Pgrw-Continuous and Pgrw-Irresolute Maps in Topological Spaces

R. S. Wali¹ and Vijaykumari T. Chilakwad²

¹(Department of Mathematics, Bhandari Rathi College, Guledagud-587 203, Karnataka State, India)., ²(Department of Mathematics, Government First Grade College, Dharwad, Karnataka State, India.)

Abstract: This paper introduces pre generalized regular weakly continuous maps, $pgr\omega$ -irresolute maps, strongly $pgr\omega$ -continuous maps , perfectly $pgr\omega$ -continuous maps and studies some of their properties. **Keywords:** $pgr\omega$ -closed sets, $pgr\omega$ -open sets, $pgr\omega$ -continuous maps, $pgr\omega$ -irresolute maps, strongly $pgr\omega$ -continuous maps, $pgr\omega$ -irresolute maps, strongly $pgr\omega$ -continuous maps, $pgr\omega$ -irresolute maps, strongly $pgr\omega$ -continuous maps.

I. Introduction

N .Levine[1] introduced Semi-open sets and semi-continuity in topological spaces. The concept of regular continuous and Completely–continuous functions was first introduced by Arya. S. P. and Gupta.R [2]. Later Y. Gnanambal [3] studied the concept of generalized pre regular continuous functions. Also, the concept of $\alpha\alpha$ -continuous functions was introduced by S S Benchalli et al [4]. R S Wali et al[5] introduced and studied the properties of $\alpha\alpha$ -Continuous and $\alpha\alpha$ -Irresolute Maps.Recently R S Wali et al[6] introduced and studied the properties of pgr α -closed sets. The purpose of this paper is to introduce a new class of functions, namely, pgr α -continuous functions and pgr α -irresolute functions, strongly pgr α -continuous maps , perfectly pgr α -continuous functions.

II. Preliminaries

Definition2.1: A subset A of a topological space (X, T) is called

- a pre-open set[7] if $A \subseteq int(cl(A))$ and pre-closed set if $cl(int(A)) \subseteq A$.
- an α -open set [8] if $A \subseteq int(cl(int(A)))$ and α -closed set if $cl(int(cl(A))) \subseteq A$.
- a semi-preopen set (=β-open)[9] if A⊆cl(int(cl(A)))) and a semi-pre closed set (=β-closed) if int(cl(int(A)))⊆A.
- a regular open set [10] if A = int(clA)) and a regular closed set if A = cl(int(A)).
- a generalized closed set (briefly g-closed)[11] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- a regular generalized closed set(briefly rg-closed)[11] if cl(A)⊆U whenever A⊆U and U is regular open in X.
- a α –generalized closed set(briefly αg -closed)[12] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- a generalized pre regular closed set(briefly gpr-closed)[3] if pcl(A) ⊆ U whenever A ⊆ U and U is regular open in X.
- a generalized semi-pre closed set(briefly gsp-closed)[13] if spcl(A) ⊆ U whenever A⊆U and U is open in X.
- a regular generalized α-closed set[14] (briefly, rgα-closed) if αcl (A)⊆ U whenever A⊆ U and U is regular α-open in X.
- an α-generalized regular closed[15] (briefly αgr-closed) set if αcl(A)⊆ U whenever A⊆U and U is regularopen in X.
- a $\omega \alpha$ closed set[16] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is ω -open in X.
- a generalized pre closed (briefly gp-closed) set[17] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- a α -regular w- closed set[5] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is rw -open in X.
- a generalized pre regular weakly closed (briefly gprw-closed) set [18] if pcl(A)⊆U whenever A⊆ U and U is regular semi- open in X.
- a #rg-closed[19] if cl(A) \subseteq U whenever A \subseteq U and U is rw-open.
- a regular generalized weak (briefly rgw-closed) set[20] if cl(int(A)) ⊆ U whenever A ⊆U and U is regular semi open in X.
- ageneralized semi pre regular closed (briefly gspr-closed) set [21] if spcl(A)⊆ U whenever A⊆U and U is regular open in X.

The complements of the above mentioned closed sets in (5) - (18), are called the respective open sets.

Definition 2.2: Let (X, T) be a topological space and $A \subseteq X$. The intersection of all closed (resp pre-closed, α -closed and semi-pre-closed) subsets of the space X containing A is called the closure (resp pre-closure, α -closure and Semi-pre-closure) of A and is denoted by cl(A) (resp pcl(A), α cl(A), spcl(A)).

2.3 Pre Generalised Regular Weakly Closed Set:

Definition: A subset A of a topological space (X, T) is called a pre generalised regular weakly closed set [6]if $pcl(A)\subseteq U$ whenever $A \subseteq U$ and U is a rw-open set.

- **Theorem:** Every pgrw-closed set is gp-closed
- **Theorem:** Every pre-closed set is pgrw-closed.
- **Corollary:** Every α- closed set is pgrw- closed.
- **Corollary:** Every closed set is pgrw-closed.
- **Corollary:** Every regular closed set is pgrw-closed.
- **Theorem :** Every #rg- closed set is pgrw- closed.
- **Theorem:** Every arw-closed set is pgrw-closed.
- **Theorem :** Every pgrw- closed set is gsp-closed.
- **Corollary:** Every pgrw- closed set is gspr- closed.
- **Corollary :** Every pgrw- closed set is gpr- closed.
- **Theorem:** If A is open and gp-closed, then A is pgrw-closed.
- **Theorem:** If A is both w- open and w α closed, then A is pgrw- closed.
- Theorem: If A is both regular-open and rg-closed, then A is pgrw-closed.
- **Theorem:** If A is both open and g-closed, then A is pgrw -closed.
- **Theorem:** If A is regular-open and gpr-closed, then it is pgrw-closed.
- Theorem: If A is regular-open and αgr -closed, then it is pgrw -closed.
- Theorem: If A is open and ag-closed, then it is pgrw -closed.
- Theorem: If A is regular open and pgrw-closed, then A is pre-closed.

2.4: Definition: A subset A of a topological space X is called a pre generalised regular-weakly open (briefly pgrw-open) set in X if the complement A^c of A is pgrw-closed in X. **Theorem:** (X, T) is a topological space

Theorem: (X,T) is a topological space.

i) Every open (a-open, regular-open, arw-open, #rg-open, pgpr-open) set is pgrw-open.

ii) Every pgrw-open set is gspr-open (gsp-open, gp-open and gpr-open).

Definition 2.5: A map f: $(X,\tau) \rightarrow (Y,\sigma)$ is said to be

- Completely-continuous[22] if f⁻¹ (V) is regular closed in X for every closed subset V of Y
- Strongly–continuous[23] if f⁻¹ (V) is Clopen (both open and closed) in X for every subset V of Y.
- α -continuous[8] if f⁻¹ (V) is α -closed in X for every closed subset V of Y.
- rwg-continuous[24] if f⁻¹ (V) is rwg-closed in X for every closed subset V of Y.
- gp-continuous[25] if $f^{-1}(V)$ is gp-closed in X for every closed subset V of Y.
- gpr-continuous[3] if $f^{-1}(V)$ is gpr-closed in X for every closed subset V of Y.
- α gr-continuous[15] if f⁻¹ (V) is α gr-closed in X for every closed subset V of Y.
- $\omega\alpha$ -continuous[4] if f⁻¹ (V) is $\omega\alpha$ -closed in X for every closed subset V of Y.
- gspr-continuous[21] if $f^{-1}(V)$ is gspr-closed in X for every closed subset V of Y.
- g-continuous[25] if f⁻¹ (V) is g-closed in X for every closed subset V of Y
- ω -continuous[26] if f⁻¹ (V) is ω -closed in X for every closed subset V of Y
- rga-continuous[14] if $f^{-1}(V)$ is rga-closed in X for every closed subset V of Y
- gsp-continuous[13] if f⁻¹ (V) is gsp-closed in X for every closed subset V of Y.
- gprw-continuous[18] if f⁻¹ (V) is gprw-closed in X for every closed subset V of Y
- wgrα-continuous[27] if f⁻¹ (V) is wgrα-closed in X for every closed subset V of Y
- #rg-continuous [28] if $f^{-1}(V)$ is #rg-closed in (X,τ) for every closed set V of Y.
- pre-continuous [7] then $f^{-1}(V)$ is preopen in X for every open set V in Y.
- rg continuous [29] if the inverse image of every closed set in Y is rg-closed in X
- semi-pre continuous (β- continuous)[30] if the inverse image of each open set in Y is a semi-preopen set in X.
- semi-generalized continuous (sg-continuous)[31] if for every closed set F of Y the inverse image f⁻¹ (F) is sg-closed in X.
- $r\omega$ -continuous[32] if $f^{-1}(V)$ is rw-closed in X for every closed subset V of Y
- α regular ω continuous (α r ω -Continuous)[5] if f⁻¹(V) is α r ω -Closed set in X for every closed set V in Y.

- contra continuous [16] if $f^{-1}(V)$ is open in X for every closed subset V of Y. Definition 2.6: A map $f_{1}(X, \sigma) \rightarrow (X, \sigma)$ is said to be
- **Definition 2.6**: A map f: $(X,\tau) \rightarrow (Y,\sigma)$ is said to be
- α -irresolute [8] if f⁻¹ (V) is α -closed in X for every α -closed subset V of Y.
- irresolute [33] if $f^{-1}(V)$ is semi- closed in X for every semi-closed subset V of Y.
- contra ω -irresolute [26] if f⁻¹ (V) is ω -open in X for every ω -closed subset V of Y
- contra irresolute [17] if $f^{-1}(V)$ is semi-open in X for every semi-closed subset V of Y
 - contra r-irresolute [34] if f $^{-1}$ (V) is regular-open in X for every regular-closed subset V of Y

III. Pgrw-Continuous Map:

Definition 3.1: A map $f: (X, T_1) \rightarrow (Y, T_2)$ is called a pre generalised regular weakly- continuous map (pgrwcontinuous map) if the inverse image $f^{-1}(V)$ of every closed set V in Y is pgrw-closed in X.

Example3.2: Let $X = \{a,b,c,d\}, T_1 = \{X, \phi, \{a\}, \{a,b\}, \{a,b,c\}\}$ and $Y = \{a,b,c\}, T_2 = \{Y, \phi, \{a\}\}.$

Define a map f: $X \rightarrow Y$ by f(a)=b, f(b)=c, f(c)=a, f(d)=c. The closed sets in T₂ are Y, $\phi_{1}\{b,c\}$.

The pgrw-closed sets in T_1 are X, ϕ , {c},{d},{b,c},{c,d},{a,d},{b,d},{b,c,d},{a,c,d},{a,b,d}

Inverse images of Y, ϕ , {b,c} are X, ϕ , {a,b,d} which are pgrw closed sets in X.

 \therefore f is pgrw-continuous map.

Theorem 3.3 : A map f: $(X, T_1) \rightarrow (Y, T_2)$ is pgrw-continuous if and only if the inverse image of every open set in Y is a pgrw-open set in X.

Proof : Suppose a map f: $(X, T_1) \rightarrow (Y, T_2)$ is pgrw-continuous.

Let U be an open set in Y. Then U^c is closed in Y. Therefore $f^{-1}(U^c)$ is pgrw-closed in X.

 $f^{-1}(U^c) = X - f^{-1}(U)$. Therefore $f^{-1}(U)$ is pgrw-open in X.

Conversely

Suppose f: $(X, T_1) \rightarrow (Y, T_2)$ is such that the inverse image of every open set in Y is pgrw-open in X. Let F be a closed set in Y. Then F^c is open in Y. \therefore f⁻¹(F^c) is pgrw-open.

 $F^{-1}(F^c)=X-f^{-1}(F)$ \therefore $f^{-1}(F)$ is pgrw-closed in X.

 \therefore f is a pgrw-continuous map.

Theorem 3.4: If a map $f: (X, T_1) \rightarrow (Y, T_2)$ is continuous, then it is pgrw-continuous. **Proof :** Let F be a closed subset in Y.

f is continuous. So $f^1(F)$ is a closed set in X.As every closed set is pgrw-closed, $f^1(F)$ is pgrw-closed. \therefore f is pgrw-continuous map.

The converse is not true.

Example 3.5 : Consider example 3.2. {b,c} is closed in Y and its inverse image {a,b,d} is not closed in X.

∴ f is pgrw-continuous.But not continuous.

Theorem 3.6 : If a map $f: (X, T_1) \rightarrow (Y, T_2)$ is completely continuous, then f is pgrw-continuous.

Proof : Suppose amap f: $(X, T_1) \rightarrow (Y, T_2)$ is completely continuous.

Let F be a closed set in Y. Then $f^{-1}(F)$ is regular-closed in X.

 \therefore f⁻¹(F) is pgrw-closed in X as every regular-closed set is pgrw-closed .

∴ f is pgrw-continuous.

Converse is not true.

Example 3.7: In the above example 3.2 f is pgrw-continuous. But not completely continuous.

Theorem 3.8 : If a map $f: (X, T_1) \rightarrow (Y, T_2)$ is pre-continuous, then f is pgrw-continuous.

Proof: A map $f: X \rightarrow Y$ is pre-continuous.

Let F be a closed set in Y. Then $f^{-1}(F)$ is pre-closed in X.

Then $f^{-1}(F)$ is pgrw-closed in X as every pre-closed set is pgrw-closed.

 \therefore f is pgrw-continuous.

The converse is not true.

Example3.9: X = {a,b,c,d}, $T_1 = \{X, \varphi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\}$

 $Y = \{a, b, c\}, T_2 = \{Y, \phi, \{a\}, \{b\}, \{a, b\}\}$

Closed sets in T_2 are Y, ϕ , {b,c}, {a,c}, {c}.

 $Pgrw\text{-}closed \ sets \ in \ T_1 \ are \ X, \ \phi, \ \{c\}, \ \{b,c\}, \ \{c,d\}, \ \{a,d\}, \ \{b,c,d\}, \ \{a,c,d\}, \ \{a,b,d\}.$

Define f(a)=c, f(b)=a, f(c)=b, f(d)=c. Inverse images of closed sets in Y are X, ϕ , {a,c,d}, {a,b,d}, {a,d}.

Then f is pgrw-continuous. But f is not pre-continuous since $f^{-1}(\{a,c\}) = \{a,b,d\}$ is not preclosed.

Theorem 3.10 : If a map f: $(X, T_1) \rightarrow (Y, T_2)$ is α -continuous, then f is pgrw-continuous. **Proof :** A map f : $X \rightarrow Y$ is α -continuous. Let F be closed in Y. Then f¹(F) is α -closed in X. Then f¹(F) is pgrw-closed in X because every α -closed is pgrw-closed. \therefore f is pgrw-continuous map. The converse is not true. **Example 3.11 :** $X=Y=\{a,b,c,d\},$ $T_1 = \{X, \varphi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\}$ $T_2 = \{Y, \varphi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\}$ Closed sets in T_2 are Y, φ , $\{b,c,d\}, \{a,c,d\}, \{c,d\}, \{d\}$ Pgrw-closed sets in T_1 are X, φ , $\{c\}, \{d\}, \{b,c\}, \{c,d\}, \{a,d\}, \{b,d\}, \{b,c,d\}, \{a,c,d\}, \{a,b,d\}, \{a,d\}, \{d\}.$ Define f(a)=c, f(b)=a, f(c)=b, f(d)=d. Inverse images of closed sets in Y are X, φ , $\{a,c,d\}, \{a,b,d\}, \{a,d\}, \{d\}.$ Then f is pgrw-continuous. But f is not α -continuous.

Theorem 3.12: If a map f: $(X, T_1) \rightarrow (Y, T_2)$ is #rg –continuous, then f is pgrw-continuous. The converse is not true. **Example 3.13:** X = {a,b,c,d}, T_1 = {X, φ , {a}, {b}, {a,b}, {a,b,c}}

Y={a,b,c}, T₂={Y, ϕ ,{a}}. Closed sets in (Y, T₂) are Y, ϕ ,{b,c}. Pgrw-closed sets in T₁ are X, ϕ , {c}, {d}, {b,c}, {c,d}, {a,d}, {b,c}, {b,c,d}, {a,c,d}, {a,b,d}. #rg-closed sets are X, ϕ , {d}, {c,d}, {a,d}, {b,d}, {a,c,d}. Define f(a)=b, f(b)=c, f(c)=a, f(d)=c. Inverse images of closed sets in Y are X, ϕ , {a,b,d}. f is pgrw-continuous but not #rg –continuous.

Theorem 3.14 :If a map f: $(X, T_1) \rightarrow (Y, T_2)$ is α rw-continuous,then f is pgrw-continuous. The converse is not true. **Example 3.15:** $X = \{a,b,c,d\}, T_1 = \{X, \varphi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\}$ $Y = \{a,b,c\}, T_2 = \{Y, \varphi, \{a\}\}$. Closed sets in (Y, T_2) are $Y, \varphi, \{b,c\}$. Pgrw-closed sets in T_1 are $X, \varphi, \{c\}, \{d\}, \{b,c\}, \{c,d\}, \{a,d\}, \{b,d\}, \{b,c,d\}, \{a,c,d\}, \{a,b,d\}.$ α rw -closed sets are $X, \varphi, \{c\}, \{d\}, \{c,d\}, \{a,d\}, \{b,d\}, \{b,c,d\}, \{a,c,d\}, \{a,b,d\}.$ Define f(a)=d, f(b)=c, f(c)=b, f(d)=aInverse images of closed sets in Y are $X, \varphi, \{b,c\}$. f is pgrw-continuous but not α rw -continuous. **Theorem 3.16:** If a map f: $(X, T_1) \rightarrow (Y, T_2)$ is α -irresolute, then it is pgr ω - continuous.

Proof : Suppose that a map f: $(X, T_1) \rightarrow (Y, T_2)$ is α -irresolute. Let V be an open set in Y. Then V is α -open in Y. Since f is α -irresolute, $f^{-1}(V)$ is α -open and hence pgr ω -open in X. Thus f is pgr ω -continuous.

Theorem 3.17: If a map $f: (X, T_1) \rightarrow (Y, T_2)$ is pgrw-continuous, then f is gsp- continuous. Proof: $f: X \rightarrow Y$ is pgrw-continuous. Let F be a closed set in Y. Then $f^1(F)$ is pgrw-closed. $\Rightarrow f^1(F)$ is gsp-closed. '.' Every pgrw-closed set is gsp-closed. $\Rightarrow f$ is gsp-continuous. Converse is not true.

Example3.18: $X = \{a,b,c\}, T_1 = \{X, \phi, \{a\}, \{b\}, \{a,b\}\}$

 $Y = \{a,b,c\}, T_2 = \{Y, \phi, \{a\}\} Closed sets in T_2 are Y, \phi, \{b,c\}.$

Pgrw-closed sets in T_1 are X, ϕ , {c}, {b,c}, {a,c}.

Define f(a)=b, f(b)=c, f(c)=a. Inverse images of closed sets in Y are X, ϕ , {a,b}.f¹({b,c})={a,b} which is not pgrw-closed. So f is not pgrw-continuous.gsp-closed sets are X, ϕ , {a}, {b} {c}, {a,b}, {b,c}, {a,c}. f is gsp-continuous.

Theorem 3.19: If a map f: $(X, T_1) \rightarrow (Y, T_2)$ is pgrw-continuous, then f is gspr- continuous. **Proof:** We can prove it using the fact that every pgrw-closed set is gspr closed. Converse is not true. For example, $X = \{a,b,c,d\}, T_1 = \{X, \varphi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\}$ $Y = \{a,b,c\}, T_2 = \{Y, \varphi, \{a\}\}$ Closed sets in T_2 are Y, φ , $\{b,c\}$ Pgrw-closed sets in T_1 are X, φ , $\{c\}, \{d\}, \{b,c\}, \{c,d\}, \{a,d\}, \{b,d\}, \{b,c,d\}, \{a,c,d\}, \{a,b,d\}.$ Define f(a)=b, f(b)=c, f(c)=a f(d)=a. Inverse images of closed sets are are X, φ , $\{a,b\}$. f¹($\{b,c\}$)={a,b} which is not pgrw-closed. So f is not pgrw-continuous.All subsets of X are gspr-closed. f is gspr-continuous. **Theorem 3.20**: If a map f: $(X, T_1) \rightarrow (Y, T_2)$ is pgrw-continuous, then f is gpr- continuous. We can prove it using the fact that every pgrw-closed set is gpr closed. Converse is not true. **Example 3.21:** Consider example 3.18, f is not pgrw-continuous. gpr-closed sets are X, ϕ , {c}, {d}, {a,b}, {b,c}, {c,d}, {a,c}, {a,d}, {b,d}, {a,b,d}, {a,c,d} {b,c,d}. f is gpr-continuous.

Theorem 3.22: If a map f: $(X, T_1) \rightarrow (Y, T_2)$ is pgrw-continuous, then f is gp- continuous. We can prove it using the fact that every pgrw-closed set is gp-closed The coverse is not true. **Example 3.23:** $X=\{a,b,c\}, T_1 = \{X, \varphi, \{a\}\}, Y=\{a,b,c\}, T_2 = \{Y, \varphi, \{a\}, \{b\}, \{a,b\}\}.$ Closed sets in T_2 are Y, φ , $\{b,c\}, \{a,c\}, \{c\}$. Pgrw-closed sets in T_1 are X, $\varphi, \{b\}, \{c\}, \{b,c\}$. gp-closed sets in T_1 are X, $\varphi, \{b\}, \{c\}, \{a,b\}, \{b,c\}, \{a,c\}$.

Define f(a)=b, f(b)=c, f(c)=a.

Inverse images of closed sets are X, ϕ , {a,b}, {b,c}, {b} . Then f is gp-continuous but not pgrw-continuous.

Remark: The following examples show that $pgr\omega$ -continuous map is independent of gprw-continuous, αgr -continuous, β -continuous, wgr α -continuous, sg-continuous, rw-continuous, w α -continuous, rwg- continuous, rwg- continuous.

Example 3.24:Let $X = \{a,b,c,d\}, T_1 = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\}$

 $Y = \{a,b,c\}, T_2 = \{Y, \phi, \{a\}, \{b\}, \{a,b\}\}.$

Define $f: X \rightarrow Y$ as f(a)=c, f(b)=a, f(c)=b, f(d)=c.

Closed sets in T_2 are Y, φ , {b,c}, {a,c}, {c}.

Pgrw-closed sets in T_1 are X, ϕ , {c}, {d}, {b,c}, {c,d}, {a,d}, {b,c}, {b,c,d}, {a,c,d}, {a,b,d}.

Inverse images are X, ϕ , {a,c,d}, {a,b,d}, {a,d}. Here f is pgrw-continuous but not α gr-continuous, β -

continuous, wgra-continuous, sg-continuous, rw-continuous, wa-continuous, rga-continuous.

Example 3.25:Let $X = \{a,b,c,d\}, T_1 = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\}$

 $Y{=}\{a,b,c\},\,T_2{}={}\{Y,\,\phi,\,\{a_{-}\}\}. \ \ Define\ f(a){=}b,\,f(b){=}a,\,f(c){=}a\,,\ f(d){=}c.$

Closed sets in T_2 are $Y, \phi, \{b,c\}$.

Pgrw-closed sets in T_1 are X, ϕ , {c}, {d}, {b,c}, {c,d}, {a,d}, {b,c,d}, {a,c,d}, {a,b,d}.

Inverse images are X, $\phi,$ {a,d}. Here f is pgrw-continuous but not gprw-continuous.

 $\textbf{Example 3.26: } X = \!\!\{a,\!b,\!c\} \ T_1 = \{X, \phi, \{a\}, \{b\}, \{a,\!b\}\} \ , \ Y = \!\!\{a,\!b,\!c\}, \ T_2 = \{Y, \phi, \{a\}\} \ .$

Closed sets in T_2 are $Y, \phi, \{b,c\}$. Pgrw-closed sets in T_1 are $X, \phi, \{c\}, \{a,c\}, \{b,c\}$.

Define f(a)=c, f(b)=a, f(c)=b. Inverse images are X, φ , {a,c}. f is pgrw-continuous but not swg-continuous. **Example3.27:** Let X ={a,b,c,d},T₁ = {X, φ , {a}, {b}, {a,b}, {a,b,c}}

 $Y = \{a, b, c\}, T_2 = \{Y, \phi, \{a\}\}$. Closed sets in T_2 are $Y, \phi, \{b, c\}$.

Pgrw-closed sets in T_1 are X, ϕ , {c}, {d}, {b,c}, {c,d}, {a,d}, {b,c}, {b,c,d}, {a,c,d}, {a,b,d}.

Define f(a)=b, f(b)=a, f(c)=c, f(d)=b. Inverse images are X, ϕ , {a,c,d}.f is pgrw-continuous but not rwg-continuous.

Example 3.28: X ={a,b,c}, T₁ = {X, ϕ , {a}, {b}, {a,b}}, Y={a,b,c}, T₂ = {Y, ϕ , {a}}. Closed sets in T₂ are Y, ϕ , {b,c}.

Pgrw-closed sets in T_1 are X, ϕ , {c}, {a,c}, {b,c}. Define f(a)=b, f(b)=c, f(c)=a.

Inverse images are X, ϕ , {a,b}. f is not pgrw-continuous but f is β -continuous, wgr α -continuous,sg-continuous, rw-continuous, α gr- continuous, rwg- continuous.

Example 3.29: $X = \{a,b,c\}, T_1 = \{X, \phi, \{a\}\}, Y = \{a,b,c\}, T_2 = \{Y, \phi, \{a\}, \{b,c\}\}.$ Closed sets in T_2 are Y, $\phi, \{b,c\}, \{a\}$. Pgrw-closed sets in T_1 are X, $\phi, \{c\}, \{b\}, \{b,c\}$. Define f(a)=b, f(b)=c, f(c)=a

Inverse images are X, ϕ , {b}, {a,b}. f is not pgrw-continuous but f is rg α -continuous.

Example 3.30: Let $X = \{a,b,c,d\}, T_1 = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\}$

 $Y = \{a,b,c\}, T_2 = \{Y, \phi, \{a\}\}$. Closed sets in T_2 are $Y, \phi, \{b,c\}$.

Pgrw-closed sets in T_1 are X, ϕ , {c}, {d}, {b,c}, {c,d}, {a,d}, {b,d}, {b,c,d}, {a,c,d}, {a,b,d}.

Define f(a)=b, f(b)=c, f(c)=a, f(d)=a. Inverse images are X, ϕ , $\{a,b\}$. f is not pgrw-continuous but f is wa-continuous, gprw-continuous.

Remark 3.31: From the above discussion and known results we have the following implications.

Theorem 3.32: f: $(X, T_1) \rightarrow (Y, T_2)$ is a map . Then the following statements hold.

1) If f is agp-continuous and contra continuous map, then f is $pgr\omega$ -continuous.

2) If f is a $\omega\alpha$ –continuous and contra-w- irresolute map, then f is pgr ω –continuous 3) If f is a rg–continuous and contra- r–irresolute map, then f is pgr ω –continuous .

4) If f is a g-continuous and contra continuous map, then f is $pgr\omega$ -continuous.

5) If f is a gpr–continuous and contra- r–irresolute map, then f is pgrω –continuous.

6) If f is $\alpha \alpha gr$ -continuous and contra- r-irresolute map, then f is $pgr\omega$ -continuous.

7) If f is $\alpha\alpha g$ - continuous and contra continuous map, then f is pgrw-continuous.

8) If f is a pgrw–continuous and contra- r–irresolute map ,then f is pre–continuous.

Proof: 1) Let V be a closed set of Y. Then $f^{-1}(V)$ is open and gp-closed in X('.' f is gp-continuous and contra continuous map). Then $f^{-1}(V)$ is pgrw-closed set in X ('.' every open and gp-closed set is pgrw-closed).

Thus f is pgrw-continuous.

Similarly, we can prove2), 3), 4), 5), 6), 7), 8).

Theorem 3.33: If a map $f: (X, T_1) \rightarrow (Y, T_2)$ is $pgr \omega$ -continuous, then $f(pgr \omega cl(A)) \subseteq cl(f(A))$ for every subset A of X.

Proof: $f(A) \subseteq cl(f(A))$ implies that $A \subseteq f^{-1}(cl(f(A)))$. Since cl(f(A)) is a closed set in Y and f is $pgr\omega$ -continuous $f^{-1}(cl(f(A)))$ is a $pgr\omega$ -closed set in X containing A. Hence $pgr\omega cl(A) \subseteq f^{-1}(cl(f(A)))$. Therefore $f(pgr\omega cl(A)) \subseteq cl(f(A))$.

IV. Perfectly Pgrω–Continuous Map:

Definition 4.1: A function f: $(X, T_1) \rightarrow (Y, T_2)$ is called a perfectly pre generalized regular weakly- continuous (briefly perfectly pgr ω -Continuous) function, if $f^{-1}(V)$ is a clopen (closed and open) set in X for every pgr ω -open set V in Y.

Theorem 4.2: If a map f: $(X, T_1) \rightarrow (Y, T_2)$ is perfectly pgr ω -continuous, then

(i) f is pgrω–continuous.

(ii) f is gsp-continuous.

(iii) f is gspr-continuous.

(iv) f is gpr-continuous.

(v) f is gp-continuous.

Proof: (i) Let F be an open set in Y. Then F is $pgr\omega$ -open in Y. Since F is perfectly $pgr\omega$ -continuous, $f^{-1}(F)$ is clopen in X, so open $f^{-1}(F)$ is $pgr\omega$ -open in X. Hence f is $pgr\omega$ -continuous.

(ii) Let F be an open set in Y. As every open set is $pgr\omega$ -open in Y and f is perfectly $pgr\omega$ -continuous and so $f^{-1}(F)$ is both closed and open in X, as every open set is $pgr\omega$ -open that implies gsp-open. Then $f^{-1}(F)$ is gspopen in X. Hence f is gsp-continuous.

Similarly, we can prove (iii), (iv) and (v).

Theorem 4.3: (X,τ) is a discrete topological space and (Y,σ) is any topological space. Then every function f: $(X, \tau) \rightarrow (Y, \sigma)$ is perfectly pgrw-continuous.

Proof:Let U be a pgr ω -open set in (Y,σ) . Since (X,τ) is a discrete space $F^{-1}(U)$ is both open and closed in (X,τ) . Hence f is perfectly pgr ω -continuous.

Theorem 4.4: If f: $(X, T_1) \rightarrow (Y, T_2)$ is a strongly continuous map, then it is perfectly pgrw-continuous. Proof: Let V be a pgrw-open set in Y. As f is strongly continuous and V is a subset of Y, f⁻¹(V) is clopen in X. So f is perfectly pgrw-continuous.

V. Pgrω*–Continuos Map

Definition 5.1: A function f: $(X, T_1) \rightarrow (Y, T_2)$ is called a pre generalized regular weakly*- continuous function (pgrw*-continuous function) if f⁻¹(V) is a pgrw-closed set in X for every pre-closed set V in Y.

Theorem 5.2: If a map f: $(X, T_1) \rightarrow (Y, T_2)$ is is $pgr\omega^*$ -continuous, then it is $pgr\omega$ -continuous. **Proof:** f: $(X, T_1) \rightarrow (Y, T_2)$ is $pgr\omega^*$ -continuous. Let F be any closed set in Y. Then F is pre-closed in Y. Since f is $pgr\omega^*$ -continuous., the inverse image $f^{-1}(F)$ is $pgr\omega$ -closed in X. Therefore f is $pgr\omega$ -continuous.

VI. Pgrω–Irresolute map

Definition6.1: A map f: $(X,T_1) \rightarrow (Y, T_2)$ is called a pre generalized regular weakly irresolute (pgr ω -irresolute) map if f⁻¹(V) is a pgr ω -closed set in X for every pgr ω -closed set V in Y.

Theorem 6.2: A map f: $(X,T_1) \rightarrow (Y,T_2)$ is pgr ω -irresolute if and only if the inverse image f⁻¹(V) is pgr ω -open in X for every pgr ω -open set V in Y.

Proof: Assume that f: $(X,T_1) \rightarrow (Y, T_2)$ is pgr ω -irresolute. Let G be a pgr ω -open set in Y. Then G^c is pgr ω -closed in Y. Since f is pgr ω -irresolute, f⁻¹(G^c) is pgr ω -closed in X. But f⁻¹(G^c) = X-f⁻¹(G). \therefore f⁻¹(G) is pgr ω -open in X.

Conversely

Assume that the inverse image $f^{-1}(V)$ of every pgrw- open set V in Y is pgr ω -open in X. Let F be any pgr ω closed set in Y. Then F^c is pgrw-open in Y.By assumption $f^{-1}(F^c)$ is pgr ω -open in X. But $f^{-1}(F^c) = X - f^{-1}(F)$. $\therefore X - f^{-1}(F)$ is pgr ω -open in X and so $f^{-1}(F)$ is pgr ω -closed in X. Therefore f is pgr ω - irresolute.

Theorem 6.3: Every perfectly pgrw-continuous map is pgrw-irresolute. **Proof:** Let f: $(X, T_1) \rightarrow (Y, T_2)$ be a perfectly pgrw-continuous map. Let V be a pgrw-open set in Y. Then $f^{-1}(V)$ is clopen in X.and so $f^{-1}(V)$ is open. As every open set is pgrw-open, $f^{-1}(V)$ is pgrw-open. \therefore f is pgrw-irresolute.

Theorem 6.4: If a map f: $(X, T_1) \rightarrow (Y, T_2)$ is pgr ω -irresolute, then it is pgr ω *-continuous. **Proof:** f: $(X, T_1) \rightarrow (Y, T_2)$ is pgr ω -irresolute. Let F be any pre-closed set in Y. Then F is pgr ω -closed in Y. Since f is pgr ω -irresolute, f⁻¹(F) is pgr ω -closed in X. Therefore f is pgr ω *-continuous.

Theorem6.5: If a map f: $(X, T_1) \rightarrow (Y, T_2)$ is pgr ω -irresolute, then it is pgr ω -continuous.

Proof: f: (X, T₁) \rightarrow (Y, T₂) is a pgr ω -irresolute map. Let F be any closed set in Y. Then F is pgr ω -closed in Y. Since f is pgr ω -irresolute, the inverse image f⁻¹(F) is pgr ω -closed set in X. Therefore f is pgr ω -continuous.

Theorem6.6: If a map f: (X, T₁) \rightarrow (Y, T₂) is pgr ω -irresolute, then for every subset A of X, f(pgr ω cl(A) \subseteq pcl(f(A)).

Proof : $A \subseteq X$. Then pcl(f(A)) is $pgr\omega$ -closed in Y. Since f is $pgr\omega$ -irresolute $f^{-1}(pcl(f(A)))$ is $pgr\omega$ -closed in X. Further $A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(pcl(f(A)))$. Therefore by definition of $pgr\omega$ -closure $pgr\omega cl(A) \subseteq f^{-1}(pcl(f(A)))$, consequently $f(pgr\omega cl(A) \subseteq pclf((A)))$.

Theorem6.7: f: $(X, \tau) \rightarrow (Y, \sigma)$ and g : $(Y, \sigma) \rightarrow (Z, \eta)$ are two functions.

(i) If f is pgr ω - irresolute and g is r-continuous, then g o f: $(X, \tau) \rightarrow (Z, \eta)$ is pgr ω -continuous.

(ii) If fand g are pgr ω -irresolute, then g o f: (X, τ) \rightarrow (Z, η) is pgr ω -irresolute.

(iii) If f is pgr ω -irresolute and g is continuous, then g o f: (X, τ) \rightarrow (Z, η) is pgr ω -continuous.

(iv) If f: $(X, T_1) \rightarrow (Y, T_2)$ is a pgr ω -continuous function and g: $Y \rightarrow Z$ is a continuous function, then gof: $X \rightarrow Z$ is pgr ω -continuous.

Proof:(i) Let U be an open set in (Z, η) . Since g is r-continuous, $g^{-1}(U)$ is r-open in (Y, σ) . As every r-open set is pgr ω -open, so $g^{-1}(U)$ is pgr ω -open in Y. As f is pgr ω -irresolutef⁻¹ $(g^{-1}(U))$ is a pgr ω -open set in (X, τ) . Thus (gof) ${}^{-1}(U) = f^{-1}(g^{-1}(U))$ is a pgr ω -open set in (X, τ) and hence gof is pgr ω -continuous.

(ii) Let U be a pgr ω -open set in (Z, η). Since g is pgr ω -irresolute, g⁻¹(U) is pgr ω -open in (Y, σ). Since f is pgr ω -irresolute, f⁻¹(g⁻¹(U)) is a pgr ω -open set in (X, τ).

Thus $(gof)^{-1}(U) = f^{-1}(g^{-1}(U))$ is a pgr ω -open set in (X, τ) and hence gof is pgr ω - irresolute. (iii) Let U be an open set in (Z, η) . Since g is continuous, $g^{-1}(U)$ is open in (Y, σ) . As every open set is pgr ω -open set in (X, σ) . Since f is pgr ω - irresolute $f^{-1}(g^{-1}(U))$ is a pgr ω -open set in (X, σ) . Thus

open, $g^{-1}(U)$ is pgr ω -open set in (Y, σ) . Since f is pgr ω - irresolutef $^{-1}(g^{-1}(U))$ is a pgr ω -open set in (X, τ) . Thus for every open set U in Z, (gof) $^{-1}(U) = f^{-1}(g^{-1}(U))$ is a pgr ω -open set in (X, τ) and hence gof is pgr ω - continuous.

(iv) Let V be an open set in Z. As g is continuous $g^{-1}(V)$ is open in Y. Since f is pgr ω -continuous, $F^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is pgr ω -open in X. Hence $g \circ f$ is pgr ω -continuous.

VII. Strongly Pgrω–Continuous map:

Definition 7.1: A map f: $(X, T_1) \rightarrow (Y, T_2)$ is called a strongly pre generalized regular weakly -continuous (strongly pgr ω -continuous) map if f⁻¹(V) is a closed set in X for every pgr ω -closed set V in Y.

Theorem 7.2: A map $f: (X, T_1) \rightarrow (Y, T_2)$ is strongly $pgr \omega$ -continuous if and only if $f^{-1}(G)$ is an open set in X for every $pgr \omega$ -open set G in Y.

Proof : f: (X, T₁) \rightarrow (Y, T₂) is strongly pgr ω -continuous. Let G be pgr ω -open in Y. The G^c is pgr ω -closed in Y. Since f is strongly pgr ω -continuous, f⁻¹(G^c) is closed in X. But f⁻¹(G^c) = X-f⁻¹(G). \therefore f⁻¹(G) is open in X. Conversely

Assume that the inverse image of every pgrw- open set in Y is open in X. Let F be any pgr ω -closed set in Y. Then F^c is pgr ω -open in Y. \therefore f⁻¹(F^c) is open in X. But f⁻¹(F^c) = X-f⁻¹(F). \therefore X-f⁻¹(F) is open in X and so f⁻¹(F) is closed in X. Therefore f is strongly pgr ω -continuous.

Theorem 7.3: If a map f: $(X, \tau) \rightarrow (Y, \sigma)$ is strongly pgr ω -continuous and A is an open subset of X, then the restriction f/A: $(A, \tau_A) \rightarrow (Y, \sigma)$ is strongly pgr ω -continuous.

Proof: Let V be any $pgr\omega$ -open set of Y.Since f is strongly $pgr\omega$ -continuous $f^{-1}(V)$ is open in X. Since A is open in X

 $(f/A)^{-1}(V)=A \cap f^{-1}(V)$ is open in A. Hence f/A is strongly pgr ω -continuous.

Theorem7.4: If a map $f: (X, T_1) \rightarrow (Y, T_2)$ is strongly $pgr \omega$ -continuous, then it is continuous. **Proof**: Assume that $f: (X, T_1) \rightarrow (Y, T_2)$ is strongly $pgr \omega$ -continuous, Let F be a closed set in Y. As every closed set is $pgr \omega$ -closed, F is $pgr \omega$ -closed in Y. Since f is strongly $pgr \omega$ -continuous so $f^{-1}(F)$ is closed set in X. Therefore f is continuous.

Theorem 7.5 : If a map $f: (X, T_1) \rightarrow (Y, T_2)$ is strongly pgr ω -continuous, then it is pgr ω - irresolute. **Proof** : f is astrongly pgr ω -continuous map. Let V be a pgrw-closed set in Y. Then f⁻¹(V) is closed in X. Every closed set is pgrw-closed. \therefore f⁻¹(V) is pgrw-closed in X. \therefore f is pgr ω - irresolute.

Theorem 7.6: Every perfectly pgrw-continuous map is strongly pgr ω -continuous.

Proof: Let f: $(X, T_1) \rightarrow (Y, T_2)$ be a perfectly pgrw-continuous map. Let U be a pgr ω -open set in Y. As f is perfectly pgrw-continuous $f^{-1}(U)$ is both open and closed in (X,τ) . $f^{-1}(U)$ is open in (X,τ) . Hence f is strongly pgrω-continuous.

Theorem 7.7: If a map $f: (X, T_1) \rightarrow (Y, T_2)$ is strongly continuous, then it is strongly pgr ω -continuous. **Proof:** f: $(X, T_1) \rightarrow (Y, T_2)$ is strongly continuous. Let G be pgr ω -open in Y.As f is strongly continuous and G is a subset of Y, $f^{-1}(G)$ is clopen in X and so open in X. Therefore f is strongly $pgr\omega$ -continuous

Theorem7.8: For all discrete spaces X and Y, if a map f: $(X, T_1) \rightarrow (Y, T_2)$ is strongly pgr ω -continuous, then it is strongly continuous.

Proof:Let F be a subset of Y. As Y is adjscrete space F isclopen.

 $\Rightarrow \begin{cases} F \text{ is open } \Rightarrow F \text{ is pgrw} - \text{open } \Rightarrow f^{-1}(F) \text{ is open.} \\ F \text{ is closed } \Rightarrow F \text{ is pgrw} - \text{close} \Rightarrow f^{-1}(F) \text{ is closed.} \end{cases}$

 \Rightarrow f⁻¹(F) is clopen. Hence f is strongly continuous.

Theorem 7.9: If a map f: $(X, T_1) \rightarrow (Y, T_2)$ is strongly pgr ω -continuous, then it is pgr ω -continuous. **Proof**: Let G be an open set in Y. As every open set is pgrw-open, G is pgrw-open in Y. Since f is strongly pgr ω -continuous, f⁻¹(G) is open in X. As every open is pgr ω -open , f⁻¹(G) is pgr ω -open in X. Hence f is pgr@-continuous.

Theorem7.10: f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \eta)$ are two functions.

(i) If f and gare strongly pgr ω -continuous, then g o f: $(X, \tau) \rightarrow (Z, \eta)$ is strongly pgr ω -continuous.

(ii) If f is continuous and g is strongly pgr ω -continuous, then g o f: $(X, \tau) \rightarrow (Z, \eta)$ is strongly pgr ω -continuous. (iii) If f is pgr ω -continuous and g is strongly pgr ω -continuous, then g o f: $(X, \tau) \rightarrow (Z, \eta)$ is pgr ω -irresolute.

(iv) If f is strongly pgr ω -continuous and g is pgr ω -continuous, then g o f: $(X, \tau) \rightarrow (Z, \eta)$ is continuous.

Proof: (i) Let U be a pgr ω -open set in (Z, η) . Since g is strongly pgr ω -continuous, $g^{-1}(U)$ is open in (Y, σ) . As every open set is $pgr\omega$ -open, $g^{-1}(U)$ is $pgr\omega$ -open set in (Y, σ) . Since f is strongly $pgr\omega$ -continuous $f^{-1}(g^{-1}(U))$ is an open set in (X, τ) . Thus $(gof)^{-1}(U) = f^{-1}(g^{-1}(U))$ is an open set in (X, τ) and hence gof is

strongly pgr@-continuous.

(ii) Let U be a pgr ω -open set in (Z, η) . Since g is strongly pgr ω -continuous, $g^{-1}(U)$ is open in (Y, σ) . Since f is continuous $f^{-1}(g^{-1}(U))$ is an open set in (X, τ) .

Thus $(gof^{-1}(U) = f^{-1}(g^{-1}(U))$ is an open set in (X, τ) and hence gof is strongly pgr ω -continuous.

(iii) Let U be a pgr ω -open set in (Z, η) . Since g is strongly pgr ω -continuous, $g^{-1}(U)$ is open in (Y, σ) . Since f is pgr ω -continuous, f⁻¹(g⁻¹(U)) is a pgr ω -open set in (X, τ).

Thus $(gof)^{-1}(U) = f^{-1}(g^{-1}(U))$ is a pgr ω -open set in (X, τ) and hence gof is pgr ω -irresolute.

(iv) Let U be an open set in (Z, η) . Since g is pgr ω -continuous g⁻¹(U) is a pgr ω -open set in

(Y, σ). Since f is strongly pgr ω -continuous f⁻¹(g⁻¹(U)) is an open set in (X, τ).

Thus $(gof)^{-1}(U) = f^{-1}(g^{-1}(U))$ is an open set in (X, τ) and hence gof is continuous.

Theorem7.11: f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \eta)$ are two functions.

1. If f is continuous and g is perfectly $pgr\omega$ -continuous, then gof : $(X, \tau) \rightarrow (Z, \eta)$ is strongly $pgr\omega$ -continuous. 2. If f is perfectly pgr ω -continuous and g is strongly pgr ω -continuous, then g o f: $(X, \tau) \rightarrow (Z, \eta)$ is perfectly pgr ω -continuous.

3.If f and g are perfectly pgr ω -continuous functions, then g o f: $(X, \tau) \rightarrow (Z, \eta)$ is perfectly pgr ω -continuous. **Proof:** 1. Let U be a pgr ω -open set in (Z, η). Since g is perfectly pgr ω -continuous, g⁻¹(U) is clopen in

 (Y, σ) . $\therefore g^{-1}(U)$ is open in (Y, σ) . Since f is continuous, $f^{-1}(g^{-1}(U))$ is an open set in (X, τ) .

Thus $(gof)^{-1}(U) = f^{-1}(g^{-1}(U))$ is an open set in (X, τ) and hence gof is strongly pgr ω -continuous.

2. Let U be a pgr ω -open set in (Z, η). Since g is strongly pgr ω -continuous, g⁻¹(U) is an open set in (Y, σ) and so pgrw-open. Since f is perfectly pgr ω -continuous, f⁻¹(g⁻¹(U)) is a clopen set in (X, τ).

Thus $(gof)^{-1}(U) = f^{-1}(g^{-1}(U))$ is an clopen set in (X, τ) and hence gof is perfectly pgr ω -continuous.

3). Let U be a pgrw-open set in Z. As g is perfectly $pgr\omega$ -continuous, $g^{-1}(U)$ is clopen in Y and so open. As every open set is pgrw-open $g^{-1}(U)$ is pgrw-open in Y. As f is perfectly pgr ω -continuous f⁻¹(g⁻¹(U)) is clopen in X. Hence (gof) $^{-1}(U)$ is clopen in X. Hence gof is perfectly pgr ω -continuous.

The following diagram shows the relation between above discussed maps.

References

- [1] N.Levine, Semi-open sets and semi-continuity in topological spaces, 70(1963), 36-41.
- [2]. S. P.Arya and T.M. Nour, Chatcterizationsof s-normal spaces, Indian J. Pure Appl, Math 21(1990), 717-719
- [3]. Y. Gnanambal, and Balchandran, On generalized pre regular continuous maps in topological spaces, Indian J. Pure. Appl. Math., June 1999
- [4]. S. S. Benchalli, P. G. PatilSomenew Continuous Maps in Topological Spaces, journal of advanced topics in topology, VOL. NO. -2 (2010)
- [5] R.S. Wali and Prabhavati S. Mandalgeri, On α regular ω-closed sets inTopological spaces, Int. J. of Math Archive 5(10), 2014, 68-76.
- [6] R. S. Wali and Vijaykumari T. Chilakwad, On Pre Generalized Regular Weakly [pgrw]-Closed sets in a Topological Space, International Journal of Mathematical Archive-6(1), 2015, 76-85
- [7] A.S.Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb, On pre-continuous and weak pre continuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
- [8] O. N. Jastad, On some classes of nearly open sets, Pacific J. Math., 15(1965),961-970.
- M. E. Abd El-Monsef, S.N. El-Deeb and R.A.Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12(1983), 77-90.
- [10] M. Stone, Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc.41(1937), 374-481.
- [11] Palaniappan N and Rao K C, Regular generalized closed sets, Kyungpook Math. J. 33(1993), 211-219
- [12] H. Maki, R.Devi and K.Balachandran, Associated topologies of generalized α- closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser.A. Math., 15(1994), 51-63.
- [13] Navalagi1, R. G. Charantimath2 & Nagarajappa C., Some Generalized Continuous Functions via Generalized semipre-open sts, IJMCA; Vol. 4, Nos. 2, July-December 2012, pp.119-12
- [14] A.Vadivel & K.vairamamanickam, rgα-Closed sets& rgα-open sets in Topological Spaces, Int J of math ,Analysis Vol 3, (2009)37,1803-1819
- [15] M.K.R.S. Veerakumar, On α-generalized regular closed sets, Indian J. of Math, 44(2) 2002, 165-181
- [16] [4]. S. S. Benchalli, P. G. PatilSomenew Continuous Maps in Topological Spaces, journal of advanced topics in topology, VOL. NO. -2 (2010)
- [17] I.A. Rani, K. Balachandran, J. Dontchev, Some characterizations of gp-irresolute and gp-continuous maps between topological spaces, Mem. Fac.Sci. Kochi Univ. Ser.A. Math. 20 (1999) 93–10.
- [18] V. Joshi,S.Gupta,N.Bhardwaj,R,kumar, on Generalised pre Regular weakly(gprω)-closed set in sets in Topological Spaces,int math foruro Vol(7)2012(40)1981-1992.
- [19] Syed Ali Fathima. S and Mariasingam. M, "On #regular generalized closed sets in topological spaces", International journal of mathematical archive-2(11), 2011, 2497 - 2502
- [20] S. Mishra, et , all , On regular generalized weakly (rgw)closed sets in topological spaces , Int . J. of Math Analysis Vol 6, 2012 no.(30), 1939-1952
- [21] Sarsak M.S. and N. Rajesh (2010), genrealized semi pre closed sets, Int Math Forum 5(12), 573-578.
- [22] S. P. Arya and R. Gupta, On strongly continuous functions, Kyungpook Math. J. 14:131:143, 1974.
- [23] M. Stone, Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41(1937), 374-481.
- [24] N. Nagaveni, Studies on Generalizations of Homeomorphisms in Topological Spaces, Ph.D. Thesis, Bharathiar University, Coimbatore, 1999

- [25] M. Anitha, R. Selvi, P. Thangavelu, Pasting lemmas for g-continuous functions, Missouri Journal of Mathematical Sciences 21 (1) (2009) 28–33.
- [26] P. Sundaram and M. Sheik John, On w-closed sets in topology, Acta Ciencia Indica 4 (2000), 389–39
- [27] A. Jayalakshmi & C.Janaki, on ωgrα-closed sets in Topological Spaces,IntJ of maths 3(6)2012,2386-2392
- [28] Syed Ali Fathima. S and Mariasingam. M, "On #regular generalized closed sets in topological spaces", International journal of mathematical archive-2(11), 2011, 2497 – 2502
- [29] K. Kannanand K. Chandrasekhara Rao Pasting Lemmas for Some Continuous Functions ThaiJournal
- $[30] \qquad . M. E. Abd El-Monsef, S.N. El-Deeb and R.A. Mahmoud, \beta-open sets and \beta-continuous mappings, Bull. Fac. Sci. Assiut Univ., and the set of the set$
- 12(1983), 77-90.
- [31] Migeul Caldas Cuevaweak And Strong Forms of Irresolute Maps Internat. J. Math. & Math. Sci. Vol. 23, No. 4 (2000) 253–259
- [32]. S. S. Benchalli and R.S Wali on rω- Closed sets is Topological Spaces, Bull, Malays, Math, sci, soc30 (2007), 99-110
- [33] Giovanni Lo Faro, On strongly α irresolute mapping IJPA> Math 18(1), Feb 1987.
- [34]. S. P.Arya and T.M. Nour, Chatcterizationsof s-normal spaces, Indian J. Pure Appl, Math 21(1990), 717-719