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Abstract: Numerical methods have been formulated for the numerical approximation of real two dimensional 

integrals. The truncation error associated with the methods has been analyzed using the Taylors’ series 

expansion. The methods have been verified by considering standard examples. 
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I. Introduction 
Cauchy Principal Value (CPV) integrals occur quite frequently in physics and applied mathematics. 

Quite a large number of methods have been devised for the numerical evaluation of one dimensional real CPV 

integral which is given by  

𝐽 𝑔 = 𝑃  
𝑔(𝑥)

 𝑥−𝑥0
𝑑𝑥 

𝑥0+𝑕

𝑥0−𝑕
(1) 

Some of these methods can be found in Davis and Rabinowitz [1], Monegato [2], etc. 

Two dimensional CPV integral is specified in the following form 

𝐼 𝑓 = 𝑃 
𝑓(𝑥,𝑦)

(𝑥−𝑥0)(𝑦−𝑦0)
𝑑𝑥 𝑑𝑦

𝑆
(2) 

where Sis a square with vertices at (𝑥0 ± 𝑕, 𝑦0 ± 𝑕) and f is continuous on S. If 𝜀 > 0 is an arbitrarily small 

positive number, then the value of the integral 𝐼 𝑓 is given by the following limit if it exists. 

𝐼 𝑓 = lim𝜀→0  
𝑓(𝑥,𝑦)

(𝑥−𝑥0)(𝑦−𝑦0)
𝑑𝑥 𝑑𝑦

𝑆−𝑠
       (3) 

 

where  s is a square with vertices at (𝑥0 ± 𝜀, 𝑦0 ± 𝜀). The condition under which the limit in eqn. (3) exists is 

that the function f should satisfy Holder’s inequality on the square S.  

 It is pertinent to note that substantial research work has not been conducted for the numerical 

approximation of the two dimensional CPV integral. However, Monegato [3],Nayak etal [4],Squire [5], 

Theocaris and Kazantzakis [6], Theocaris [7] have discussed the topic of numerical evaluation oftwo 

dimensional Cauchy principal value integral 𝐼 𝑓  given by equation (2). 

The object of the present paper is to formulate some cubature rules for approximating numerically the 

CPV integral  𝐼 𝑓 . To start with, construction of product rules is considered and subsequently a non-product 

interpolatory ruleis formulated for the numerical evaluation of the two dimensional CPV integral 𝐼 𝑓 . 
 

II. Generation of product rules 
The easiest technique of generation of cubature rules meant for the integral 𝐼 𝑓  is by forming the 

Cartesian product of one dimensional rules meant for the CPV integral 𝐽 𝑔 given by eqn(1). The most popular𝑛 

point Gauss type rule(𝑛 even)of degree of precision 2𝑛is the following rule 

          𝑄𝑛 𝑓 =  
𝑤𝑗

𝑡𝑗

𝑛/2
𝑗=1 {𝑓 𝑥0 + 𝑕 ∗ 𝑡𝑗  − 𝑓(𝑥0 − 𝑕 ∗ 𝑡𝑗 )}.(4) 

The quantities 𝑡𝑗 ’s and 𝑤𝑗 ′s in equation (4) are respectively then/2positive nodesin (0,1) and 

coefficients of the Gauss-Legendre n-point (neven) one dimensional quadrature rulemeant for the weighted 

definite integral  𝜔 𝑥 𝜃 𝑥 𝑑𝑥  of the function 𝜃 𝑥  where 𝜔(𝑥) ≡ 1
1

−1
. 

So far as the two dimensionalCPV integral 𝐼 𝑓  is concerned,applying the rule  𝑄𝑛  𝑓   for the 

numerical approximation with respect to the variable 𝑥first and then with respect to the variable 𝑦, the𝑛2
 –point 

rule is obtained in the followingmatrix form:  

                                                  𝑅𝑛2 𝑓 = (𝐵 × 𝑇) × 𝐵′                                                  (5) 

where B is a 1 × (𝑛 2) matrix with transpose 𝐵′ and T  is a (𝑛 2 × 𝑛 2)  matrix and  
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𝐵 =  𝑏𝑖 1×(𝑛 2) , 𝑏𝑖 = 𝑤𝑖 𝑡𝑖 ,                                                

𝑇 =  𝑓𝑖𝑗  (𝑛 2 ×𝑛 2) 
 ,                                                                    

𝑓𝑖𝑗 = 𝑓 𝑥0 + 𝑕𝑡𝑖 , 𝑦0 + 𝑕𝑡𝑗  − 𝑓 𝑥0−𝑕𝑡𝑖 , 𝑦0 + 𝑡𝑗  

−𝑓 𝑥0 + 𝑕𝑡𝑖 , 𝑦0 − 𝑕𝑡𝑗 + 𝑓 𝑥0 − 𝑕𝑡𝑖 , 𝑦0 − 𝑕𝑡𝑗 .        
 
 

 
 

(6) 

  

Let the truncation error  𝐸𝑛2 𝑓  associated with the product rule  𝑅𝑛2 𝑓  i.e.  

                                                            𝐸𝑛2 𝑓 = 𝐼 𝑓 − 𝑅𝑛2 𝑓 .(7) 

Let the function f be a regular function in the square Sfor whichthe Taylors’ series expansion which is 

prescribed as  

𝑓 𝑥, 𝑦 =  
1

𝑗 !

∞
𝑗=0   𝑥 − 𝑥0 

𝜕

𝜕𝑥
+ (𝑦 − 𝑦0)

𝜕

𝜕𝑦
 

𝑗

𝑓(𝑥0 , 𝑦0)(8) 

where all thepartial derivatives areevaluated at(𝑥0 , 𝑦0). Using eqn. (8) in eqn.(7) and simplifying, the leading 

term in  𝐸𝑛2 𝑓  is given in the following form: 

                             𝐸𝑛2 𝑓  ≈ 4{
1

2𝑛+1
−  𝑤𝑗 𝑡𝑗

2𝑛}
𝑕2𝑛+2

 2𝑛+1 !
(𝑓2𝑛+1,1 + 𝑓1,2𝑛+1)

𝑛/2
𝑗=1 .(9) 

The notation𝑓𝛾,𝜌means 
𝜕𝛾+𝜌

𝜕𝑥 𝛾𝜕𝑥 𝜌 𝑓(𝑥0 , 𝑦0) .Eqn. (9) signifies that the degree of precision of the product 

rule  𝑅𝑛2 𝑓 is 2𝑛. It is noteworthy that   𝐸𝑛2 𝑓 = Ο(𝑕2(𝑛+1)). Therefore the accuracy of the rule  𝑅𝑛2 𝑓  is 

dependant upon the quantity h. 

 

III. Generation of interpolatory rule 
  The product layout for Cartesian product rules involvesrelatively large number of nodes. So for 

reasonable accuracy with less function evaluations, interpolatory rules are preferable. Let the proposed 

interpolatory rule meant for the integral 𝐼 𝑓  involve the  following set of seven nodes : 

A={(𝑥0 , 𝑦0),(𝑥0 ± 𝑠𝑕, 𝑦0 ± 𝑡𝑕),(𝑥0,𝑦0 ± 𝑟𝑕)}(10) 

and the interpolatory rule be 

       𝑅7 𝑓 = 𝐶1𝑕
2𝑓𝑥𝑦  𝑥0 , 𝑦0 + 𝐶2  𝑓 (𝑥0 ± 𝑠𝑕, 𝑦0 ± 𝑡𝑕) + 𝐶3𝑕 𝑓𝑥(𝑥0, 𝑦0 ± 𝑟𝑕)  (11) 

 

where the coefficients 𝐶𝑗  and the real parameters 𝑟, 𝑠, 𝑡are to be suitably determined.It is pertinent to 

note that the rule is exact i.e. 𝐼 𝑓 =  𝑅7 𝑓  whenever 𝑓(𝑥, 𝑦)=(𝑥 − 𝑥0)𝛼 × (𝑦 − 𝑦0)𝛽 ,𝛼 + 𝛽 is odd or both are 

even. Therefore for the determination of seven unknowns in eqn.(11), it is sufficient to consider the cases 

(𝛼, 𝛽)=(1,1),(3,1),(1,3),(5,1),(1,5),(3,3) and make the rule exact for monomials (𝑥 − 𝑥0)𝛼 × (𝑦 − 𝑦0)𝛽 .As a 

result of this the rule  𝑅7 𝑓 becomes exact for all monomials of degree ≤ 7. This leads to the following system 

of equations: 

 

 

𝐶1 + 4𝐶2𝑠𝑡 + 2𝐶3𝑟 = 4,

𝐶2𝑠
3𝑡 = 1 3, 

2𝐶2𝑠𝑡
3 + 𝐶3𝑟

3 = 2 3, 

𝐶2𝑠
5𝑡 = 4 5, 

2𝐶2𝑠𝑡
5 + 𝐶3𝑟

5 = 2 5, 

𝐶2𝑠
3𝑡3 = 1 9.  

  
 

  
 

(12) 

The solutions of the above system of equations are the following which yield the interpolatory cubature 

rule  𝑅7 𝑓 ; 

                 𝐶1 = 8 7, 𝐶2 = 5 5 9, 𝐶3 =  20 15 63 14, 

𝑠 =  3 5 , 𝑡 = 1  3, 𝑟 =  14/15. 
              (13) 

The truncation error associated with the rule 𝑅7 𝑓  is given by 

 𝐸7 𝑓 = 𝐼 𝑓 −  𝑅7 𝑓 .                                              (14) 

Proceeding in the same vein as in equations (7)-(9), the error in respect of the rule  𝑅7 𝑓  is obtained in 

the following form: 

                                         𝐸7 𝑓 ≈
𝑕8

225
{

−8

6615
𝑓1,7 +

1

245
𝑓7,1 +

1

27
𝑓3,5}.          (15) 

Equation (15) shows that the rule 𝑅7 𝑓  has degree of precision seven has order of accuracy Ο(𝑕8). 

 

IV. Numerical Experiments 
 For the numerical verification of the product rule as well as the interpolatory rule the following two 

double CPV integrals are considered: 
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𝐽1 = 𝑃  
𝑒𝑥+𝑦

𝑥𝑦
𝑑𝑥𝑑𝑦

𝑕

−𝑕

𝑕

−𝑕
=1.028182817310825 for  h=0.5 , (16) 

 

𝐽2 = 𝑃  
cos ⁡(𝑥−𝑦)

𝑥𝑦
𝑑𝑥𝑑𝑦

𝑕

−𝑕

𝑕

−𝑕
= 0.972619702916399  for  h=0.5 .  (17) 

 

The third and fourth columns in Table-1 contain respectively the absolute error i.e. difference of exact 

value and the computed value of the integrals and the absolute values of the leading error terms  ( 𝐿𝐸𝑇 ) for the 

rules . So far as the product rule is concerned the value of n is equal to 4 has been considered. It is noteworthy 

that the absolute error and the magnitude of the leading error term in case of the product rule coincide upto at 

least nine decimal places and those in respect of the interpolatory rule coincide upto six decimal places. This 

confirms that the leading terms in the truncation error of the rules almost account for the absolute error. It is 

pertinent to note that the product rule of degree 8 for n=4 involves sixteen nodes while the interpolatory rule of 

degree 7 involves only seven nodes. As a result of which the product rule possesses greater accuracy than the 

interpolatory rule. 

 

Table 1 
Integrals Rules  𝐸𝑟𝑟𝑜𝑟   𝐿𝐸𝑇  

𝐽1 
 

    𝑅42 𝑓  1.27× 10−10  1.25× 10−10  

 𝑅7 𝑓  7.03× 10−07  6.92× 10−07  

𝐽2 
 

  𝑅42 𝑓  1.22× 10−10  6.24× 10−11  

 𝑅7 𝑓  6.82× 10−07  5.51× 10−07  
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