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Abstract: In this study, a quadratic regression model and a two layered layer recurrent neural network 

(TLLRNN) method were used to model forecasting performance of the daily crude oil production data of the 

Nigerian National Petroleum Corporation (NNPC). The two methods were applied on the difference series and 

log difference series of the NNPC series. The results indicates that the two layered layer recurrent neural 

network model have better forecasting per-formance greater than the quadratic regression method based on the 

mean error square sense. The root mean square error (RMSE) and the mean absolute error (MAE) were applied 

to ascertain the assertion that the two layered layer recurrent neural network method have better forecasting 

performance greater than the quadratic regression method. The outcome of the analysis also indicates that 

modeling forecasting performance of the NNPC data with the log dif-ference series of the data gives greater 

forecasting performances than modeling with the difference series of the NNPC data irrespective of the method 

used in modeling with the series. These results were achieved from 1 day ahead pre-dictions, 3 days ahead 

predictions and 5 days ahead predictions for 50 days sample length, 100 days sample length, 200 days sample 

length, 400 days sample length and 800 days sample length. Autocorrelation functions emerging from the 

increment series, that is, difference series and log difference series of the daily crude oil production data of the 

NNPC indicates significant autocorrelations and significant partial autocorrelations. The data used in this 

study is a time series data obtained from the daily crude oil production of the Nigerian National Petroleum 

Corporation (NNPC) for a period of six years (1st January, 2008 - 31st December, 2013). The analysis for this 

study was simulated using MATLAB software, version 8.03 

Keywords: Regression, neural network, root mean square error, mean absolute error, forecasting. 

 

I. Introduction 
 A mineral resource product which is vital to global economy is crude oil. Strictly speaking, crude oil is 

a key factor for the economic advancement of industrialized and developing countries as well as undeveloped 

countries respectively. Besides, political proceedings, extreme meteorological conditions, speculation in fiscal 

market amidst others, are foremost events that characterized the eventful style of crude oil market, which 

intensifies the level of price instability in the oil markets. 

 The crude oil industry in Nigeria is the largest industry. Oil delivered around 90 percent of foreign 

exchange incomes, about 80 percent of federal government proceeds and enhances the progress rate of the 

country’s gross domestic product (GDP). Ever since the Royal Dutch Shell discovered oil in the Niger Delta in 

1956, specifically in Oloibiri, Bayelsa State, the crude oil industry has been flawed by political and economic 

discord mainly due to a long antiquity of corrupt military governments, civilian governments and collaboration 

of multinational corporations, particularly Royal Dutch Shell. About six oil firms namely - Shell, Elf, Agip, 

Mobil, Chevron and Texaco controls the oil industry in Nigeria. The aforementioned oil companies collectively 

dominate about 98 percent of the oil re-serves and operational possessions. There are three key players in the 

Nigeria oil industry which include the Federal 

 Ministry of Petroleum Resources, the Nigerian National Petroleum Corporation (NNPC) and the crude 

oil prospecting companies which comprises the multinational companies as well as indigenous companies as 

asserted by Baghebo [1]. 

 In this study we intend to used data obtained from the daily crude oil production of the Nigerian 

National Petroleum Corporation (NNPC) for a period of six years (1st January, 2008 - 31st December, 2013). 

The data constitute a time series data in view of the daily pattern of its occurrence which is depicting a regular 

pattern. The daily crude oil production series is applied in this study to establish empirical instances of smearing 

the quadratic regression model and a two layered layer recurrent neural network in forecasting the daily crude 

oil production series of the NNPC. 

 Forecasting begins with assumptions based on the organization’s experience, knowledge and judgment. 

These estimates are anticipated into the coming months or years using one or more methods such as Box-

Jenkins models, Delphi method, exponential smoothing, moving averages, regression analysis, and trend 

projection. Since any variation in the assumptions will result in a similar variation in forecasting, the method of 



Application of Regression and Neural Network Models in Computing Forecasts for Crude…  

DOI: 10.9790/5728-11622336                                          www.iosrjournals.org                                        24 | Page 

sensitivity analysis is used which assigns a range of values to the uncertain variables. A forecast should not be 

confused with a budget. 

 

This study intends to provide a comparison study of the quadratic regression model and a two layer recurrent 

neural network technique in forecasting the daily crude oil production of the Nigeria National Petroleum 

Corporation (NNPC). The forecasting performances of the quadratic regression method and the two layered 

layer recurrent neural network method will be assessed through the determination of both the root of mean 

square error (RMSE) and the mean absolute error (MAE). 

 

The remaining part of this study is organized as follows. Section 2 describes the quadratic regression technique 

and the two layered layer recurrent neural network method contain in this paper. Section 3 presents simulation 

results on data obtained from the NNPC for a period of 6 years (2008-2013) using the quadratic regression 

method and the two layered layer recurrent neural network method contain in this study. Section 4 reports 

concluding remarks and future work. 

 

II. Regression and neural network techniques 
 This study will focus on regression and neural network techniques to model and forecast the daily 

crude oil production of the NNPC. The regression technique considered here is the quadratic regression method 

which is a subsidiary of polynomial regression models. Neter et al. [2] declared that polynomial regression 

models are amid the supreme commonly used curvilinear response models in practice, for the reason that they 

can be easily handled as a distinct item of the general linear regression model given in equation (1) below: 

Yi = β0 + β1 xi1 + β2 xi2 +   + βp 1 xi,p 1 + ϵi (1) 

 

 Polynomial regression models can encompass one, two, or more than two predictor variables. 

Additionally, every single predictor variable may be current in several powers. 

 The method of linear least squares is a widespread statistical method and publications are huge. We 

will only momentarily appraise important advances of the least squares method. In 1805, Legendre published his 

book on comet orbits in Paris. He deliberated the method of least squares. This is the earliest publication on the 

least squares method. However Legendre only proclaimed but did not prove his results. Farebrother [3] 

explained that Laplace (1816) produced a sequential fitting technique for the method of least squares. His 

method is quite close to a con-temporary practice called the modified Gram-Schmidt orthogonalization 

procedure [3]. Cauchy (1836) anticipated a modest method for parameter estimation of linear models. The 

Cauchy method was later identified as an orthogonalization process, thoroughly associated to the results of 

Laplace [3]. 

 A distinctive presentation of the technique of least squares was prearranged by Galton in 1886. Galton 

scrutinized the heights of parents and their developing children to advance intuitions into a congenital 

characteristic. Galton instituted that the heights of the children of both tall and short parents seemed to return or 

regress to the mean of the cluster. He deliberated this predisposition as a regression to the mean. Because of this 

and other works, Galton was considered the pioneer of regression, while Legendre and Gauss were the architects 

of regression as asserted by Tobia [4] 

 Healy [5] asserts that Pearson (1894) presented his technique of moment as an unconventional method 

for linear fitting problems. Pearson (1900) as well established a goodness-of-fit test, and the chi-square test, to 

discover if an assumed probability model sufficiently designate data being used. Both the technique of moment 

and the chi-square test are precisely significant to the least squares regression technique. The chi-square test is a 

normality trial applied for model residuals. An advancement of the technique of moment, the generalized 

method of moment (GMM), turns out to be a tremendously powerful estimation tool. The ordinary least squares 

(OLS) technique can be perceived as a special case of the GMM. 

 Elman [6] defines a recurrent neural network as a class of neural network that has recurrent 

connections, which permit a form of retention. This makes them appropriate for chronological prediction 

responsibilities with indiscriminate temporal dimensions. Recurrent neural networks is characterize by the 

feature that particular neuron outputs are fed back into the same layer or foregoing layers so that information 

drifts in equally forward and backward orders to perceive and cause time-varying configurations. Recurrent 

networks have feedback links that allow chronological in-formation to be characterized. Recurrent neural 

network (RNN) architecture uses particular hidden neurons to present feedback. These neurons institute the 

context layer of a network. The context layer plays a significant part in holding chronological information and 

aids the memory of the system by holding the state of the system before the next set of data is administered. 

 Tsoi and Back [7] explains that a typical RNN consists of five components: (1)neuron introduced by an 

activation function, (2) layer or a group of neurons, running and stopping at the same time, (3) link between 
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neurons, (4) architecture and the organization of neurons interrelated by connections, and (5) clock, the 

operation sequence. 

 In another development Hopfield [8] anticipated a network that is used to stockpile steady target 

vectors. These steady vectors can be regarded as memories. The network is recursive. The purpose of the 

Hopfield network is to recover a pattern stockpiled in memory when offering an incomplete configuration or a 

noisy form of the configuration. 

 Jordan [9] offered two types of RNN networks: The local recurrent global feed-forward network, and 

the global recurrent global feed-forward network. 

 Recurrent neural networks are not lacking inadequacies. Its feedback acquaintances entail extra 

neurons, extra connections, a huge quantity of calculation, and a huge training set to create the RNN function. 

The entirety of these phenomena cause tough training and slow convergence. These are extracts from Atya and 

Parlos [10]. In this study, we concentrate our devotion on a two layered layer recurrent neural network 

(TLLRNN) which will be clearly illustrated in subsection 2.2 as well as a quadratic response function which 

will also be vividly illustrated in section 2.1. 

 

2.1. Quadratic response function 

 We instigate by allowing for our polynomial regression model with two predictor variables elevated to 

the first and second powers specified by equation (2) below: 

 

   Yt = ϕ0 + ϕ1 xt-1 + ϕ2 xt-2 + ϕ11 x
2

t-1 + ϕ22 x
2
t-2 + ϕ12 xt-1 xt-2 + ϵi  (2) 

 

Equation (2)is a quadratic regression model with two predictor variables. The response function is given by 

equation (3) below: 

 

   E{Y} = ϕ0 + ϕ1 xt-1 + ϕ2 xt-2 + ϕ11 x
2

t-1 + ϕ22 x
2
t-2 + ϕ12 xt-1 xt-2  (3) 

 

which is the equation of a conic section. Equation (2) comprises distinct linear and quadratic constituents for 

both the two predictor variables and a cross-product term. The last represents the interaction effect between xt-1 

and xt-2. The coefficient ϕ12 is frequently called the interaction effect coefficient. These are extracts from [1]. In 

this study, we applied the least squares method to estimate the parameters of the quadratic response function (3). 

For the quadratic polynomial model (2) the parameters in the model can be easily obtained from the normal 

equations given below: 

 

 

∑ Yt = nb0 + b1∑ xt-1 + b2∑ xt-2 + b11∑ x
2
t-1 + b22∑ x

2
t-2 + b12∑ xt-1 xt-2 

 

∑ xt-1 Yt  =  b0 ∑ xt-1 + b1∑ x
2
t-1+ b2∑ xt-1 xt-2 + b11∑ x

3
t-1 + b22∑ xt-1 x

2
t-2 + b12∑ x

2
t-1 xt-2 

 

∑ xt-2 Yt  = b0 ∑ xt-2 + b1∑ xt-1 xt-2 + b2∑ x
2
t-2 + b11∑ x

2
t-1 xt-2 + b22∑ x

3
t-2 + b12∑ xt-1 x

2
t-2 

 

∑ x
2
t-1 Yt  = b0 ∑ x

2
t-1 + b1∑ x

3
t-1+ b2∑ xt-1 xt-2 + b11∑ x

4
t-1 + b22∑ x

2
t-1 x

2
t-2 + b12∑ x

3
t-1 xt-2 

 

∑ x
2
t-2 Yt  = b0 ∑ x

2
t-2 + b1∑ xt-1 x

2
t-2 + b2∑ x

3
t-2 + b11∑ x

2
t-1 x

2
t-2 + b22∑ x

4
t-2 + b12∑ xt-1 x

3
t-2 

 

∑ xt-1 xt-2 Yt  =  b0 ∑ x
2
t-1 xt-2 + b1∑ x

2
t-1 xt-2 + b2∑ xt-1 x

2
t-2 + b11∑ x

3
t-1 xt-2 + b22∑ xt-1 x

3
t-2 + b12∑ x

2
t-1 x

2
t-2 

 

 

 

The cross product term in (2) is taken to be a second-order term, the same as ϕ11 x2 or ϕ22 x
2
The motive may be 

seen by writing the last terms as ϕ11 xt-1 xt-1 and ϕ22 xt-2 xt-2 separately [2]. 

 

2.2. Layer recurrent neural network 

 The neural network technique to be used in this study is the Layer-Recurrent Network (LRN) and to be 

specific, a two layered layer recurrent neural network (TLLRNN). A prior basic form of this network was 

presented by Elman [Elma90]. Zhang et al.[11]. In the layer recurrent network there is a feedback loop, with a 

single delay, around each layer of the network excluding the last layer. The novel Elman network had merely 

two layers, and adopts a tansig transfer function for the hidden layer and a Purelin transfer function for the 

output layer. The novel Elman network was trained by means of an approximation to the back propagation 

algorithm. The Layrecnet command generalizes the Elman network to require a subjective number of layers and 
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to have subjective transfer functions in every layer. The toolbox trains the LRN using exact versions of the 

gradient-based algorithms in Multilayer Neural Networks and Back propagation Training. The resulting network 

architecture in figure 1 exemplifies a two-layered layer recurrent neural network (TLLRN). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: A two layered layer recurrent network architecture 

 

Layer recurrent neural networks are alike to feedforward networks, apart from the fact that each layer 

has a recurrent connection with a tap delay linked with it. This permits the network to have an immeasurable 

dynamic response to time series input data. The layer recurrent network is analogous to time delay and 

distributed delay neural networks, which have predetermined input responses. These are assertions from Liu 

[12]. 

 

Basically, the two layered layer recurrent network possessed two major layers namely layer 1 and layer 

2 as il-lustrated in figure 1. Layer 1 is a feedback layer that provides recurrence, while layer 2 is a feedforward 

layer that propagates information forward. In addition, the two layered layer recurrent network has input, output 

and hidden layers similar to other recurrent neural network. In this study, the input and output of the neural 

network is represented by x(t) and y(t) in that order. In figure 1, the bias terms are indicated by b
1
 for layer 1 and 

b
2
 for layer 2. The hidden layers for layers 1and 2 are indicated by f

1
 and f

2
 respectively. The notation Lw

1,1
 and 

Lw
2,1

 indicates feedforward connection weights from input to hidden layers and from hidden to output layers, 

respectively. In layer 1 which is the feedback layer, weighted sum of the delayed outputs of the hidden and 

output layers is served into the activation functions just as the feedforward layer neurons as explained by Aksu 

[13]. The output of layer 1 neurons are represented by a
1
(t) and the output of layer 2 neurons by a

2
(t) and 

applied to neurons of the hidden and output layers through Lw
1,1

 and Lw
2,1

 respectively. The notation D is the 

time delay or context layer. Following the time delay or context layer, we will use t to represent the time index. 

 

The two layered layer recurrent neural network (TLLRNN), use dissimilar activation functions for its 

diverse types of neurons. It uses a sigmoid function or a hyperbolic tangent for usual hidden neurons, a time 

delay function for context neurons, and a linear function for output neurons. With these permutations, the 

TLLRNN network can estimate any function with any subjective precision just like the Elman network. The 

lone prerequisite is that the number of neurons in the hidden layer is sufficiently huge. 

 

Training the two layered layer recurrent neural network (TLLRNN) can be done by the Levenberg-

Marquardt algorithm, a backpropagation (BP) algorithm using second derivatives of errors short of computing 

the Hessian matrix. The calculations for two layered layer recurrent neural network (TLLRNN) network 

encompass additional equations than a feed-forward network due to feedback connections. 

 

In the two layered layer recurrent neural network (TLLRNN), dissimilar categories of neurons have 

diverse activation functions given below: 

 

f 
h
(x(t)) = 1/(1 + e 

-x(t)
) (activation function for hidden neurons)    (4) 

  

f
0
(x(t)) = x(t)  (activation function for output neurons)   (5) 

 

 f
c
(x(t)) = x(t-1)  (activation function for time delay neurons) 
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 For computations from t=1 to t=K, error of the system is defined as difference between reference 

output and the TLLRNN’s output as in equation (7) 

e(t) = y(t)  yˆ(t) (7) 

where yˆ(t) is the reference output and y(t) is the TLLRNN’s output. A fitness function using this error tries to 

optimize the network’s weights[13]. At the commencement, outputs of the hidden and output layers are fixed to 

zero: 

 

f (0) = 0,   y(0) = 0 (8) 

The sum of the input weights Lw
1,1

 and Lw
2,1

 with the bias b
1
 and b

2
 are calculated by:  

nwt1(t) = [Lw
1,1

 f (t  1)] + b
1
  

nwt2(t) = [Lw
2,1

 f (t  1)] + b
2
 (9) 

 

where Lw
1,1

,Lw
2,1

 and b
1
, b

2
, designate the input weights of the feedback layers and bias values of the feedback 

layer neurons, respectively. The net input to the outputs of the feedback layers are computed as: 

 

f 
1
(t) = f 

o
(x(t))(nwt1(t))  

f 
2
(t) = f 

o
(x(t))(nwt2(t)) (10) 

 

where the f 
o
’s are the activation functions of the feedback layer neurons. Computations of the net input of the 

outputs to the hidden layer neurons are as follows: 

 

nwt f (t) = [W1 x(t)] + [Lw
1,1

 f (t)] + [Lw
2,1

 f (t)] + b1  

h(t) = f 
h
(x(t))(nwt f (t)) (11) 

 

where nwt f (t) is local field of the hidden layer neurons, W1 is the weight between the input layer and hidden 

layer and b1 is the bias applied to the hidden layer neurons. Lw
1,1

 f (t) and Lw
2,1

 f (t) represent the output 

weights of the feedback layer and f 
h
(x(t)) is the activation function of the hidden layer neurons. Computations 

of the net input to the context neuron of the context layer are as follows: 

 

nwtc(t) = [W2h(t)] + [W3y(t)] + b3  

c(t) = f 
c
(x(t))(nwtc(t)) (12) 

 

where nwtc(t) is local field of the context layer neurons, W2 is the weight between the hidden layer and context 

layer and b3 is the bias applied to the context layer neurons.W3 represent the context weights of the feedback 

layer and f 
c
(x(t)) is the activation function of the context layer neurons. 

 

III. Results and discussion 
 The data series for this study represents the daily crude oil production of Nigeria National Petroleum 

Corporation (NNPC). Figure 2 shows the whole picture of 2191 samples for a period of six years (1st 

January,2008 - 31st December, 2013) in barrels per day. 
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Figure 2: Daily Crude Oil Production of the NNPC 

 

 A sample autocorrelation picture of the daily crude oil production series is shown in figure 3. Figure 4 

is the dia-gram of the sample partial autocorrelation function of the daily crude oil production series of the 

NNPC. Both figures points out that the daily crude oil production series of the NNPC are both autocorrelated 

and partially autocorrelated. 

 

Sample Partial Autocorrelation Function 

 
Figure 3: Autocorrelation Function of the Daily Crude Oil Production Series of the NNPC 
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Figure 4: Partial Autocorrelation Function of the Daily Crude Oil Production Series of the NNPC 

 

 The increment series, that is, difference series and log difference series of the daily crude oil production 

series of the NNPC is used to conduct the Dickey-Fuller (DF) test to determine if the data series is stationary. In 

this study, we difference the original daily crude oil production series by using Xt = Yt Yt 1 and Q t = log(Yt) 

log(Yt 1) respectively, if Yt is the original series. Figure 5 shows the picture of the daily crude oil production 

difference series of the NNPC. Figure 6 is the diagram of the sample autocorrelation function of the daily crude 

oil production difference series of the NNPC and figure 7 shows the diagram of the sample partial 

autocorrelation function of the daily crude oil production difference series of the NNPC. Both figures points out 

that the daily crude oil production difference series of the NNPC are both autocorrelated and partially 

autocorrelated. 

 

 
Figure 5: Daily Crude Oil Production Difference Series of the NNPC 
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Sample Autocorrelation Function 

 
Figure 6: Autocorrelation Function of the Daily Crude Oil Production Difference Series of the NNPC 

 

 
Figure 7: Partial Autocorrelation Function of the Daily Crude Oil Production Difference Series of the NNPC 

 

 The log difference series of the daily crude oil production is also illustrated pictorially in figure 8. 

Comparing figures 5 and 8 we notice that the log difference series of the daily crude oil production series of the 

NNPC has a smaller variance than the difference series of the daily crude oil production of the NNPC. The 

mean value of the difference series is 1.2790e+03, the median value is -11184 and the variance is 3.0162e+14. 

For the log difference of the NNPC series, the mean value is 0.0028, the median value is -0.0056 and the 

variance is 0.3889. The variances of the difference series and log difference series confirms our assertion in 

figures 5 and 8 that the difference series has a greater variance than the log difference series. 
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Figure 8: Daily Crude Oil Production Log Difference Series of the NNPC 

 

Sample Autocorrelation Function 1 

 
Figure 9: Autocorrelation Function of the Daily Crude Oil Production Log Difference Series of the NNPC 

 

Sample Partial Autocorrelation Function 1  
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Figure 10: Partial Autocorrelation Function of the Daily Crude Oil Production Log Difference Series of the 

NNPC 

 

 Figure 8 shows the picture of the daily crude oil production log difference series of the NNPC. Figure 9 

is the diagram of the sample autocorrelation function of the daily crude oil production log difference series of 

the NNPC and figure10 shows the diagram of the sample partial autocorrelation function of the daily crude oil 

production log difference series of the NNPC. Both figures points out that the daily crude oil production log 

difference series of the NNPC are both autocorrelated and partially autocorrelated. 

 An Augmented Dickey-Fuller (ADF) test of trend stationary is implemented by the MATLAB 

command ”kpsstest” on the difference and log difference series of the daily crude oil production data of the 

NNPC. The outcome points out that there is no statistical significant indication to accept the null hypothesis that 

unit roots occur for the difference series and log difference series for the daily crude oil production data of the 

NNPC. Hence, we conclude that the daily crude oil production difference series and the daily crude oil 

production log difference series are both stationary. 

 From the above analogy, one could deduce that the difference series and the log difference series for 

the daily crude oil production series of the NNPC will give better modeling and forecasting outcomes than the 

original daily crude oil production series of the NNPC. In view of this reason, we will use both the difference 

series and log difference series only for subsequent analysis, since it has demonstrated that its outcomes will 

produce better modeling and forecasting results than the original daily crude oil production series of the NNPC. 

 In this paper, we indicate that for the quadratic regression method, forecasting will hinge on two input 

variables, three input variables and four input variables. The procedure also applies to the two layered layer 

recurrent neural network (TLLRNN) method. For both quadratic regression and two layered layer recurrent 

neural network models, forecasts is made based on five varied sample measurement: 50 days data 

measurements, 100 days data measurements, 200 days data measurements, 400 days data measurements and 800 

days data measurements. Furthermore, for both quadratic regression and two layered layer recurrent neural 

network models, our forecast is hinge on 1 day, 3 days and 5 days ahead predictions. This procedure will now 

result in the computation of 1 day, 2 days and 3 days ahead root mean square error (RMSE) and mean absolute 

error (MAE) for each model. This process determines the pattern in which RMSEs and MAEs are at variant 

from 1 day to 3 days predictions and from 3 days to 5 day predictions. 

 The fundamental function of the regression method is shown as equation (2) and the response function 

is shown as  (3). Also, the normal equations for estimating the parameters in the regression model is shown as 

(??). In regression methods and neural network methods, appropriate input variables are fundamental to create 

credible models and predictions. The concept of stochastic decomposition is used here to decompose data series 

to get input variables for regression models and neural network models. We decomposed the difference series 

and log difference series of the NNPC series into two and three, as well as four independent series, which are 

then applied as input variables for the regression and neural network methods. As we have explained before the 

regression model used here is the quadratic regression model, while the neural network model used here is the 
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two layered layer recurrent neural network. 

 Suppose a given set of observations are identically and independently distributed, the forecasts with the 

smallest mean square error in such observations are the best forecasts. This study evaluates forecasting 

performances by computing the root mean square error (RMSE) and mean absolute error for the difference 

series and log difference series of the daily crude oil production series of the NNPC. 

 

Table 1: Difference series performance using quadratic regression model 

Variable Name RMSE  Variable name MAE 

50 days forecast v1 rmse 1.73674482475458e-08  50 days forecast v1 mae 1.84159500394969e-09 

50 days forecast v3 rmse 33978164.4667824  50 days forecast v3 mae 6074665.17301324 

50 days forecast v5 rmse 17560480.4098658  50 days forecast v5 mae 3433793.93657883 

100days forecast v1 rmse 4.34609653126616e-09  100 days forecast v1 mae 1.19550250802951e-09 

100days forecast v3 rmse 17756580.1859778  100 days forecast v3 mae 3493393.02284148 

100days forecast v5 rmse 17756580.1856403  100 days forecast v5 mae 3493393.02284148 

200days forecast v1 rmse 7.59859195247509e-09  200 days forecast v1 mae 1.53212636692569e-09 

200days forecast v3 rmse 18138141.2077174  200 days forecast v3 mae 3572066.88347660 

200days forecast v5 rmse 18138141.2077476  200 days forecast v5 mae 3572066.82425979 

400days forecast v1 rmse 1.73674482475458e-08  400 days forecast v1 mae 1.84159500394969e-09 

400days forecast v3 rmse 33978164.4667824  400 days forecast v3 mae 6074665.17301324 

400days forecast v5 rmse 17560480.4098658  400 days forecast v5 mae 3433793.93657883 

800days forecast v1 rmse 9.65870835286466e-09  800 days forecast v1 mae 2.83676968190029e-09 

800days forecast v3 rmse 21399815.9870266  800 days forecast v3 mae 4577927.50803213 

800days forecast v5 rmse 2.139981598711531e+07  800 days forecast v5 mae 4577927.43574297 

 

 The computational outcomes for root mean square error (RMSE) and mean absolute error for (MAE) 

for difference series of the daily crude oil production series of the NNPC is illustrated in table 1. It can be seen 

from the table that RMSEs and MAEs possessed better forecasting performances for 1 day prediction for 50, 

100, 200 400 and 800 days data samples since their errors are very small. The MAE for 800 days data sample 

for 1 day prediction constitute better forecasting performance than the RMSE for 800 days data sample for 1 day 

prediction, since the error of the former is smaller than the error of the latter. The RMSEs and MAEs for 3 and 5 

days predictions for 50, 100, 200, 400 and 800 days data sample are very large such they may not constitute 

good forecasting performance in view of their extremely large errors. Hence, for the difference series of the 

NNPC data, it is only the prediction of 1 day for all the data samples that can produce good forecasting 

performance as can be seen in table 1 for both RMSEs and MAEs. 

 For the log difference series of the NNPC series, we also considered log difference performances for 

four independent variable quadratic regression models. We used the concept of stochastic decompositions by 

Becker [14] to decompose the log difference series into two, three and four independent series. In this study we 

considered only the four independent series which is used as input variables for the quadratic regression model. 

Table 2 shows the RMSE and MAE forecasting performances for four input variables with 1 day, 3 days and 5 

days predictions based on data sample length of 50, 100, 200, 400 and 800 days data samples respectively. 

 

Table 2: log difference series performance using quadratic regression model 
Variable Name RMSE  Variable name MAE 

50 days forecast v1 rmse 0.700178629089724  50 days forecast v1 mae 0.555934449097355 
50 days forecast v3 rmse 1.03116176568080  50 days forecast v3 mae 0.802793050841683 

50 days forecast v5 rmse 0.905898723378657  50 days forecast v5 mae 0.693629758735138 

100days forecast v1 rmse 0.700178629089724  100 days forecast v1 mae 0.555934449097355 
100days forecast v3 rmse 1.03116176568080  100 days forecast v3 mae 0.802793050841683 

100days forecast v5 rmse 0.905898723378657  100 days forecast v5 mae 0.693629758735138 

200days forecast v1 rmse 0.634775169720679  200 days forecast v1 mae 0.516182205328637 
200days forecast v3 rmse 0.918942871582563  200 days forecast v3 mae 0.726236904965330 

200days forecast v5 rmse 0.780291436682125  200 days forecast v5 mae 0.616975456447820 

400days forecast v1 rmse 0.647473770990421  400 days forecast v1 mae 0.521463449608953 
400days forecast v3 rmse 0.940282341555137  400 days forecast v3 mae 0.736961346640355 

400days forecast v5 rmse 0.794126063955765  400 days forecast v5 mae 0.623274280061115 

800days forecast v1 rmse 0.668917570400212  800 days forecast v1 mae 0.527934559511973 
800days forecast v3 rmse 1.023884192884413  800 days forecast v3 mae 0.796481075452469 

800days forecast v5 rmse 0.861022230305001  800 days forecast v5 mae 0.656589744043977 
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 In table 2 one could see that the MAEs outcomes possessed better forecasting performances than the 

RMSEs outcomes. This is because the MAEs values are smaller than the RMSEs values, thereby producing the 

optimal solution. Also, one could see that for the MAEs, predictions 1 day ahead, 3 days ahead and 5 days ahead 

based on a sample length of 50 and 100 days data sample, are equal and this trend also applies to the RMSEs. 

 Sequel to the foregoing statement, forecasting performance for 1 day ahead, 3 days ahead and 5 days 

ahead prediction is not affected by the sample length of the data in this situation. Hence, irrespective of whether 

the sample length of the data series is 50 days sample length or 100 days sample length, the forecasting 

performance remains the same. In comparing tables 1 and 2, it can be deduce from these tables that the log 

difference series, constitute better forecasting performance than the difference series of the NNPC series in the 

mean square error sense. Therefore, forecasting the daily crude production of the NNPC will produce better 

predictions for 1 day ahead, 3 days ahead and 5 days ahead based on a sample length of 50, 100, 200, 400 and 

800 days data sample by using the log difference series of the NNPC data, rather than using the difference series 

of the NNPC data for 1 day ahead, 3 days ahead and 5 days ahead predictions, based on a sample length of 50, 

100, 200, 400 and 800 days data sample. 

 

Table 3: Difference series performance using two layered neural network model 

Variable Name RMSE  Variable name MAE 

50 days forecast v1 rmse 6.083876722734590  50 days forecast v1 mae 6.04192287906014 

50 days forecast v3 rmse 6.084225084810980  50 days forecast v3 mae 6.04195986808638 

50 days forecast v5 rmse 6.084388805428992  50 days forecast v5 mae 6.04214205409435 

100days forecast v1 rmse 6.08346463571485  100 days forecast v1 mae 6.04111316157741 

100days forecast v3 rmse 6.08356402153901  100 days forecast v3 mae 6.04091333694678 

100days forecast v5 rmse 6.08364221194899  100 days forecast v5 mae 6.04099813697495 

200days forecast v1 rmse 6.06368238779343  200 days forecast v1 mae 6.02069620950992 

200days forecast v3 rmse 6.06404100020748  200 days forecast v3 mae 6.02074638620402 

200days forecast v5 rmse 6.06421917455469  200 days forecast v5 mae 6.02092365138931 

400days forecast v1 rmse 6.04147337002840  400 days forecast v1 mae 5.99783319665977 

400days forecast v3 rmse 6.04190942302792  400 days forecast v3 mae 5.997934031498830 

400days forecast v5 rmse 6.04174721105203  400 days forecast v5 mae 5.997754395562628 

800days forecast v1 rmse 5.96390076943475  800 days forecast v1 mae 5.91875035452281 

800days forecast v3 rmse 5.96446915704074  800 days forecast v3 mae 5.91890893826510 

800days forecast v5 rmse 5.96427140967527  800 days forecast v5 mae 5.91867696454829 

 

 From table 3 one could see that the MAEs outcomes possessed better forecasting performances than the 

RMSEs outcomes. This is because the MAEs values are smaller than the RMSEs values, thereby producing the 

optimal solution. Although, a critical scrutiny of outcomes in table 3 shows that the outcomes are almost equal 

for the RMSEs and MAEs. For the MAEs, the outcomes for it in table 3 revealed that, predictions for 1 day 

ahead, 3 days ahead and 5 days ahead for 50 days sample length for the NNPC series are equivalent. This 

indicates that irrespective of predictions of 1, 3 and 5 days ahead, forecasting performance for the outcomes will 

remain the same or almost the same. Forecasting performance with regards to RMSEs for predictions 1 day 

ahead, 3 days ahead and 5 days ahead for 50 days sample length follows the same trend with the MAEs in this 

category. Table 3 also indicates that forecasting performance for 1 day, 3 days and 5 days ahead for 100 and 200 

days sample length of the NNPC series are also similar, while forecasting performance for 1, 3 and 5 days ahead 

predictions for 400 and 800 sample length are similar. The similarities indicates that the number of days in the 

sample length of the data, does not adversely change the forecasting performances in forecasting the daily crude 

oil production of the NNPC using difference series, modeled by a two layered layer recurrent network. Table 3 

also indicates that a similar analogy with the MAEs follows for the RMSEs. 

 

Table 4: Log difference series performance using two layered neural network model 
Variable Name RMSE  Variable name MAE 

50 days forecast v1 rmse 6.08561017316472  50 days forecast v1 mae 6.04372480674281 

50 days forecast v3 rmse 6.08591201187344  50 days forecast v3 mae 6.04391877340830 

50 days forecast v5 rmse 6.08547424613058  50 days forecast v5 mae 6.04347184842881 
100days forecast v1 rmse 6.08519394424764  100 days forecast v1 mae 6.04326763140537 

100days forecast v3 rmse 6.08533086093488  100 days forecast v3 mae 6.04333624546782 

100days forecast v5 rmse 6.08567949902457  100 days forecast v5 mae 6.04364116435706 
200days forecast v1 rmse 6.06322832199181  200 days forecast v1 mae 6.02046328876359 

200days forecast v3 rmse 6.063539242147152  200 days forecast v3 mae 6.02068801520373 
200days forecast v5 rmse 6.063438837711934  200 days forecast v5 mae 6.02060682387445 

400days forecast v1 rmse 6.04193867427260  400 days forecast v1 mae 5.99853725334160 

400days forecast v3 rmse 6.04229216135372  400 days forecast v3 mae 5.99883410210333 
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400days forecast v5 rmse 6.04237594884981  400 days forecast v5 mae 5.99889006905902 

800days forecast v1 rmse 5.96331306765217  800 days forecast v1 mae 5.91831585265713 

800days forecast v3 rmse 5.96351821053871  800 days forecast v3 mae 5.91836902518220 
800days forecast v5 rmse 5.96351499317985  800 days forecast v5 mae 5.91835653845694 

 

 Table 4 indicates that forecasting performance of the MAEs for log difference series of the NNPC data 

modeled by a two layerd layer recurrent neural network are slightly better than the RMSEs. This is because 

outcomes resulting from the MAEs are a little bit smaller than outcomes resulting from the RMSEs. The 

outcomes of the MAEs for predictions of 1 day ahead, 3 days ahead and 5 days ahead for 50 days, 100 days and 

200 days sample length are almost identical. This shows that forecasting performance of the log difference 

series of the NNPC series modeled by a two layered layer recurrent neural network is not adversely affected by 

the different sample length of 50 days to 200 days, since the results are almost identical in this category. Table 4 

also indicates that forecasting performance of the MAEs for 1 day ahead, 3 days ahead and 5 days ahead 

predictions for 400 days sample length and 800 days sample length are almost identical. This shows that 

forecasting performance of the log difference series of the NNPC series modeled by a two layered layer 

recurrent neural network for 400 days sample length and 800 days sample length are similar and possessed 

better forecasting performance than for 50 to 200 days sample length. 

 Table 4 also shows that forecasting performance resulting from analysis of the RMSEs as modeled by a 

two layered layer recurrent neural network revealed that predictions of 1 day ahead, 3 days ahead and 5 days 

ahead for 50 days sample length, 100 days sample length, 200 days sample length and 400 days sample are 

characterize by sharp similarities. This shows that forecasting performance for 1 day ahead prediction, 3 days 

ahead prediction and 5 days ahead prediction for 50 days to 400 days sample length are equivalent in the root 

mean square error sense. Table 4 also shows that the RMSEs for 1 day ahead, 3 days ahead and 5 days ahead 

predictions for 800 days sample length indicates better forecasting performance than for 50 days to 400 days 

sample length in the root means square error sense as modeled by a two layered layer recurrent neural network 

using the log difference series of the NNPC data. 

 On the comparison of tables 3 and 4, one could deduce that forecasting performances of the log 

difference series of the NNPC data as modeled by a two layered layer recurrent neural network are better than 

forecasting performances of the difference series of the NNPC series as modeled by a two layered layer 

recurrent neural network. Also, comparing tables 1 and 3 shows that forecasting performance of the difference 

series of the NNPC data as modeled by a two layered recurrent neural network are better than forecasting 

performance of the difference series of the NNPC data as modeled by a quadratic regression modeled in the 

mean square error sense. This is because the outcomes of table 1 are larger than the outcomes of table 3. The 

outcomes of tables 2 and 4 reveals that forecasting performance of the log difference series of the NNPC data as 

modeled by a two layered layer recurrent neural network are better than forecasting performance of the log 

difference series of the NNPC data as modeled by a quadratic regression model. This is because the outcomes of 

table 2 are larger than the outcomes of table 4. 

 On the comparison of tables 1 and 2 which were modeled by a quadratic regression model for both 

difference as well as log difference series of the NNPC data, with tables 3 and 4 which were modeled by a two 

layered layer recurrent neural network for both difference and log difference series of the NNPC series, 

indicates that for both difference and log difference series, forecasting performance resulting from the series 

modeled by a two layered neural network are better than forecasting performance of the series modeled by a 

quadratic regression model in the mean square error sense. This resulting analogy shows that a two layered layer 

recurrent neural network gives better forecasting performance than a quadratic regression model for both 

difference and log difference series of the NNPC data in the mean square error sense. 

 

IV. Conclusions 
 This study have shown that a two layered layer recurrent neural network model have better forecasting 

performances greater than a quadratic regression model with regards to the difference series and log difference 

series of the daily crude oil production series of the NNPC. We could deduce from the study that root mean 

square errors (RMSEs) and mean absolute errors (MAEs) are almost identical for short data lengths such as 50 

days to 200 days data samples as well as with longer data lengths such as 400 days to 800 days data sample 

length. Speaking firmly on the autocorrelation pattern of the difference series and log difference series of the 

daily crude oil production of the NNPC series, one could deduce that the daily crude oil production series of the 

NNPC series indicates a significant autocorrelation and partial autocorrelation. However, we might ruminate 

that forecasting performance of the daily crude oil production series of the NNPC are at its best with log 

difference series, irrespective of the forecasting method. There have been factors affecting the daily crude oil 

production of the NNPC such as the Niger Delta militancy unrest which has led to the vandalism of oil 

pipelines, kidnapping of oil workers, oil theft as well as depriving oil workers access to the oil fields where they 

work. Future investigation on the daily crude oil production series of the NNPC might consider nonlinear 



Application of Regression and Neural Network Models in Computing Forecasts for Crude…  

DOI: 10.9790/5728-11622336                                          www.iosrjournals.org                                        36 | Page 

mathematical models of the neural network category with hyperbolic activation functions as well as sine and 

cosine activation functions to eliminate the irregular factors that affects the daily crude oil production series of 

the NNPC, such that, a proper spring board will be established upon which models will be developed for 

forecast. 
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