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Abstract:In mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros 

only at the negative even integers and the complex numbers with real part 1/2. It was proposed by Bernhard 

Riemann (1859), after whom it is named. Along with suitable generalizations, some mathematicians consider it 

the most important unresolved problem in pure mathematics (Bombieri 2000). The Riemann hypothesis, along 

with the Goldbach conjecture, is part of Hilbert’s eighth problem in David Hilbert’s list of 23 unsolved problems; 

it is also one of the seven Clay Mathematics Institute Millennium Prize Problems. [2] 
In this paper we also prove that the Cramér’s conjecture is false. 
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Littlewood’s theorem, Koch’s result, Schoenfeld’s result, Cramér’s conjecture 
 

I. Legend 
 Some words used in this paper have been abbreviated. Below, you can find the abbreviations list with 

the equivalent meanings.   

• eq.   equation  

• neq.   inequation  

• th.   theorem  

• hyp.   hypothesis  

• lim.   limit  

• pg.   page  

 

II. Brief introduction to prime numbers 
Assuming true the following hypothesis  

Hypothesis 1  A prime number (or a prime) is a natural number greater than 1 that has no positive divisors other 

than 1 and itself.  

 

a natural number greater than   that is not a prime number is called a composite number. For example,   is 

prime because   and   are its only positive integer factors, whereas   is composite because it has the divisors   

and   in addition to   and  . The fundamental theorem of arithmetic establishes the central role of primes in 

number theory: any integer greater than   can be expressed as a product of primes that is unique up to ordering. 

The uniqueness in this theorem requires excluding   as a prime because one can include arbitrarily many 

instances of   in any factorization, e.g.,  ,    ,      , etc. are all valid factorizations of  . [1] 

 

III. The Mertens’ 3rd theorem 
Mertens’ theorems are a set of classical estimates concerning the asymptotic distribution of the prime 

numbers [3]. For our purposes we enunciate only the third.  

 

Let     and  

              
 

 
  (1) 

 where     are the different prime numbers   lower or equal to  .  

The Mertens’ 3rd theorem states that:  

 

Theorem 1  Assuming the validity of hyp.(1) 

                   

 

 where   is the Euler-Mascheroni constant and has the numerical value:  

                                                 (2) 

 

 

IV. Zhang’s bound 
 Let         and    the  -th prime number, the result of Zhang  
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            (3) 

 is a major improvement on the Goldston-Graham-Pintz-Yldrm result. [5] 

 

V. Maynard’s bound 
In November 2013, Maynard gave a different proof of Yitang Zhang’s theorem that there are bounded 

gaps between primes, and resolved a longstanding conjecture by showing that for any   there are infinitely many 

intervals of bounded length containing   prime numbers. [6] 

Maynard’s approach yielded the upper bound      , thus  

       
   

            (4) 

 One year after Zhang’s announcement, according to the Polymath project wiki [7],   has been reduced to    . 

Further, assuming the Elliott-Halberstam conjecture and its generalized form, the Polymath project wiki 

[7] states that   has been reduced to    and  , respectively. 

 

VI. The prime numbers theorem 
In number theory, the prime number theorem (PNT) describes the asymptotic distribution of the prime 

numbers among the positive integers. It formalizes the intuitive idea that primes become less common as they 

become larger by precisely quantifying the rate at which this occurs. The theorem was proved independently by 

Jacques Hadamard and Charles Jean de la Vallée-Poussin in 1896 using ideas introduced by Bernhard Riemann 

(in particular, the Riemann zeta function). [4] 

This theorem states that  

    
   

     
 

     
 (5) 

 where      is the prime-counting function and       is the natural logarithm of  . 

 

VII. The logarithmic integral function 
In mathematics, the logarithmic integral function or integral logarithm       is a special function.  

It is relevant in problems of physics and has number theoretic significance, occurring in the prime 

number theorem as an estimate of the number of prime numbers less than a given value [8]. The logarithmic 

integral has an integral representation defined for all positive real numbers     by the definite integral:  

         
 

 

  

   
 (6) 

The function 
 

     
 has a singularity at    , and the integral for     has to be interpreted as a Cauchy 

principal value:  

          
    

   
   

 

  

   
   

 

   

  

   
  (7) 

The form of this function appearing in the prime number theorem and sometimes referred to as the "European" 

definition is defined so that        :  

         
 

 

  

   
              (8) 

This integral is strongly suggestive of the notion that the ’density’ of primes around   should be 
 

   
.  

This function is related to the logarithm by the full asymptotic expansion  

       
 

   
   
   

  

    
 

 

   
 

 

    
 

  

    
   (9) 

Note that, as an asymptotic expansion, this series is not convergent: it is a reasonable approximation only if the 

series is truncated at a finite number of terms, and only large values of   are employed. This expansion follows 

directly from the asymptotic expansion for the exponential integral [8]. 

This gives the following more accurate asymptotic behaviour:  

       
 

   
   

 

    
  (10) 

where        is the big   notation. So, the prime number theorem can be written as           . [8] 

 

VIII. Skewes’ number 
In number theory, Skewes’ number is any of several extremely large numbers used by the South African 

mathematician Stanley Skewes as upper bounds for the smallest natural number   for which  

            (11) 

These bounds have since been improved by others: there exists one value   in the interval 

                              such that  

                           (12) 

It is not known whether that   is the smallest.  

John Edensor Littlewood, who was Skewes’ research supervisor, had proved that there is such a number 
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(and so, a first such number); and indeed found that the sign of the difference            changes infinitely 

often. All numerical evidence then available seemed to suggest that      was always less than      . 

Littlewood’s proof did not, however, exhibit a concrete such number  . [9] 

 

The following theorems will prove that the sign of            changes infinitely too. Thank to 

Littlewood, we know that  

Theorem 2 Let     and    . Then we have  

                
   

 

  

   
 

 

   
 

 that is equivalent to say that:  

                 
   

 

  

   
 

 

   
    (13) 

 from the previous th., it follows:  

Theorem 3  Let   be a real number such that              where    . Then, if   is a real number 

such that          , we have                 .  

 For the demonstration of those two theorems, please read the paper: "On the positive region of 

          " (pg. 59) by Stefanie Zegowitz [10]. 

 

IX. The Koch’s result 
 Von Koch (1901) proved that the Riemann hypothesis implies the "best possible" bound for the error of 

the prime number theorem. A precise version of Koch’s result, due to Schoenfeld says that [2]:  

Theorem 4  The correctness of the Riemann hypothesis implies that for all        

             
 

  
       

 

X. The Cramér’s conjecture 
In number theory, Cramér’s conjecture, formulated by the Swedish mathematician Harald Cramér in 

1936, is an estimate for the size of gaps between consecutive prime numbers: intuitively, that gaps between 

consecutive primes are always small, and the conjecture quantifies asymptotically just how small they must be. It 

states that  

                  (14) 

 where    denotes the  th prime number.  

While this is the statement explicitly conjectured by Cramér, his argument actually supports the stronger 

statement  

       
   

       

     
   (15) 

 and this formulation is often called Cramér’s conjecture in the literature. 

Neither form of Cramér’s conjecture has yet been proven or disproven [11]. 

Cramér gave a conditional proof of the much weaker statement that  

Theorem 5  If the Riemann hypothesis is true, then  

                    

 

XI. The prime numbers function 
 Let     and    . The function      is defined as:  

      
   

 

      
     

     
 (16) 

We want to study the following limit:  

    
   

      (17) 

The following considerations will be done in the asymptotic limit    .  

We have that:  

 
 

      
 

  

           
 (18) 

in fact, the Prime Numbers Theorem states that:  

         
  

    
 (19) 

For the Mertens’ 3rd theorem  

 
 

      
 

  

           
 

  

    
  

    

 
  (20) 

Again, for the PNT we can say that          , so: 
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 (21) 

 

this result had been object of a famous dispute between Erdös and Selberg [12]. 

Finally, we have proved that:  

 

     
     

 

      
       

     

 
     

    
 

       

     

 
  

  

 
  

 

   
  

 

 (22) 

 

Theorem 6  Assuming the validity of hyp.(1)  

             
  

 
 

The previous theorem have been also verified experimentally. 

 

XII. Disproofs of the Riemann hypothesis 
 Let     and     From eq.(16) we obtain:  

                                (23) 

 Let function    be: 

                       (24) 

 

 We know that        , so:  

                 (25) 

 Thus  

                                           (26) 

 and  

                                           (27) 

The following considerations will be done in the asymptotic limit    .  

For the Mertens’ 3rd theorem, we have that:  

 

      
   

    

 
 

      

   (28) 

thus  

          
                  

      
        (29) 

Considering eq.(10), we have:  

          
                  

      
 

  

    
 

  

     
   

  

     
  (30) 

Considering th.(6), we have:  
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 (31) 

 

12.1                                            

As we can see, we have that, in the asymptotic limit    , the sign of        may change infinitely 

often as proved by th.(3). In chapter 13 we are going to discuss deeply about it. 

In fact  
 

  
                 and           for each     and    . 

 

12.2  1st disproof 

We are now considering lim.(21), lim.(31) and th.(5) combined together. Assuming the validity of the following 

hypothesis  

 

Hypothesis 2  The Riemann hypothesis is true  

we have that:  

 

      
   

             
   

  
 

  
   

            

    
 

  

     
   

  

     
  

       
   

  
 

  
         

  

     
   

  

     
  

 (32) 

We are now going to study the following limit:  

   
   

     
  

     

    
   

        
   

      

    
   

     

   

  

 (33) 

 

This implies that, for a big enough  :  

 
  

     
     (34) 

 and consequentely that:  

       
   

        
  

     

   (35) 

 

now, considering the previous limit, eq.(24) and th.(4), we have that:  

 

   
   

 

          

        
    

   

 

          
  

     

    
   

     

   

  

 (36) 

it follows that, for a big enough  :  

 
  

     
 

 

  
         (37) 

thus  

                        
 

  
         (38) 

this implies that the inequation stated by th.(4) is surely wrong, and this is possible if and only if the Riemann 

hypothesis is false. Thus, we have a contradiction with hyp.(2), for this reason we claim that: 

 

Theorem 7  The Riemann hypothesis is false  

 

12.3  2nd disproof 

We are now considering lim.(31). Because of th.(4), we know that infinite prime numbers      and    

exist such that          . For this reason we can say that, in the asymptotic inferior limit    , we 
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have:  

        
 

  
   

 

    
 

  

     
   

  

     
 

  
  

     
   

  

     
  (39) 

where     and      . 

 

Theorem 8          
      

 
  

     
   

  
     

 
 

            

 
  

     
   

  
     

 
   

 

Once again, as proved by lim.(36), the Riemann Hypothesis must be false. 

 

XIII. The prime gap 
 Let     and    . Because of th.(3) we know that the sign of        changes infinitely, so it must 

be true that:  

  
 

  
   

       

    
 

  

     
   

  

     
    (40) 

 Let    
 

  
   , it is true that:  

            
  

    
     

 

    
          (41) 

      
 

    
   

 

     
           (42) 

    
     

  
 

    
   

 

     
 
               (43) 

    
         

          
 

    
 
                (44) 

    
               

 

    
      

 

    
  

          
 

    
 

 (45) 

         
         

 

    
  

          
 

    
 
        (46) 

 

this is a proof for the following theorem  

Theorem 9                    
         

 

    
  

          
 

    
 
 

 

 
 

 and this implies that the Cramér’s conjecture cannot be true. 
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