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Abstract:  The robust tracking and model following problem of linear discrete-time systems is investigated in 

this paper. An approach to design robust tracking controllers is proposed. The system is controlled to track 

dynamic inputs generated from a reference model. By using the solution of the Lyapunov equation, the 

convergence of the tracking error to the origin, is proved. The proposed approach employs linear controllers 

rather than nonlinear ones. Therefore, the designing method is simple for use and the resulting controller is 

easy to implement. An application of the proposed approach for a class of perturbed systems is also considered. 

Finally, numerical examples are given to demonstrate the validity of the results. 
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I. Introduction 

During the past decades, the robust tracking and model following problem has been widely 

investigated. Linear state feedback controllers [1, 2, 3, 4] are employed for robust tracking of dynamical 

systems. In [2], a linear robust tracking controller is presented for a class of uncertain time-delay systems. By 

using a Riccati-type equation, the researchers develop an improved procedure for determining the controller 

such that larger uncertainties are accommodated in [5]. While one may also note that the scheme of [2] is based 

on the solution of the Lyapunov equation.  

In [6] the study requires that the dimension of the reference model be the same as the dimension of the 

nominal systems under consideration. This presents a major limitation in the design of model reference 

controllers. In some instances, one may require a high-order system to follow a low-order reference model. In 

[7] this assumption is dropped and the dimension of the reference model is allowed to be unequal to the 

dimension of the nominal system under consideration. Practical tracking is achieved when the tracking error can 

be made arbitrarily small. In [8] and [9] the authors developed nonlinear robust controllers to achieve practical 

tracking of uncertain systems. In the case when there is no control over the tracking error bound, the system is 

said to ϵ-track the input. The authors of [1] developed a linear controller to achieve practical tracking for 

matched uncertainties and ϵ-tracking for mismatched uncertainties when certain conditions are fulfilled. 

The tracking error is guaranteed to decrease asymptotically to zero, or asymptotic tracking is achieved 

in [10, 11]. Similar to these works, for a class of unconstrained linear discrete-time systems, this paper further 

investigates the problem of robust tracking and model following. By using a Lyapunov-type equation, this paper 

proposes a new approach to the design of linear robust tracking and model following controllers that ensures the 

convergence of the tracking error to the origin. Furthermore, there are no conditions on the dimension of the 

reference model. 

In the most control systems, the existence of disturbances has a remarkable probability. The influence 

of the physical environment on the systems leads to the emergence of these undesirable parameters [12, 13, 14, 

15, 16]. These disturbances can be deterministic or stochastic and can affect different components of the system, 

for example, the system's dynamic, the control operator, the initial state..., which can drive the system to 

unstable behavior, or constraints violations. In order to contribute in this thematic, an application of the 

proposed approach to a class of perturbed systems is also considered. 

The rest of the manuscript is organized as follows: In Section II, the model following problem to be tackled is 

stated and some standard assumptions are introduced, with the main theoretical results. In Section III, an 

application of the developed approach to a class of disturbed systems is proposed. In Section IV, numerical 

examples are given to illustrate the use of our results. The paper is concluded in Section V. 

 

Problem Statement And Some Preliminaries 

Consider the linear, controlled, discrete-time system described by  

 
xi+1 = Axi + Bui

x0 ∈ ℝn
                                 (1) 

and the associated output function is :  
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yi = Cxi ∈ ℝp                                         (2) 

where the state variable x and A,B,C are respectively ( n × n ),( n × m ),( p × n ) matrices.  

ui ∈ ℝm  
is the control function, which is introduced such that the associated output function (2) tracks a desired output  

generated  by a reference system of the form  

 
xi+1

m = Am xi
m

yi
m = Cm xi

m ∈ ℝp
                             (3) 

where xi
m  is the state vector of the reference model, and yi

m  has the same dimension as yi . As pointed out in 

[key-1], not all models of the form given in (3) can be tracked by a system given in (1) with a feedback 

controller. We introduce for (1) the following standard assumption 

 

Assumption 1  

The pair ( A,B ) given in (1) is completely controllable.  

It follows from Assumption 1 that there exists an ( m × n ) constant matrix K such that A+BK is Hurwitz. And 

for any given symmetric positive definite matrix Q , there exists an unique symmetric positive definite matrix P 

as the solution of the Lyapunov equation  

P=(A+BK ) T P( A+BK )+Q            (4) 

In this work, the requirement for the developed controller to force the system output to follow the reference 

output model (3) as closely as possible is the following assumption. 

 

Assumption 2  

There exist matrices R, G, Ge  and H given by 

R = C(A + BK)−1BK                                        (5) 

G = RT[RRT]−1Cm                                            (6) 

Ge = (A + BK)−1BKG                                      (7) 

H = BT[BBT]−1GeAm                                       (8) 

Where K is the above mentioned matrix. If one of these matrices cannot be found, a different model must be 

chosen. 

The output tracking error ei  and a new auxiliary state vector x i  are defined as 

x i = xi − Gexi
m                                                   (9) 

ei = yi − yi
m                                                       (10) 

Where Ge  is defined in (7). From (3), (7), (9) and (10), one can obtain  

ei = yi − yi
m = Cx i                                          (11) 

It follows from (11) that  
 ei ≤  C  x i                                               (12) 

Since  C < ∞, one can conclude that the convergence of x i  to the origin is sufficient for the tracking goal. 

In this paper we propose a control law described as follows  

ui = Kxi + (H − KG)xi
m                                (13) 

Where G and H are defined in (6) and (8) respectively. 

 

Theorem 1. Suppose that Assumptions 1 and 2 are satisfied. Then the control law (13) drives the output of 

system (1) to asymptotically track the output of the reference system (3). 

Proof. It follows from (6), (7), (8) and (9) that 

x i+1 = xi+1 − Gexi+1
m                                                                                

 = Axi + BKx i + BKGexi
m + B H − KG xi

m − GeAm xi
m  

x i+1 =  A + BK x i                                                           (14)                 
Constructing now the Lyapunov function as  

V(xi) = xi
TPxi                                                   (15) 

where P is the unique solution of Lyapunov equation (4). The increment of the Lyapunov function in (15) is 

given by  

∇V(x i+1) = x i+1
T Px i+1 − x i

TPx i                                                                              

                  = x i
T A + BK TP(A + BK)x i − x i

TPx i                                               
                  = −x i

TQx i ≤ 0                                                                                       
This shows that all trajectories of the closed-loop system (14) will converge to the origin. Then it can be 

obtained from (12) that the tracking error ei  decreases asymptotically towards zero. This completes the proof. 

Remark 1. Note that the result of theorem 1 is satisfied for all x0 ∈ ℝn . 
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II. Application To A Sensitivity Problem 

Consider the linear, perturbed, discrete-time system described by  

 
xi+1

p
= Axi

p
+ Bui

x0
p

= αx0 + β ∈ ℝn
                                 (16) 

And the associated output function is:  

yi
p

= Cxi
p
∈ ℝp                                            (17) 

where the state variable xi
p
∈ ℝn  and A,B,C are respectively ( n × n ),( n × m ),( p × n ) matrices, and β ∈ ℝn  

and α ∈ ℝ are disturbances that infect the initial state x0, knowing that they are supposed inevitable. In [17], that 

class of systems is considered, where the authors has defined the 𝜖-capacity of a gain matrices K as a new 

approach to attenuate the effects of disturbances that infect the initial state, by the corresponding feedback 

control  𝑢𝑖 = 𝐾𝑥𝑖 , (see [17] for more details). 

 In the case where the system is autonomous (uninfected/desired/reference), this reduces to  

 
xi+1

m = Am xi
m

yi
m = Cm xi

m ∈ ℝp
                                (18) 

We introduce the control law ui in (16) such that the associated output function (17) tracks the desired output 

generated by the reference (uninfected/desired) system (18). 

 

Definition 1. For a given ϵ > 0, and T ∈ ℕ∗, a disturbance (α, β) ∈ ℝ × ℝn  is said to be ϵT-tolerable if the 

corresponding output function yi
p
 satisfies  

 yi
p
− yi

m ≤ ϵ, ∀i ≥ T 

Where yi
m  is the output function of the reference system. 

 

Theorem 2. Given ϵ > 0,T ∈ ℕ∗ and a disturbance (α, β) ∈ ℝ × ℝn  . Suppose that Assumptions 1 and 2 are 

satisfied. Then, there exists a control law ui that makes the disturbance (α, β) ϵT-tolerable. 

Proof. Given ϵ > 0 and T ∈ ℕ∗.  

It’s clear that  
 Cx i ≤  C  x i , ∀i ≥ 0              (19) 

Where x i  is given by  

x i = xi
p
− Gexi

m             
By Theorem 1, remark 1, assumption 1 and 2 and (14) there exists a matrix K such that the corresponding 

control law given by (13) ensures that 

 x i ≤
ϵ

 C 
, ∀i ≥ T 

Which implies, from (19), that  

 Cx i ≤ ϵ, ∀i ≥ T               
Then, it follows from (11) that  

 yi
p
− yi

m ≤ ϵ, ∀i ≥ T 

Which means that the disturbance associated to yi
p
 is ϵT-tolerable. 

 

Illustrative Examples 

Example 1 

To illustrate the utilization of our approach.  In this subsection, one consider the following numerical example. 

A linear controlled, discrete-time system given by  

 
xi+1 = Axi + Bui

x0 ∈ ℝ2
      i ≥ 0                           (20) 

And the output function   

 yi = Cxi ∈ ℝ                                                   (21) 

Where A, B, C and x0 are given in table 1. 

 

Table 1: Data of system (20)-(21) 

A B C x0 

 
2 −3
0 2

   
1 −2
9 −1

   0.5 1   0 1 T 

 

In this example we consider that the reference system does not have the same dimension of the system 

(20), given by 
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xi+1

m = Am xi
m ∈ ℝ3

yi
m = Cm xi

m ∈ ℝ
                                (22) 

Where 

Table 2: Data of system (22) 

Am  Cm  x0
m  

 
0.9 1 1
0 0.9 1
0 0 0.9

  
 1 0.9 0.9   0 1 0.1 T  

It's clear that the pair ( A,B ) is controllable, then we choose K such that 

K =  
0.1706 −0.3176
1.5353 −1.6588

    and   A + BK =  
0.9 0
0 0.8

                     (23) 

Matrices (6), (7) and (8) are given, respectively, by 

G =  
0.1276 0.1149 0.1149
−0.2509 −0.2258 −0.2258

 , Ge =  
1.2474 1.1227 1.1227
0.3763 0.3387 0.3387

 , 

 H =  
−0.0262 −0.0527 −0.0789
−0.5744 −1.1553 −1.7297

    

By using the control law (13), figure 1 shows that the tracking error decreases asymptotically to zero, and the 

output of the system (20) tracks the reference output of the system (22). 

 
Figure 1. Tracking performance and Tracking error corresponding to example 1 

 

Example 2 

In this subsection, the considered perturbed linear discrete-time system is: 

 
xi+1

p
= Axi

p
+ Bui

x0
p

= αx0 + β ∈ ℝ2
                                  

And the associated output function is :  

yi
p

= Cxi
p
∈ ℝp                                             

Where A, B, C and x0 are given in table 1. 

For simulation reasons, and without loss of generality, the perturbation is chosen randomly as follows α =2 and 

β =( 0.3,0.5 ) . The control input ui is used in order to yi
p
 tracks the output response of the reference (uninfected) 

system given by 

 
xi+1

m = Am xi
m ∈ ℝ2

yi
m = Cm xi

m ∈ ℝ
                  (24) 
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Where  

Table 3: Data of system (24) 

Am  Cm  x0
m  

 
0.9 1
0 0.9

   1 0.9   0 1 T 

 

By using the same matrix K given in (23), matrices (6), (7) and (8) are given, respectively, by 

G =  
0.1276 0.1149
−0.2509 −0.2258

 , Ge =  
1.2474 1.1227
0.3763 0.3387

 , H =  
−0.0262 −0.0527
−0.5744 −1.1553

    

From Figure 2, one can conclude that with the chosen K , the associated control law ui ( given in (13)), makes 

the disturbance ( α , β ) for this example, 0.51-tolerable. 

 
Figure 2. Tracking performance and Tracking error corresponding to example 2 

 

Given ϵ = 0.2 , and T=1, by theorem 2, there exists a matrix K such that the associated control ui makes the 

disturbance ( α , β ) , 0.21-tolerable, one of those matrices K is  

K =  
0.1471 −0.3176
1.3235 −1.6588

                   (25) 

where the tracking performance and the tracking error are given in Figure 3, which shows that the associated 

control law given in (13), makes the disturbance ( α , β ) , 0.21-tolerable. 
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Figure 3. Tracking performance and Tracking error for K given by (25) 

 

III. Conclusion 

The problem of robust tracking and model following for a class of linear discrete-time systems has 

been considered. Based on the solution of the Lyapunov equation, we have shown that by employing the 

proposed robust tracking controller, the tracking error can be guaranteed to decrease asymptotically to zero. An 

application of the proposed controller for a class of disturbed systems is also considered. Illustrative examples 

have been provided to demonstrate the effectiveness of this control technique. 
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