w) ∩ S. A locating dominating set S ⊆ V is called a co – isolated locating dominating set, if there exists at least one isolated vertex in < V – S >. The co – isolated locating domination number γcid is the minimum cardinality of a co – isolated locating dominating set. In this paper, the number γcid is obtained for unicyclic graphs.

Keywords: Dominating set, locating dominating set, co – isolated locating dominating set, co – isolated locating domination number.

I. Introduction

Let G = (V, E) be a simple graph of order p. For v ∈ V(G), the neighborhood N_G(v) (or simply N(v)) of v is the set of all vertices adjacent to v in G. For a connected graph G, the eccentricity e_G(v) of a vertex v in G is the distance to a vertex farthest from v. Thus, e_G(v) = {d_G(u, v) : u ∈ V(G)}, where d_G(u, v) is the distance between u and v in G. The minimum and maximum eccentricities are the radius and diameter of G, denoted r(G) and diam(G) respectively. A pendant vertex in a graph G is a degree of vertex one and a vertex is called a support if it is adjacent to a pendant vertex. A unicyclic graph G is a graph with exactly one cycle. The concept of domination in graphs was introduced by Ore [1]. A non – empty set S ⊆ V(G) of a graph G is a dominating set, if every vertex in V(G) – S is adjacent to some vertex in S. A special case of dominating set S is a locating dominating set. It was defined by D. F. Rall and P. J. Slater in [2]. A dominating set S in a graph G is called a locating dominating set in G, if for any two vertices v, w ∈ V(G) – S, N_G(v) ∩ S, N_G(w) ∩ S are distinct. The locating dominating number of G is defined as the minimum number of vertices in a locating dominating set in G. A locating dominating set S ⊆ V(G) is called a co – isolated locating dominating set, if < V – S > contains at most one isolated vertex. The minimum cardinality of a co – isolated locating dominating set is called the co – isolated locating domination number γcid(G). In this paper, the unicyclic graphs having co – isolated locating domination number γcid(G) = 3, 4, and 5 are characterized.

II. Prior Results

The following results are obtained in [3], [4], [5] & [6]

Theorem 2.1[3]:
For every non – trivial simple connected graph G with p vertices, 1 ≤ γcid(G) ≤ p - 1.

Theorem 2.2[3]:
γcid(G) = 1 if and only if G = K_2.

Observation 2.3 [3]:
If S is a co – isolated locating dominating set of G(V, E) with | S | = k, then V(G) – S contains at most pC_1 + pC_2 + ... + pC_k vertices.

Theorem 2.4 [3]:
γcid(G) = p – 1(p ≥ 4) if and only if V(G) can be partitioned into two sets X and Y such that one of the sets X and Y say, Y is independent and each vertex in Y and the subgraph < X > of G induced by X is one of the following
(a) < X > is a complete graph
(b) < X > is totally disconnected
(c) Any two non – adjacent vertices in V(< X >) have common neighbours in < X >.

Theorem 2.5 [4]:
γcid(G) = 2 if and only if G is one of the following graphs
Co – Isolated Locating Dominating Number For Unicyclic Graphs

(a) P_p ($p = 3, 4, 5$), where P_p is a path on p vertices.
(b) C_p ($p = 3, 5$), where C_p is a path on p vertices.
(c) C_5 with a chord.
(d) G is the graph obtained by attaching a pendant edge at a vertex of C_3 (or) at a vertex of degree 2 in $K_4 - e$.
(e) G is the graph obtained by attaching a path of length 2 at a vertex of C_3.
(f) G is the Bull graph.

Theorem 2.6 [5]:

For a path P_p on p vertices,

$$\gamma_{cld}(P_p) = \frac{2p+4}{5}, \quad p \geq 3.$$

Theorem 2.7 [6]:

If C_p ($p \geq 3$) is a cycle on p vertices, then

$$\gamma_{cld}(C_p) \leq \frac{2p}{5}.$$

III. Main Results

In the following, the unicyclic graphs having co-isolated locating domination number $\gamma_{cld}(G) = 3, 4$ and 5 are characterized.

Notations 3.1:

1. $C_p \oplus P_1$ is a graph obtained by attaching a path of length k at exactly one vertex of C_p.

Example 3.1.1: The graph $G \cong C_4 \oplus P_3$ is given in Fig. 3.1.

2. $C_p \oplus P_{k_1} \oplus P_{k_2}$ is a graph obtained by attaching paths of length k_1 and k_2 respectively at vertices u and v of C_p such that $d(u, v) = r$.

Example 3.1.2: The graph $G \cong C_5 \oplus P_3 \oplus P_2$ is given in Fig. 3.2.

3. $C_p \oplus P_{k_1} \oplus P_{k_2} \oplus P_{k_3}$ is a graph obtained by attaching paths of length k_1, k_2 and k_3 respectively at vertices u, v and of C_p such that $d(u, v) = r; d(v, w) = s$.

Example 3.1.3: The graph $G \cong C_8 \oplus P_2 \oplus P_3 \oplus P_3$ is given in Fig. 3.3.

4. $C_p \oplus P_{k_1} \oplus P_{k_2} \oplus P_{k_3} \oplus P_{k_4}$ ($n \geq 4$) is a graph obtained by attaching paths of length k_1, k_2, k_3 and k_4 respectively at vertices u, v, w and x on C_p such that $d(u, v) = q; d(v, w) = r; d(w, x) = s$.

Example 3.1.4: The graph $G \cong C_8 \oplus P_2 \oplus P_4 \oplus P_3 \oplus P_1$ is given in Fig. 3.4.

5. $C_p \oplus P_1$ is a graph obtained by attaching a support of a path of length k at a vertex of C_p.

Example 3.1.5: The graph $G \cong C_4 \oplus P_3$ is given in Fig. 3.5.
6. $C_p @ P_k$ is a graph obtained by attaching the central vertex of a path of length k (k is even) at a vertex of C_p.

Example 3.1.6: The graph $G \cong C_8 @ P_4$ is given in Fig. 3.6.

7. $C_p @ P_1 @ P_k$ is a graph obtained by attaching a path of length one at a vertex of C_p and then attaching a support of a path of length k to the pendant vertex of P_1.

Example 3.1.7: The graph $G \cong C_5 @ P_1 @ P_k$ is given in Fig. 3.7.

8. $C_p @ \left(\frac{P_1}{P_k @ P_1} \right)$ is a graph obtained by attaching a path of length 1 and also a path of length k_1 at a vertex of C_p and then attaching a support of path of length k at a pendant vertex of the path P_{k_1}.

Example 3.1.8: The graph $G \cong C_5 @ \left(\frac{P_1}{P_1 @ P_3} \right)$ is given in Fig. 3.8.

Example 3.1.9: $G \cong C_5 @ \left(\frac{P_1}{P_2 @ P_4} \right)$ is given in Fig. 3.9.

9. A graph can also be obtained by performing the combinations of the above operations.

Example 3.1.10: The graphs $G \cong C_6 @ P_1 @ P_2 P_1 @ P_3$ and $G \cong C_4 @ \left(\frac{P_1}{P_2 @ P_6} \right) @ P_2$ are given in Fig. 3.10.

Theorem 3.2:
For a connected unicyclic graph G, $\gamma_{\text{cldf}}(G) = 2$ if and only if G is one of the graphs in the family \mathcal{A}, where $\mathcal{A} = \{ C_3, C_5, C_3 @ P_1, C_3 @ P_2 \}$.

Proof:
If G is one of the graphs of \mathcal{A}, then $\gamma_{\text{cldf}}(G) = 2$.

DOI: 10.9790/5728-11543852 www.iosrjournals.org 40 | Page
Conversely, assume that $\gamma_{cd}(G) = 2$. Let $S = \{a, b\}$ be a γ_{cd}-set of G with $|S| = 2$. Then $|V - S| \leq 2^2 - 1 = 3$ and $<V - S>$ contains at least one isolated vertex.

Case (1): $|V - S| = 1$

If $<S> \cong 2K_1$, then G is not unicyclic.

If $<S> \cong K_2$, then $G \cong C_3$.

Case (2): $|V - S| = 2$

Let $V - S = \{x_1, x_2\}$. Then $<V - S> \cong 2K_1$.

If $N(x_1) \cap S = \{a, b\} \cap S$, then $G \cong C_3 \oplus P_1$.

In all the other cases, G is not unicyclic.

Case (3): $|V - S| = 3$

Let $V - S = \{x_1, x_2, x_3\}$ and $N(x_1) \cap S = \{a\}; N(x_2) \cap S = \{b\}$ and $N(x_2) \cap S = \{a, b\}$.

Subcase (3.a): $x_3x_3 \in <V - S>$ and x_3 is isolated in $<V - S>$

If $ab \notin E(G)$, then $G \cong C_3 \oplus P_2$ and if $ab \in E(G)$, then G is not unicyclic.

Subcase (3.b): x_1, x_2 and x_3 are all isolated in $<V - S>$.

If $ab \notin E(G)$, then $G \cong C_3$ and if $ab \in E(G)$, then G is not unicyclic.

Hence the theorem follows.

Notation 3.3:

The family of graphs $\mathcal{B} = \{B_1, B_2, ..., B_8\}$ are defined as follows, where

$B_1 = \{B_{1,1}, B_{1,2}, ..., B_{1,5}, B_{1,6}\} = \{C_3, C_6 \oplus P_1, C_7, C_6 \oplus P_2, C_7 \oplus P_1, C_6 \oplus P_3\}$

$B_2 = \{B_{2,1}, B_{2,2}, B_{2,3}, B_{2,4}\} = \{C_3 \oplus P_1, C_3 \oplus P_2, C_3 \oplus P_3, C_3 \oplus P_1 \oplus P_1\}$

$B_3 = \{B_{3,1}, B_{3,2}, ..., B_{3,6}\} = \{C_4, C_4 \oplus P_1, C_4 \oplus P_2, C_4 \oplus P_1 \oplus P_2, C_4 \oplus P_1 \oplus P_1\}$

$B_4 = \{B_{4,1}\} = \{C_3 \oplus P_1 \oplus P_1, C_3 \oplus P_1\}$

$B_5 = \{B_{5,1}, B_{5,2}, ..., B_{5,7}\} = \{C_4 \oplus P_3, C_3 \oplus P_1 \oplus P_3, C_3 \oplus P_2 \oplus P_2, C_3 \oplus P_3\}$

$B_6 = \{B_{6,1}, B_{6,2}\} = \{C_4 \oplus P_3, C_4 \oplus P_1\}$

$B_7 = \{B_{7,1}, B_{7,2}, ..., B_{7,7}\} = \{C_4 \oplus P_3, C_4 \oplus P_1, C_4 \oplus P_2, C_4 \oplus P_1 \oplus P_2\}$

$B_8 = \{B_{8,1}, B_{8,2}, B_{8,3}\} = \{C_3 \oplus P_1 \oplus P_2, C_3 \oplus P_1 \oplus P_3, C_3 \oplus P_1 \oplus P_3\}$

$B_9 = \{B_{9,1}, B_{9,2}, B_{9,3}\} = \{C_4 \oplus P_2, C_3 \oplus P_3, C_3 \oplus P_1 \oplus P_3\}$

Theorem 3.4:

For a connected unicyclic graph G, $\gamma_{cd}(G) = 3$ if and only if G is one of the graphs in the family \mathcal{B}.

Proof:

If G is one of the graphs in the family \mathcal{B}, then $\gamma_{cd}(G) = 3$.

Conversely, let S be a γ_{cd}-set of a unicyclic graph G with $|S| = 3$ and therefore $|V - S| \leq 3^3 - 1 = 7$.

Case (1): All the vertices of S lie on the cycle.

Then $<S> \cong 3K_1 \cup K_2 \cup P_3$ (or) C_3.

Subcase (1.a): $<S> \cong 3K_1$

Since all the vertices of S lie on the cycle and $<S> \cong 3K_1$, the cycle in this case is C_6 or C_7. Hence, $3 \leq |V - S| \leq 6$.
Co – Isolated Locating Domination Number For Unicyclic Graphs

(i) \([V - S] = 3\)
If \(<V - S> \cong 3K_1\), then \(G \cong B_{1,1}\)
If \(<V - S> \cong K_1 \cup K_2\), then \(G\) is not unicyclic.
(ii) \([V - S] = 4\)
If \(<V - S> \cong 4K_1\), then \(G \cong B_{1,2}\)
If \(<V - S> \cong 2K_1 \cup K_2\), then \(G \cong B_{1,3}\).
(iii) \([V - S] = 5\)
If \(<V - S> \cong 5K_1\), then \(G \cong B_{1,4}\).
If \(<V - S> \cong 3K_1 \cup K_2\), then \(G \cong B_{1,5}\).
(iv) \([V - S] = 6\)
If \(<V - S> \cong 6K_1\), then \(G \cong B_{1,6}\).
If \(<V - S> \cong 4K_1 \cup K_2\), then \(G \cong C_7 \oplus P_2\) and for this graph \(\gamma_{cld}(G) = 4\).
(v) \([V - S] = 7\), then either \(G\) is not unicyclic or \(S\) will not be a \(\gamma_{cld}\) set of \(G\).

Subcase(1.b): \(<S> \cong K_1 \cup K_2\)
The cycle in this case is \(C_3\) (or) \(C_6\).
(i) \([V - S] = 3\)
If \(<V - S> \cong 3K_1\), then \(G \cong B_{2,1}\).
If \(<V - S> \cong K_1 \cup K_2\), then \(G \cong B_{1,1}\).
(ii) \([V - S] = 4\)
If \(<V - S> \cong 4K_1\), then \(G \cong B_{2,2}\) (or) \(B_{2,3}\).
If \(<V - S> \cong 2K_1 \cup K_2\), then \(G \cong B_{1,2}\).
(iii) \([V - S] = 5\)
If \(<V - S> \cong 5K_1\), then \(G \cong B_{2,4}\).
If \(<V - S> \cong 3K_1 \cup K_2\), then \(S\) will not be a \(\gamma_{cld}\) set of \(G\).
(iv) \([V - S] = 6\) (or) \(7\), then \(G\) is not unicyclic.

Subcase(1.c): \(<S> \cong P_1\)
The cycle in this case is \(C_3\) (or) \(C_4\).
(i) \([V - S] = 1\)
If \(<V - S> \cong K_1\), then \(G \cong B_{3,1}\).
(ii) \([V - S] = 2\)
If \(<V - S> \cong 2K_1\), then \(G \cong B_{3,2}\).
(iii) \([V - S] = 3\)
If \(<V - S> \cong 3K_1\), then \(G \cong B_{3,3} \cup B_{3,4}\) (or) \(B_{3,5}\).
If \(<V - S> \cong K_1 \cup K_2\), then \(G \cong B_{2,1}\).
(v) \([V - S] = 4\)
If \(<V - S> \cong 4K_1\), then \(G \cong B_{3,6}\).
If \(<V - S> \cong 2K_1 \cup K_2\), then \(G\) is not unicyclic.
(vi) \([V - S] = 5\) (or) \(6\) (or) \(7\), then \(G\) is not unicyclic.

Subcase(1.d): \(<S> \cong C_3\)
If \([V - S] = 1\) (or) \(2\), then \(S\) will not be a \(\gamma_{cld}\) set of \(G\). If \([V - S] > 3\), then \(G\) is not unicyclic. Hence \([V - S] = 3\).
If \(<V - S> \cong 3K_1\), then \(G \cong B_{4,1}\).

Case(2): One vertex of \(S\) lie on the cycle and the other two vertices does not lie on the cycle.
The only cycle with this property is \(C_3\). Also, \(<S> \cong 3K_1\) (or) \(K_1 \cup K_2\).

Subcase(2.a): \(<S> \cong 3K_1\)
Then \(<V - S>\) must contain \(K_2\) to form \(C_3\). Also, \(<V - S>\) must have atleast one isolated vertex. Therefore \([V - S] \geq 3\).
(i) \([V - S] = 3\)
If \(<V - S> \cong K_1 \cup K_2 \), then \(G \cong B_{5,1} \).

(ii) \(|V - S| = 4 \)
If \(<V - S> \cong 2K_1 \cup K_2 \), then \(G \cong B_{5,2} \) (or) \(B_{5,3} \) (or) \(B_{5,4} \).

(iii) \(|V - S| = 5 \)
If \(<V - S> \cong 3K_1 \cup K_2 \), then \(G \cong B_{5,5} \) (or) \(B_{5,6} \) (or) \(B_{5,7} \).

(iv) \(|V - S| = 6 \) (or) 7, then \(G \) is not unicyclic.

Subcase(2.b): \(<S> \cong K_1 \cup K_2 \)
By a similar argument as in Subcase(2.a), \(|V - S| \geq 3 \).

(i) \(|V - S| = 3 \)
If \(<V - S> \cong K_1 \cup K_2 \), then \(G \cong B_{6,1} \).

(ii) \(|V - S| = 4 \)
If \(<V - S> \cong 2K_1 \cup K_2 \), then \(G \) is not unicyclic.

(iii) \(|V - S| = 5 \) (or) 6 (or) 7, then \(G \) is not unicyclic.

Case(3): Two vertices of \(S \) lie on the cycle and the other vertex does not lie on the cycle.
In this case, \(<S> \cong 3K_1 \) (or) \(K_1 \cup K_2 \) (or) \(P_3 \).

Subcase(3.a): \(<S> \cong 3K_1 \)

(i) \(|V - S| = 3 \)
If \(<V - S> \cong 3K_1 \), then \(G \cong B_{7,1} \).
If \(<V - S> \cong K_1 \cup K_2 \), then is not unicyclic.

(ii) \(|V - S| = 4 \)
If \(<V - S> \cong 4K_1 \), then \(G \cong B_{7,2} \).
If \(<V - S> \cong 2K_1 \cup K_2 \), then \(G \cong B_{7,3} \) (or) \(B_{7,4} \).

(iii) \(|V - S| = 5 \)
If \(<V - S> \cong 5K_1 \), then \(G \cong B_{7,5} \).
If \(<V - S> \cong 3K_1 \cup K_2 \), then \(G \cong B_{7,6} \) (or) \(B_{7,7} \).

(iv) \(|V - S| = 6 \) (or) 7, then \(G \) is not unicyclic.

Subcase(3.b): \(<S> \cong K_1 \cup K_2 \)
If \(<V - S> \) contains \(K_2 \), then \(G \) is not unicyclic. The only cycle in this case is \(C_3 \). If \(|V - S| = 1 \) (or) 2, then S will not be a \(\gamma_{cd} \) set of \(G \).

(i) \(|V - S| = 3 \)
If \(<V - S> \cong 3K_1 \), then \(G \cong B_{8,1} \).

(ii) \(|V - S| = 4 \)
If \(<V - S> \cong 4K_1 \), then \(G \cong B_{8,2} \) (or) \(B_{8,3} \).

(iii) \(|V - S| = 5 \) (or) 6 (or) 7, then \(G \) is not unicyclic.

Subcase(3.c): \(<S> \cong P_3 \)
The only cycle in this case is \(C_3 \).

(i) \(|V - S| = 1 \)
If \(<V - S> \cong K_1 \), then \(G \) is not unicyclic

(ii) \(|V - S| = 2 \)
If \(<V - S> \cong 2K_1 \), then \(G \cong B_{9,1} \)

(iii) \(|V - S| = 3 \)
If \(<V - S> \cong 3K_1 \), then \(G \cong B_{9,2} \) (or) \(B_{9,3} \)

(iv) \(|V - S| = 4 \)
If \(<V - S> \cong 4K_1 \), then \(G \cong B_{9,3} \)

(v) \(|V - S| = 5 \) (or) 6 (or) 7, then \(G \) is not unicyclic.

Hence the theorem follows.
Notation 3.5:
The family of graphs \(C = \{ C_1, C_2 \} \) are defined as follows, where
\(C_1 = \{ C_{1,1}, C_{1,2}, \ldots, C_{1,44}, C_{1,45} \} \); and
\(C_2 = \{ C_{2,1}, C_{2,2}, \ldots, C_{2,11}, C_{2,12} \} \).

\[
\begin{align*}
C_{1,1} &= C_1 \oplus P_2 \oplus P_3, & C_{1,20} &= C_2 \oplus P_1 \oplus P_1 \oplus P_1 \oplus \epsilon_1 P_3, & C_{1,39} &= C_4 \oplus P_1 \oplus \epsilon_3 P_3 \oplus P_3, \\
C_{1,2} &= C_1 \oplus P_1 \oplus P_1 \oplus P_3, & C_{1,21} &= C_1 \oplus P_1 \oplus P_2 \oplus P_3, & C_{1,40} &= C_5 \oplus P_1 \oplus P_2 \oplus P_4, \\
C_{1,3} &= C_2 \oplus P_1 \oplus P_4, & C_{1,22} &= C_2 \oplus P_1 \oplus P_2 \oplus P_3, & C_{1,41} &= C_2 \oplus P_1 \oplus P_2 \oplus \epsilon_1 P_3, \\
C_{1,4} &= C_3 \oplus P_1 \oplus P_1 \oplus \epsilon_3 P_3, & C_{1,23} &= C_3 \oplus P_1 \oplus \epsilon_1 P_4, & C_{1,42} &= C_3 \oplus P_2 \oplus \epsilon_2 P_4 \oplus P_2, \\
C_{1,5} &= C_4 \oplus P_1 \oplus P_1 \oplus P_3, & C_{1,24} &= C_4 \oplus P_1 \oplus \epsilon_3 P_4, & C_{1,43} &= C_5 \oplus \epsilon_1 P_1 \oplus \epsilon_3 P_4, \\
C_{1,6} &= C_3 \oplus P_1 \oplus P_3, & C_{1,25} &= C_3 \oplus P_1 \oplus P_1 \oplus \epsilon_3 P_4, & C_{1,44} &= C_4 \oplus P_3 \oplus P_5, \\
C_{1,7} &= C_2 \oplus P_1 \oplus P_2 \oplus P_3, & C_{1,26} &= C_4 \oplus P_1 \oplus P_1 \oplus \epsilon_3 P_4, & C_{1,7} &= C_5 \oplus P_1 \oplus P_1 \oplus P_2, \\
C_{1,8} &= C_2 \oplus P_1 \oplus P_3, & C_{1,27} &= C_4 \oplus P_1 \oplus P_2 \oplus P_4, & C_{2,2} &= C_5 \oplus P_1 \oplus P_1 \oplus P_2, \\
C_{1,9} &= C_2 \oplus P_1 \oplus P_1 \oplus P_1, & C_{1,28} &= C_4 \oplus P_1 \oplus P_2 \oplus P_3, & C_{2,3} &= C_5 \oplus P_1 \oplus P_2 \oplus P_2, \\
C_{1,10} &= C_5 \oplus P_1 \oplus P_1 \oplus P_2, & C_{1,29} &= C_5 \oplus P_1 \oplus P_2 \oplus \epsilon_3 P_3 \oplus P_2, & C_{2,4} &= C_5 \oplus P_1 \oplus P_1 \oplus P_2, \\
C_{1,11} &= C_2 \oplus P_1 \oplus P_4, & C_{1,30} &= C_5 \oplus P_1 \oplus P_2 \oplus P_3, & C_{2,5} &= C_5 \oplus P_1 \oplus \epsilon_3 P_3 \oplus P_2, \\
C_{1,12} &= C_2 \oplus P_1 \oplus P_1, & C_{1,31} &= C_5 \oplus P_1 \oplus P_2 \oplus P_3, & C_{2,6} &= C_5 \oplus P_1 \oplus P_1 \oplus P_2, \\
C_{1,13} &= C_4 \oplus P_1 \oplus P_2, & C_{1,32} &= C_5 \oplus P_1 \oplus P_2 \oplus P_3, & C_{2,7} &= C_6 \oplus P_1 \oplus P_1 \oplus P_2, \\
C_{1,14} &= C_2 \oplus P_1 \oplus P_1 \oplus \epsilon_3 P_3, & C_{1,33} &= C_5 \oplus P_1 \oplus \epsilon_3 P_4, & C_{2,8} &= C_5 \oplus P_2 \oplus P_2, \\
C_{1,15} &= C_2 \oplus P_1 \oplus P_1 \oplus P_4, & C_{1,34} &= C_5 \oplus P_1 \oplus \epsilon_3 P_4, & C_{2,9} &= C_1 \oplus P_2 \oplus P_2, \\
C_{1,16} &= C_3 \oplus P_1 \oplus P_2, & C_{1,35} &= C_5 \oplus P_1 \oplus P_2, & C_{2,10} &= C_1 \oplus P_1 \oplus \epsilon_3 P_2 \oplus P_2, \\
C_{1,17} &= C_3 \oplus P_1 \oplus P_1 \oplus P_4, & C_{1,36} &= C_3 \oplus P_1 \oplus P_1 \oplus \epsilon_3 P_4, & C_{2,11} &= C_3 \oplus P_4 \oplus P_2, \\
C_{1,18} &= C_3 \oplus P_1 \oplus \epsilon_3 P_2 \oplus P_2, & C_{1,37} &= C_3 \oplus P_1 \oplus P_3, & C_{2,12} &= C_3 \oplus P_1 \oplus \epsilon_3 P_2 \oplus P_3, \\
C_{1,19} &= C_3 \oplus P_1 \oplus P_3, & C_{1,38} &= C_3 \oplus P_2 \oplus P_3, & C_{2,13} &= C_3 \oplus P_1 \oplus \epsilon_3 P_2 \oplus P_3.
\end{align*}
\]

Theorem 3.6:
Let \(G \) be a connected unicyclic graph in which one vertex of a \(\gamma_{cd}(G) \) set lies on the cycle. Then \(\gamma_{cd}(G) = 4 \) if and only if \(G \) is one of the graphs in the family \(C \).

Proof:
If \(G \) is one of the graphs in the family \(C \), then \(\gamma_{cd}(G) = 4 \). Conversely, let \(S \) be a \(\gamma_{cd} \) set of the unicyclic graph \(G \) with \(|S| = 4 \) and therefore \(|V - S| \leq 2^4 - 1 = 15 \) and \(\gamma_{cd}(G) = 4 \).

Therefore, \(|V - S| = 7 \).

Case (1):
\(|S| \equiv 4K_1 \).

Then \(V - S \) must contain \(K_2 \). Since \(V - S \) contains at least one isolated vertex, \(|V - S| \geq 3 \).

Subcase (1.a):
\(|S - V| = 3 \).

If \(|V - S| \equiv K_1 \cup K_2 \), then \(G \equiv C_{1,1} \).

Subcase (1.b):
\(|V - S| = 4 \).

If \(|V - S| \equiv 2K_1 \cup K_2 \), then \(G \equiv C_{1,5} \).

Subcase (1.c):
\(|V - S| = 5 \).

If \(|V - S| \equiv K_1 \cup P_5 \), then \(G \equiv C_{1,10} \).

Subcase (1.d):
\(|V - S| = 6 \).

If \(|V - S| \equiv 3K_1 \cup P_3 \), then \(G \equiv C_{1,27} \).

Subcase (1.e):
\(|V - S| = 7 \).

If \(|V - S| \equiv 5K_1 \cup K_2 \), then \(G \) is the set of graphs from \(C_{1,4} \) to \(C_{1,44} \).
Case (2): \(<S> \cong 2K_1 \cup K_3 \)

By a similar argument as in Case (1), \(|V - S| \geq 3\).

Subcase (2.a): \(|V - S| = 3\)

If \(<V - S> \cong K_1 \cup K_2\), then \(G \cong C_{2,1} \) and \(C_{2,2} \).

Subcase (2.b): \(|V - S| = 4\)

If \(<V - S> \cong 2K_1 \cup K_2\), then \(G \) is one of the graphs from \(C_{2,3} \) to \(C_{2,7} \) and \(C_{1,2} \).

Subcase (2.c): \(|V - S| = 5\)

If \(<V - S> \cong 3K_1 \cup K_2\), then \(G \) is one of the graphs from \(C_{2,3} \) to \(C_{2,12} \) and \(C_{1,19} \).

If \(<V - S> \cong 2K_1 \cup P_3\), then \(G \cong C_{1,14} \).

Subcase (2.d): \(|V - S| = 6\)

If \(<V - S> \cong 4K_1 \cup K_2\), then \(G \cong C_{1,31} \).

Subcase (2.e): \(|V - S| = 7\)

Then either \(G \) is not unicyclic or \(S \) will not be a \(\gamma_{cld} \) set of \(G \).

Case (3): \(<S> \cong K_{1,3} \)

In this case, it is observed that all vertices in \(<V - S>\) are isolated vertices. Therefore, \(|V - S| = 4\).

Subcase (3.a): \(|V - S| = 4\)

If \(<V - S> \cong K_1 \cup K_2\), then \(G \cong C_{1,1} \).

Case (4): \(<S> \cong K_1 \cup P_3\)

By a similar argument as in Case (1), \(|V - S| \geq 3\).

Subcase (4.a): \(|V - S| = 3\)

If \(<V - S> \cong K_1 \cup K_2\), then \(G \cong C_{1,1} \).

Subcase (4.b): \(|V - S| = 4\)

If \(<V - S> \cong 2K_1 \cup K_2\), then \(G \cong C_{1,6} \) and \(C_{1,3} \).

Subcase (4.c): \(|V - S| = 5\)

If \(<V - S> \cong 3K_1 \cup K_2\), then \(G \cong C_{1,16} \).

Subcase (4.d): \(|V - S| = 6 \text{ (or) } 7\)

If \(<V - S> \cong 3K_1 \cup K_2\), then \(G \cong C_{1,16} \).

Then either \(G \) is not unicyclic or \(S \) will not be a \(\gamma_{cld} \) set of \(G \).

This completes the proof of the theorem.

Notation 3.7:

The family of graphs \(\mathcal{D} = \{ D_1, D_2, D_3, D_4 \} \) are defined as follows, where

\[
\begin{align*}
\mathcal{D}_1 &= \{ D_{1,1}, D_{1,2}, ..., D_{1,49}, D_{1,50} \}; \\
\mathcal{D}_2 &= \{ D_{2,1}, D_{2,2}, ..., D_{2,37}, D_{2,38} \}; \\
\mathcal{D}_3 &= \{ D_{3,1}, D_{3,2}, ..., D_{3,59}, D_{3,60} \}; \\
\mathcal{D}_4 &= \{ D_{4,1}, D_{4,2}, ..., D_{4,57} \};
\end{align*}
\]

\[
\begin{align*}
D_{1,1} &= C_4 \cup P_1 \cup P_2, \\
D_{1,2} &= C_4 \cup P_1 \cup P_3, \\
D_{1,3} &= C_4 \cup P_1 \cup P_3, \\
D_{1,4} &= C_4 \cup P_1 \cup P_3, \\
D_{1,5} &= C_4 \cup P_1 \cup P_3, \\
D_{1,6} &= C_4 \cup P_1 \cup P_3, \\
D_{1,7} &= C_4 \cup P_1 \cup P_3, \\
D_{1,8} &= C_4 \cup P_1 \cup P_3, \\
D_{1,9} &= C_4 \cup P_1 \cup P_3, \\
D_{1,10} &= C_4 \cup P_1 \cup P_3, \\
D_{1,11} &= C_4 \cup P_1 \cup P_3, \\
D_{1,12} &= C_4 \cup P_1 \cup P_3, \\
D_{1,13} &= C_4 \cup P_1 \cup P_3, \\
D_{1,14} &= C_4 \cup P_1 \cup P_3, \\
D_{1,15} &= C_4 \cup P_1 \cup P_3, \\
D_{1,16} &= C_4 \cup P_1 \cup P_3.
\end{align*}
\]
Theorem 3.8:

Let G be a connected unicyclic graph in which two vertices of \(\gamma_{\text{clid}} \) set lie on the cycle. Then \(\gamma_{\text{clid}}(G) = 4 \) if and only if G is one of the graphs in the family \(\emptyset \).

Proof:

If G is one of the graphs in the family \(\emptyset \), then \(\gamma_{\text{clid}}(G) = 4 \).

Conversely, let S be a \(\gamma_{\text{clid}} \) set of the unicyclic graph G with \(|S| = 4 \) and two vertices of S lie on the cycle of G.

By Theorem 3.6, 3 \leq |V - S| \leq 7. Since \(<V - S> \) contains at least one isolated vertex, \(<S> \cong 4K_1 \), \(2K_1 \cup K_2 \), \(2K_2 \) (or) \(K_1 \cup P_3 \).

Case (1): \(<S> \cong 4K_1 \)

Subcase (1.a): \(|V - S| = 3\)

If \(<V - S> \cong 3K_1 \), then G \(\cong D_{1,3} \)

Subcase (1.b): \(|V - S| = 4\)

If \(<V - S> \cong 4K_1 \), then G \(\cong D_{1,2} \) and \(D_{1,3} \)

If \(<V - S> \cong 2K_1 \cup K_2 \), then G \(\cong D_{1,4} \)

If \(<V - S> \cong K_2 \cup K_3 \), then G \(\cong D_{1,5} \)

Subcase (1.c): \(|V - S| = 5\)

If \(<V - S> \cong 5K_1 \), then G is one of the graphs from \(D_{1,6} \) to \(D_{1,13} \)

If \(<V - S> \cong 3K_1 \cup K_2 \), then G is one of the graphs from \(D_{1,14} \) to \(D_{1,21} \)

If \(<V - S> \cong K_1 \cup 2K_2 \), then G \(\cong D_{1,22} \) and \(D_{1,23} \)

If \(<V - S> \cong 2K_1 \cup P_3 \), then G \(\cong D_{1,24} \), \(D_{1,22} \) and \(D_{1,23} \)

Subcase (1.d): \(|V - S| = 6\)

If \(<V - S> \cong 6K_1 \), then G is one of the graphs from \(D_{1,25} \) to \(D_{1,31} \)

If \(<V - S> \cong 4K_1 \cup K_2 \), then G is one of the graphs from \(D_{1,32} \) to \(D_{1,41} \)

If \(<V - S> \cong 2K_1 \cup K_2 \), then G \(\cong D_{1,42} \) and \(D_{1,22} \)

If \(<V - S> \cong 3K_1 \cup K_3 \), then G \(\cong D_{1,43} \)

Subcase (1.e): \(|V - S| = 7\)

If \(<V - S> \cong 7K_1 \), then G is one of the graphs from \(D_{1,44} \) to \(D_{1,48} \)

If \(<V - S> \cong 5K_1 \cup K_2 \), then G \(\cong D_{1,49} \) and \(D_{1,50} \)

If \(<V - S> \cong 3K_1 \cup 2K_2 \) (or) \(K_1 \cup 3K_2 \), then S will not a \(\gamma_{\text{clid}} \) set of G.

Case (2): \(<S> \cong 2K_1 \cup K_2 \)
Subcase (2.a): $|V - S| = 3$
If $<V - S> \cong 3K_1$, then $G \cong D_{2,1}, D_{2,2}$ and $D_{1,1}$
If $<V - S> \cong 2K_1 \cup 2K_2$, then $G \cong D_{2,2}$

Subcase (2.b): $|V - S| = 4$
If $<V - S> \cong 4K_1$, then G is one of the graphs from $D_{2,3}$ to $D_{2,7}$ and $D_{1,12}$
If $<V - S> \cong 2K_3 \cup K_2$, then $G \cong D_{2,4}$ to $D_{2,10}$ $D_{1,8}$ and $D_{1,19}$

Subcase (2.c): $|V - S| = 5$
If $<V - S> \cong 5K_1$, then G is one of the graphs from $D_{2,11}$ to $D_{2,23}$, $D_{1,38}$ and $D_{1,31}$
If $<V - S> \cong 3K_1 \cup K_2$, then G is one of the graphs from $D_{2,24}$ to $D_{2,29}$, $D_{1,14}$, $D_{1,19}$ and $D_{2,15}$

Subcase (2.d): $|V - S| = 6$
If $<V - S> \cong 6K_1$, then G is one of the graphs from $D_{2,30}$ to $D_{2,34}$ and $D_{1,11}$
If $<V - S> \cong 4K_1 \cup K_2$, then G is one of the graphs from $D_{2,35}$ to $D_{2,37}$, $D_{1,30}$, $D_{1,34}$ and $D_{1,36}$

Subcase (2.e): $|V - S| = 7$
If $<V - S> \cong 7K_1$, then $G \cong D_{2,38}$
If $<V - S> \cong 5K_1 \cup K_2$, then G is not unicyclic.

Case (3): $<S> \cong 2K_2$

Subcase (3.a): $|V - S| = 3$
If $<V - S> \cong 3K_1$, then $G \cong D_{3,1}$ and $D_{3,2}$
If $<V - S> \cong K_1 \cup K_2$, then $G \cong D_{1,11}$

Subcase (3.b): $|V - S| = 4$
If $<V - S> \cong 4K_1$, then G is one of the graphs from $D_{3,1}$ to $D_{3,6}$ and $D_{2,13}$
If $<V - S> \cong 2K_1 \cup K_2$, then $G \cong D_{2,7}$

Subcase (3.c): $|V - S| = 5$
If $<V - S> \cong 5K_1$, then G is one of the graphs $D_{3,5}$, $D_{3,6}$, $D_{2,13}$ and $D_{2,16}$
If $<V - S> \cong 3K_1 \cup K_2$, then $G \cong D_{3,7}$

Subcase (3.d): $|V - S| = 6$
If $<V - S> \cong 6K_1$, then $G \cong D_{2,35}$

Subcase (3.d): $|V - S| = 7$
Then either G is not unicyclic or S will not be a γ_{olv} – set of G.

Case (4): $<S> \cong K_1 \cup P_3$

Subcase (4.a): $|V - S| = 3$
If $<V - S> \cong 3K_1$, then $G \cong D_{4,1}$ and $D_{4,2}$

Subcase (4.b): $|V - S| = 4$
If $<V - S> \cong 4K_1$, then $G \cong D_{4,3}$, $D_{4,4}$ and $D_{4,5}$

Subcase (4.c): $|V - S| = 5$
If $<V - S> \cong 5K_1$, then $G \cong D_{4,5}$

Subcase (4.d): $|V - S| = 6$ (or) 7
Then either G is not unicyclic or S will not be a γ_{olv} – set of G.

This completes the proof of the theorem.

Notation 3.9:
The family of graphs $\mathcal{E} = \{ \mathcal{E}_1, \mathcal{E}_2, ..., \mathcal{E}_6, \mathcal{E}_6 \}$ are defined as follows, where

$\mathcal{E}_1 = \{ E_{1,1}, E_{1,2}, ..., E_{1,13}, E_{1,14} \}; \mathcal{E}_2 = \{ E_{2,1}, E_{2,2}, ..., E_{2,27}, E_{2,28} \}; \mathcal{E}_3 = \{ E_{3,1}, E_{3,2}, E_{3,3}, E_{3,4} \}; \mathcal{E}_4 = \{ E_{4,1}, E_{4,2}, ..., E_{4,14}, E_{4,15} \}; \mathcal{E}_5 = \{ E_{5,1}, E_{5,2}, E_{5,3}, E_{5,4} \};$ and $\mathcal{E}_6 = \{ E_{6,1} \}$.

$E_{1,1} = C_6 \circ P_2$ $E_{1,7} = C_4 \circ P_1 \circ P_2$ $E_{1,13} = C_6 \circ P_4$
$E_{1,2} = C_6 \circ P_3$ $E_{1,8} = C_4 \circ P_1 \circ P_1$ $E_{1,14} = C_6 \circ P_1 \circ P_2$ $E_{1,3} = C_6 \circ P_3$ $E_{1,9} = C_4 \circ P_1 \circ P_1$ $E_{1,15} = C_4 \circ P_1 \circ P_1$ $E_{1,4} = C_6 \circ P_4$ $E_{1,10} = C_4 \circ P_2$ $E_{1,16} = C_6 \circ P_1 \circ P_1$ $E_{1,5} = C_6 \circ P_2$ $E_{1,11} = C_4 \circ P_1$ $E_{1,17} = C_6 \circ P_1 \circ P_1$ $E_{1,6} = C_6 \circ P_2$ $E_{1,12} = C_4 \circ P_1 \circ P_1$ $E_{1,18} = C_6 \circ P_1 \circ P_1 \circ P_1$
Co – Isolated Locating Domination Number For Unicyclic Graphs

\[E_{1,20} = C_7 \oplus P_3 \]
\[E_{1,21} = C_7 \oplus P_1 \oplus P_2 \]
\[E_{1,22} = C_7 \oplus P_1 \oplus 2 P_2 \]
\[E_{1,23} = C_7 \oplus P_1 \oplus P_3 \]
\[E_{1,24} = C_7 \oplus P_1 \oplus 2 P_1 \oplus P_2 \]
\[E_{1,25} = C_7 \oplus P_2 \]
\[E_{1,26} = C_6 \oplus P_1 \oplus P_2 \]
\[E_{1,27} = C_6 \oplus P_1 \oplus 2 P_2 \]
\[E_{1,28} = C_6 \oplus P_2 \oplus P_1 \oplus 2 P_2 \]
\[E_{1,29} = C_6 \oplus P_2 \oplus 2 P_1 \oplus P_2 \]
\[E_{1,30} = C_7 \oplus P_1 \]
\[E_{1,31} = C_7 \oplus P_1 \oplus P_2 \]
\[E_{1,32} = C_7 \oplus P_1 \oplus 2 P_2 \]
\[E_{1,33} = C_7 \oplus P_2 \oplus 2 P_1 \]
\[E_{1,34} = C_7 \oplus P_2 \]
\[E_{1,35} = C_6 \oplus P_1 \oplus P_1 \]
\[E_{1,36} = C_6 \oplus P_1 \oplus 2 P_1 \]
\[E_{1,37} = C_6 \oplus P_2 \oplus P_2 \]
\[E_{1,38} = C_6 \oplus P_2 \]
\[E_{1,39} = C_5 \oplus P_1 \]
\[E_{1,40} = C_5 \oplus P_2 \]
\[E_{1,41} = C_5 \oplus P_3 \]
\[E_{1,42} = C_5 \oplus P_4 \]
\[E_{1,43} = C_4 \oplus P_1 \]
\[E_{1,44} = C_4 \oplus P_2 \]
\[E_{1,45} = C_4 \oplus P_3 \]
\[E_{1,46} = C_4 \oplus P_4 \]
\[E_{1,47} = C_3 \oplus P_1 \]
\[E_{1,48} = C_3 \oplus P_2 \]
\[E_{1,49} = C_3 \oplus P_3 \]
\[E_{1,50} = C_3 \oplus P_4 \]
\[E_{1,51} = C_2 \oplus P_1 \]
\[E_{1,52} = C_2 \oplus P_2 \]
\[E_{1,53} = C_2 \oplus P_3 \]
\[E_{1,54} = C_2 \oplus P_4 \]
\[E_{1,55} = C_1 \oplus P_1 \]
\[E_{1,56} = C_1 \oplus P_2 \]
\[E_{1,57} = C_1 \oplus P_3 \]
\[E_{1,58} = C_1 \oplus P_4 \]

Theorem 3.10:
Let G be connected unicyclic graph in which three vertices of \(\gamma_{cd} \) – set lie on the cycle. Then \(\gamma_{cd}(G) = 4 \) if and only if G is one of the graphs in the family \(E \).

Proof:
If G is one of the graphs in the family \(E \), then \(\gamma_{cd}(G) = 4 \).

Conversely, let S be a \(\gamma_{cd} \) – set of the unicyclic graph G with \(|S| = 4 \). Since three vertices of S lie on the cycle and G is unicyclic, \(3 \leq |V - S| \leq 8 \).

Since \(<V - S> \) contains at least one isolated vertex,
\(<S> \cong 4K_1, 2K_1 \cup K_2, 2K_2, P_5, C_5 \) (or) \(K_{1,5} \).

Case (1): \(|V - S| \cong 4K_1 \)

Subcase (1.a): \(|V - S| = 3 \)
Then S is not a \(\gamma_{cd} \) – set of G.

Subcase (1.b): \(|V - S| = 4 \)
If \(|V - S| \cong 4K_1 \), then G \(\cong E_{1,1} \)
If \(|V - S| \cong 2K_1 \cup K_2 \), then G is not unicyclic.

Subcase (1.c): \(|V - S| = 5 \)
If \(|V - S| \cong 5K_1 \), then G is one of the graphs from \(E_{1,7} \) to \(E_{1,19} \)
If \(|V - S| \cong 3K_1 \cup K_2 \), then G is one of the graphs from \(E_{1,8} \) to \(E_{1,20} \)
If \(|V - S| \cong K_1 \cup 2K_2 \), then G \(\cong E_{1,11} \)

Subcase (1.d): \(|V - S| = 6 \)
If \(|V - S| \cong 6K_1 \), then G is one of the graphs from \(E_{1,11} \) to \(E_{1,22} \)
If \(|V - S| \cong 4K_1 \cup K_2 \), then G is one of the graphs from \(E_{1,19} \) to \(E_{1,24} \)
If \(|V - S| \cong 2K_1 \cup 2K_2 \), then G \(\cong E_{1,25} \)

Subcase (1.e): \(|V - S| = 7 \)
If \(|V - S| \cong 7K_1 \), then G is one of the graphs from \(E_{1,26} \) to \(E_{1,29} \) and \(E_{1,24} \)
If \(|V - S| \cong 5K_1 \cup K_2 \), then G \(\cong E_{1,30} \)
If \(|V - S| \cong 3K_1 \cup 2K_2 \), then G \(\cong E_{1,24} \)
If \(|V - S| \cong 3K_1 \cup 3K_2 \), then S will not be a \(\gamma_{cd} \) – set of G.

Subcase (1.f): \(|V - S| = 8 \)

DOI: 10.9790/5728-11543852 www.iosrjournals.org 48 | Page
If \(|V - S| \equiv 8K_1\), then \(G \cong E_{12}\)
If \(|V - S|\) contains \(K_2\) as one of its components, then \(S\) will not be a \(\gamma_{cld}\) set of \(G\).

Case (2): \(|S| \equiv 2K_1 \cup K_2\)

Subcase (2.a): \(|V - S| = 3\)
Then \(S\) is not a \(\gamma_{cld}\) set of \(G\).

Subcase (2.b): \(|V - S| = 4\)
If \(|V - S| \equiv 4K_1\), then \(G\) is one of the graphs from \(E_{2.3}\) to \(E_{2.4}\) and \(E_{4.1}\)
If \(|V - S| \equiv 2K_1 \cup K_2\), then \(G \cong E_{2.5}\)

Subcase (2.c): \(|V - S| = 5\)
If \(|V - S| \equiv 5K_1\), then \(G\) is one of the graphs from \(E_{2.6}\) to \(E_{2.14}\) and \(E_{1.3}\)
If \(|V - S| \equiv 5K_1 \cup K_2\), then \(G\) is one of the graphs \(E_{2.15}\), \(E_{2.16}\), \(E_{1.10}\), \(E_{2.3}\) and \(E_{2.10}\)

Subcase (2.d): \(|V - S| = 6\)
If \(|V - S| \equiv 6K_1\), then \(G\) is one of the graphs from \(E_{2.17}\) to \(E_{2.25}\)
If \(|V - S| \equiv 4K_1 \cup K_2\), then \(G \cong E_{2.26}, E_{1.16}\) and \(E_{1.19}\)

Subcase (2.e): \(|V - S| = 7\)
If \(|V - S| \equiv 7K_1\), then \(G\) is one of the graphs \(E_{2.27}\), \(E_{2.28}\), \(E_{1.26}\) and \(E_{1.27}\)
If \(|V - S| \equiv 5K_1 \cup K_2\), then \(G\) is not unicyclic.

Subcase (2.f): \(|V - S| = 8\)
Then either \(G\) is not unicyclic or \(S\) will not be a \(\gamma_{cld}\) set of \(G\).

Case (3): \(|S| \equiv 2K_2\)

Subcase (3.a): \(|V - S| = 3\)
Then \(S\) is not a \(\gamma_{cld}\) set of \(G\).

Subcase (3.b): \(|V - S| = 4\)
If \(|V - S| \equiv 4K_1\), then \(G \cong E_{3.1}\)
If \(|V - S| \equiv 2K_1 \cup K_2\), then \(S\) will not be a \(\gamma_{cld}\) set of \(G\).

Subcase (3.c): \(|V - S| = 5\)
If \(|V - S| \equiv 5K_1\), then \(G \cong E_{3.2}\) and \(E_{3.3}\)
If \(|V - S| \equiv K_1 \cup K_2\) (or) \(3K_1 \cup K_2\), then \(S\) will not be a \(\gamma_{cld}\) set of \(G\).

Subcase (3.d): \(|V - S| = 6\)
If \(|V - S| \equiv 6K_1\), then \(G \cong E_{3.4}\)
If \(|V - S| \equiv 4K_1 \cup K_2\) (or) \(2K_1 \cup 2K_2\), then \(G\) is not unicyclic.

Subcase (3.e): \(|V - S| = 7\) (or) \(8\)
Then either \(G\) is not unicyclic or \(S\) will not be a \(\gamma_{cld}\) set of \(G\).

Case (4): \(|S| \equiv K_1 \cup P_3\)

Subcase (4.a): \(|V - S| = 3\)
If \(|V - S| \equiv 3K_1\), then \(G \cong E_{4.1}\)

Subcase (4.b): \(|V - S| = 4\)
If \(|V - S| \equiv 4K_1\), then \(G\) is one of the graphs from \(E_{4.2}\) to \(E_{4.5}\) and \(E_{2.3}\)
If \(|V - S| \equiv 2K_1 \cup K_2\), then \(S\) will not be a \(\gamma_{cld}\) set of \(G\).

Subcase (4.c): \(|V - S| = 5\)
If \(|V - S| \equiv 5K_1\), then \(G\) is one of the graphs from \(E_{4.6}\) to \(E_{4.11}\) and \(E_{1.3}\)
If \(|V - S| \equiv K_1 \cup K_2\) (or) \(3K_1 \cup K_2\), then \(S\) will not be a \(\gamma_{cld}\) set of \(G\).

Subcase (4.d): \(|V - S| = 6\)
If \(|V - S| \equiv 6K_1\), then \(G \cong E_{4.12}\) and \(E_{4.13}\)
If \(|V - S| \equiv 4K_1 \cup K_2\) (or) \(2K_1 \cup 2K_2\), then \(G\) is not unicyclic.

Subcase (4.e): \(|V - S| = 7\) (or) \(8\)
Then either \(G\) is not unicyclic or \(S\) will not be a \(\gamma_{cld}\) set of \(G\).

Case (5): \(|S| \equiv K_1 \cup C_3\)

Subcase (5.a): \(|V - S| = 3\)
If \(|V - S| \equiv 3K_1\), then \(G \cong E_{5.1}\)

Subcase (5.b): \(|V - S| = 4\)
If \(\langle V - S \rangle \cong 4K_1 \), then \(G \cong E_{4,2} \) and \(E_{3,3} \).
If \(\langle V - S \rangle \cong 2K_1 \cup K_2 \), then \(S \) will not be a \(\gamma_{cd} \) – set of \(G \).

Subcase (5.c): \(|V - S| = 5 \)
- If \(\langle V - S \rangle \cong 5K_1 \), then \(G \cong E_{5,4} \).
- If \(\langle V - S \rangle \cong K_1 \cup K_2 \) (or) \(3K_1 \cup K_2 \), then \(S \) will not be a \(\gamma_{cd} \) – set of \(G \).

Subcase (5.d): \(|V - S| = 6, 7 \) (or) 8

Then either \(G \) is not unicyclic or \(S \) will not be a \(\gamma_{cd} \) – set of \(G \).

Case (6): \(\langle S \rangle \cong P_4 \)

Subcase (6.a): \(|V - S| = 3 \)
Then \(S \) is not a \(\gamma_{cd} \) – set of \(G \).

Subcase (6.b): \(|V - S| = 4 \)
- If \(\langle V - S \rangle \cong 4K_1 \), then \(G \cong E_{6,1} \).

Subcase (6.c): \(|V - S| = 5 \)
- If \(\langle V - S \rangle \cong 5K_1 \), then \(G \cong E_{6,8} \).
- If \(\langle V - S \rangle \cong 2K_1 \cup K_2 \), then \(S \) will not be a \(\gamma_{cd} \) – set of \(G \).

Subcase (6.d): \(|V - S| = 5, 6, 7 \) (or) 8

Then either \(G \) is not unicyclic or \(S \) will not be a \(\gamma_{cd} \) – set of \(G \).
This completes the proof of the theorem.

Notation 3.11:
The family of graphs \(F = \{ F_1, F_2, ..., F_5 \} \) are defined as follows, where

- \(F_{1,1} = C_8 \)
- \(F_{1,2} = C_8 \cup P_1 \)
- \(F_{1,3} = C_9 \)
- \(F_{1,4} = C_8 \cup P_1 \cup P_2 \)
- \(F_{1,5} = C_9 \cup P_1 \)
- \(F_{1,6} = C_{10} \)
- \(F_{1,7} = C_8 \cup P_1 \cup P_2 \)
- \(F_{1,8} = C_9 \cup P_1 \cup P_2 \)

- \(F_{1,9} = C_8 \cup P_1 \cup P_2 \cup P_3 \)
- \(F_{3,1} = \gamma_{cd} \)
- \(F_{3,2} = \gamma_{cd} \cup P_1 \cup P_3 \)
- \(F_{3,3} = \gamma_{cd} \cup P_1 \cup P_2 \cup P_3 \)
- \(F_{3,4} = \gamma_{cd} \cup P_1 \cup P_2 \cup P_3 \)
- \(F_{3,5} = \gamma_{cd} \cup P_1 \cup P_3 \)
- \(F_{3,6} = \gamma_{cd} \cup P_1 \cup P_2 \cup P_3 \)

Theorem 3.12:
Let \(G \) be a connected unicyclic graph \(G \) in which four vertices of \(\gamma_{cd} \) – set lie on the cycle. Then \(\gamma_{cd}(G) = 4 \) if and only if \(G \) is one of the graphs in the family \(F \).

Proof:
If \(G \) is one of the graphs in the family \(F \), then \(\gamma_{cd}(G) = 4 \).
Conversely, let \(S \) be a \(\gamma_{cd} \) – set of the unicyclic graph \(G \). Since four vertices of \(S \) lie on the cycle, \(4 \leq |V - S| \leq 8 \).
Since \(\langle V - S \rangle \) contains at least one isolated vertex, \(\langle S \rangle \) is one of the graphs \(4K_1, 2K_1 \cup K_2, K_1 \cup P_3, P_4 \) and \(C_4 \).

Case (1): \(\langle S \rangle \cong 4K_1 \)

Subcase (1.a): \(|V - S| = 4 \)
- If \(\langle V - S \rangle \cong 4K_1 \), then \(G \cong F_{1,1} \).
- If \(\langle V - S \rangle \cong 2K_1 \cup K_2 \), then \(G \) is not unicyclic.

Subcase (1.b): \(|V - S| = 5 \)
- If \(\langle V - S \rangle \cong 5K_1 \), then \(G \cong F_{1,2} \).
- If \(\langle V - S \rangle \cong 3K_1 \cup K_2 \), then \(G \cong F_{1,3} \).

Subcase (1.c): \(|V - S| = 6 \)
- If \(\langle V - S \rangle \cong 6K_1 \), then \(G \cong F_{1,4} \).
- If \(\langle V - S \rangle \cong 4K_1 \cup K_2 \), then \(G \cong F_{1,5} \).

DOI: 10.9790/5728-11543852 www.iosrjournals.org 50 | Page
If \(|V - S| = 7 \), then \(G \cong F_{1,6} \).

Subcase (1.d): \(|V - S| = 7\)

If \(|V - S| = 7K_1 \), then \(G \cong F_{1,7} \).
If \(|V - S| = 7K_1 \cup K_2 \), then \(G \cong F_{1,8} \).
If \(|V - S| = 3K_1 \cup 2K_2 \) (or) \(K_1 \cup 3K_2 \), then \(S \) will not be a \(\gamma_{cd} \) set of \(G \).

Subcase (1.e): \(|V - S| = 8\)

If \(|V - S| = 8K_1 \), then \(G \cong F_{1,9} \).
If \(|V - S| \) contains \(K_2 \) as one of its components, then \(S \) will not be a \(\gamma_{cd} \) set of \(G \).

Case (2): \(|V - S| = 2K_1 \cup K_2 \)

Subcase (2.a): \(|V - S| = 4\)

If \(|V - S| = 4K_1 \), then \(G \cong F_{1,2} \).
If \(|V - S| = 2K_1 \cup K_2 \), then \(G \cong F_{1,1} \).

Subcase (2.b): \(|V - S| = 5\)

If \(|V - S| = 5K_1 \), then \(G \cong F_{2,1} \). \(F_{2,2} \) and \(F_{2,3} \).
If \(|V - S| = 3K_1 \cup K_2 \), then \(G \cong F_{1,3} \).

Subcase (2.c): \(|V - S| = 6\)

If \(|V - S| = 6K_1 \), then \(G \cong F_{2,4} \) and \(F_{2,5} \).
If \(|V - S| = 4K_1 \cup K_2 \), then \(G \cong F_{2,6} \).

Subcase (2.d): \(|V - S| = 7\)

If \(|V - S| = 7K_1 \), then \(G \cong F_{2,7} \).
If \(|V - S| = 5K_1 \cup K_2 \), then \(G \) is not unicyclic.

Subcase (2.e): \(|V - S| = 8\)

Then either \(G \) is not unicyclic or \(S \) will not be a \(\gamma_{cd} \) set of \(G \).

Case (3): \(|V - S| = 2K_2 \)

Subcase (3.a): \(|V - S| = 4\)

If \(|V - S| = 4K_1 \), then \(G \cong F_{3,1} \).
If \(|V - S| = 2K_1 \cup K_2 \), then \(S \) will not be a \(\gamma_{cd} \) set of \(G \).

Subcase (3.b): \(|V - S| = 5\)

If \(|V - S| = 5K_1 \), then \(G \cong F_{3,2} \).
If \(|V - S| = 3K_1 \cup K_2 \), then \(G \cong F_{2,2} \).
If \(|V - S| = K_1 \cup K_2 \), then \(S \) will not be a \(\gamma_{cd} \) set of \(G \).

Subcase (3.c): \(|V - S| = 6\)

If \(|V - S| = 6K_1 \), then \(G \cong F_{3,3} \).
If \(|V - S| = 4K_1 \cup K_2 \) (or) \(2K_1 \cup 2K_2 \), then \(G \) is not unicyclic.

Subcase (3.d): \(|V - S| = 7 \) (or) \(8 \)

Then either \(G \) is not unicyclic or \(S \) will not be a \(\gamma_{cd} \) set of \(G \).

Case (4): \(|V - S| = K_1 \cup P_1 \)

Subcase (4.a): \(|V - S| = 4\)

If \(|V - S| = 4K_1 \), then \(G \cong F_{3,1} \).
If \(|V - S| = 2K_1 \cup K_2 \), then \(S \) will not be a \(\gamma_{cd} \) set of \(G \).

Subcase (4.b): \(|V - S| = 5\)

If \(|V - S| = 5K_1 \), then \(G \cong F_{4,1} \) and \(F_{2,2} \).
If \(|V - S| = 3K_1 \cup K_2 \), then \(G \cong F_{2,1} \).
If \(|V - S| = K_1 \cup K_2 \), then \(S \) will not be a \(\gamma_{cd} \) set of \(G \).

Subcase (4.c): \(|V - S| = 6\)

If \(|V - S| = 6K_1 \), then \(G \cong F_{4,2} \).
If \(|V - S| = 4K_1 \cup K_2 \) (or) \(2K_1 \cup 2K_2 \), then \(G \) is not unicyclic.

Subcase (4.d): \(|V - S| = 7 \) (or) \(8 \)

Then either \(G \) is not unicyclic or \(S \) will not be a \(\gamma_{cd} \) set of \(G \).

Case (5): \(|V - S| = P_1 \)

Subcase (5.a): \(|V - S| = 4\)
If $<V - S> \cong 4K_1$, then $G \cong F_{3,1}$
If $<V - S> \cong 2K_1 \cup K_2$, then $G \cong F_{3,1}$

Subcase (5.b): $|V - S| = 5$
If $<V - S> \cong 5K_1$, then $G \cong F_{5,1}$
If $<V - S> \cong K_1 \cup K_2$, then G is not unicyclic.

Subcase (5.c): $|V - S| = 6, 7$ (or) 8
Then either G is not unicyclic or S will not be a γ_{cl}-set of G.

Case (6): $<S> \cong C_4$

Subcase (6.a): $|V - S| = 4$
If $<V - S> \cong 4K_1$, then $G \cong F_{3,3}$

Subcase (6.b): $|V - S| = 5, 6, 7$ (or) 8
Then either G is not unicyclic or S will not be a γ_{cl}-set of G.

This completes the proof of the theorem.

Remark 3.13:
Let G be a connected unicyclic graph. Then $\gamma_{cl}(G) = 4$ if and only if G is isomorphic to one of the graphs in the family of graphs \mathcal{A}, \mathcal{B}, \mathcal{C} and \mathcal{D}.

IV. Conclusion
This paper results on finding the co–isolated locating domination number for unicyclic graphs. Determining the co–isolated locating domination number remain open. In particular the co–isolated locating domination number equal to 3 (or) 4 (or) 5 are of interest. For large values of $n \geq 6$ proof similar to those presented in this paper get too complicated. So a new approach seems necessary.

References