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l. Introduction:

This paper is concerned with the determination of temperature and displacement of a half space
bounding surface due to thermal shock. This paper deals with the place boundary of the half-space is free of
stress and is subjected to a thermal shock. Moreover , the perturbation method is employed with the
thermoelastic coupling facter ¢ as the perturbation parameter. The Laplace transform and its inverse with very
small thermoelastic coupling facter ¢ are used. The deformation field is obtained for small values of time.
Parial”l has formulated different types of thermal boundary condition problems.

1. Formulation Of The Problem: Governing Equations
Let the elastic half-space be x > 0 with surface plane x = 0, free of tractions for all time. The solid is
assumed to be mechanically constrained so that the displacement components w, =u (x,t ),u, = u, = 0and
the temperature distribution is of the form T=T (x, t), x and t denoting respectively the space- coordinate and
time.
The coupled thermo- elastic differential equations!*?! are

9%u 9%u ar
(K+2p)ﬁ—pﬁ+a(3l+2ﬂ)a Q
a2T ar

62
K-= = pco; + a(3/1+2p¢)1'0$:t 2)

The initial conditions are taken to be
au(x,0)

U(x0)= =0
The boundary condition is that the normal stress o, (0,t) = 0. Introducing dimensionless variables
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Equations (1) and (2) reduce to
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With the initial conditions

U, Tl";—‘t’ll = 0 att=0forall x, > 0 (6)

The boundary conditions
0xx ou
@ o= oy = ;i - T, =0, forx; =0(7)

Due to instantaneousthermal shock on x; = 0 where T, is a constant and d(t;) is the well known
Dirac — delta function.
Besides, the regularity conditions require
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The constant ¢ represents the thermoelastic coupling factor and is given by
_ BTy
pco (A +2u1)

1. Solution Of The Problem
Let Laplace transform of U, (x;,t;), T;(x;,t;) be

Ul(xl ,p) = f Ul(xl, tl)e_ptl dtl
0
T(x,p) = fowT1(x1't1)e_pt1 dt;(9)

Laplace transform of (4) and (5) give

d27, — darT.
ax%I - p2U1 = —= (10)

d°T =
And ?%1 -p T1 = Spd_xl (11)

With T, (x; p),T(x;,p) > 0asx; > o
dUq

T,=Tyonx,=0 and d—szoonx1=0(12)
Elimination of T; from (10) and (11) gives
‘“’1 p(1+p+€ 37, = 0 (13)

Ellmlnatlng U, from (10) and (11) we get the same equation in terms of T;
Solving these two equations satisfying first conditions of (12)
U, = Ae™™1*1 + Be~M2%1
T, = Aje™™*1 + Ble~™2%1 (14)
Where m? and m3 are the roots of the quadratic equation
xt — p(1+p+e)x2 + p3 =0(15)
Hence m? + mz =p(l+p+¢), mimi= p?
And mym, = (ao Bo)
ay= V(A +p+e+2Vp)
Bo= V(A +p+e—2Vp)
Now (T}),,—0 = Ty gives By = Ty — 4,
And (dUl To) o =0 givesB = — -
Therefore T, = Aje™™1*1 + (T, — A;)e ™2X1

To+Am1q

- _ To+Amq _
U = Aje™*1 — 2—Leg m2%1 (16)
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Now, substituting the solutions (16) into (10),
A 2 _ n2)p—mix1 {
(mi — p*e + -

=- Almle_mlxl + (A1 - To)mze_mle
This is satisfied if
Aym, = Ap? - Am?

+ Am
—1 2 - (TO + Aml)mz} —maX1

2
And mz(TO _Al) = mz(TO + Aml) - P(Tom—‘f':an)
Solving for A and 4,
2_.2
—_mi _ mi—p
T mi—p —-_mix _mZ p —mx

Hence, T, = T, [m%m% e M1 oy 2 1] an
_ _ m B
U, =T, m%_zm%e mi1x1 _m%_lm% mlel (18)

Since ¢ is generally very small, we expand in ascending powers of € and retain terms up to its first
power.
Hence

Wp+1) +e=(p+ D{1+i=2m) = (p+D) +52
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Using these approxemations
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IV.  Temperature Field
Using the table™®, the temperature field is given by

T(xy,t1) x, i
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Where
F(CGr,t) = e 1H(ty — 1) + (& — x;)eT™ 1 H (e — x;) + 5 {H

In thetemperature distribution(22), the first term on the rlght -hand side represents the solution of the
classical heat conduction equation while the F(x;,t;) is the perturbation due to the thermoelastic coupling
coefficient £ . F(xq,t;) is the perturbation function for temperature. It is seen that perturbation function is zero
when ¢, is zero for all values ofx; > 0.

V. Deformation Field
Thermoelastic deformation for small values of time is calculated when parameter p is large and the
expansions are inverse powers of p. Hence using approximations (19) and expanding for large p, keeping terms

7
uptop 2 , we obtain from (21)

U(xy,p) £x, e *1P e 1P r3ex; e *1P e gy e 1P
T—O_(Z 25—1) - + (xe+2e—1) ” +< > e—l) 7 +(x1§—§) o

-x1Vp

e—x1\/p e—x1\/p 3¢ e—xl\/P
+(e—8)—F—+—F+ (1 ——)—5+ (1-75¢)
p 7 2/ p2
Taking the inversion, we get, for small values of time, the deformation field
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Where i"erfc(x) denote the associated complementary error function of the n** degree and H(n) is
the Heavy side unit function defined by

H() =1, >0

=0, n<(

Where x; = 0 the surface displacement is
U(0,t)

2
= (2e —DH(t) + 2e — DH(t)t; + (e — DH(ty) % — 2etyierfc(0) + 6t2ci*erfc(0)
0

+2,/t; ierfc(0) + (1 —%) 8t15i3 erfc(0) + (1 —5¢) 32 tfi5 erfc(0)

When the material of the half space is copper, £ =0.0168. The values of the surface displacement for
small values of time are shown in the table:

TABLE
t, 0 0.000001 0.0001 0.001 0.01 0.04 0.09
_uon) 09653  0.9653 0.9552 09317 08626 07738 0.6932

0

Graphical representation of surface displacement for small values of time:
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Surface displacement for small values of time
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