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 Abstract : A modified separation of variables (Eigenfunction-Expansions) suggested by Ivan [1] was 

investigated for unsteady Couette flow of a second grade fluid in a layer of porous medium. We find that it 

produces the correct solution shown to agree identically with the Laplace Transform obtained for a class of 

unsteady flows of   generalized second grade fluid for the same problem. 
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I.  Introduction 
             The interest in flows of non-Newtonian fluids through a porous medium has grown considerably 

because of their applications in engineering [2]. Recently , Ivan[1] explained that inmost mathematics and 

engineering textbooks describe the process of  the steady state of a linear parabolic partial differential equation 

as a technique for obtaining a boundary-value problem with homogeneous boundary conditions that can be 

solved by separation of variables ( i.e .,eigenfunction expansions). While this method produces the correct 

solution for the start-up of the flow of a Newtonian fluid between parallel plates, it can lead to erroneous 

solutions to the corresponding problem for a class of non-Newtonian fluids. He showed that the reason for this is 

the non-rigorous enforcement of the start-up conditions in the textbook approach, which lead to a violation of 

the principle of causality. Nevertheless, he said these boundary-value problems can be solved correctly using 

Modifying eigenfunction expansions, and he presented mathematically-correct way by writing u (0, t) = H (t) by 

using a Heavaside unit step function. Thus, it is important that the start-up condition is always written explicitly 

(though the appropriate H(t) prefactor) to obtain the physical solution to the start-up problem and, moreover, to 

not alter the state of rest prior to start-up.The purpose of the present article is to show that is not merely a 

semantic distinction of no consequence, and that it fundamentally affects the method of solution. Specifically, 

(in essence, an application of Duhamel's principle) [3] .We examine the suggestion of Ivan's [1] paper for the 

generalized second grade fluid with the Laplace transform in the paper of Hayat [2] and we focus on  special 

case of governing problem :                                                                                                                                        

 1 + 𝛽2𝑙2  
𝜕𝑢

𝜕𝑡
−  

𝜕2𝑢

𝜕𝑦2
− 𝑙2  

𝜕3𝑢

𝜕𝑦2𝜕𝑡
+ 𝛽2𝑢 = 0                                                                         (1) 

Special case when 𝛽 = 0 

 ∂u

∂t
−  

∂2u

∂y2
− 𝑙2  

∂3u

∂y2 ∂t
= 0                                                                                               (2) 

     The paper is organized as follows: In section (III), we gave a summary of the solutions of generalized second 

grade fluid by Laplace transform which were given by Hayat[2].In Section  (IV), the solutions are found by the 

textbook eigenfunction expansion technique. In Section (V), the solutions are derived by using the eigenfunction 

expansion technique modified by Ivan [1], In Section  (VI), we gives a critical discussion of the present work.     

 

II.   Basic Equations 

         We consider the flow of a second grade non-Newtonian fluid between two horizontal parallel 
impermeable plates. The distance between two plates is d. The general constitutive equation given 
by Rivlin and Ericksen [4] can be written in the following form:                                                                   

τ =   − ρI +  μ A1  +  α1  A2  +  α2  A1
2                                                                                       (3) 

  Where 𝑝 is the pressure, I is the unit tensor, 𝜇 is the dynamic viscosity   α1 , α2  , are  the normal stress moduli,  

𝐴1 , 𝐴2  are first two Rivlin-Ericksen kinematic tensors Where:                                                                               

                           𝐴1 = ∇𝑉 +  ∇𝑉 𝑇                                                                                                   (4) 

(5)𝐴2  =   
𝒅𝐴1

 

𝒅𝒕
+    𝐴1 (∇𝑉) + 𝐴2 ∇𝑉 𝑇                                                                                

    Where (dA1 /dt)  denotes the material time derivative, V is the velocity field and grad is the gradient 

operator, T is the matrix transpose. 
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The considered plates are rigid and infinite.Under these assumptions, the flow velocity at a given point in the 

porous layer 

depends only on its y-coordinate and time t and thus the velocity is                                                                          

𝑉 (u (y, t) , 0, 0)                                                                                                         (6)  

      In which u is the x-component of the velocity. Since the flow is unsteady, the interaction terms depend upon 

the drag and virtual mass effect. The relation between the pressure drop and velocity for a second grade fluid in 

porous media is                                                                                                                                                            

∇𝑝 = −
∅

𝑘
  μ + α1  

𝜕  

𝜕𝑡
 𝑉                                                                                  (7) 

     where (𝑘 >  0) and ∅(0 <  ∅ <  1) are the (constant) permeability and porosity, respectively. Note that Eq. 

(7) ignores the boundary effects on the flow and cannot be directly used to analyze flow problems in a porous 

space.Thus modified Darcy’s law based on a local volume averaging technique [5,6] will be considered in a 

porous layer. Under consideration of the balance of forces acting on a volume element of fluid, the local volume 

average balance of linear momentum is given by [5,6]                                                                                              

ρ
dV

dt
= divT + r                                                                                                   (8)  

In which ρ is the fluid density and r is the Darcy resistance for a second grad fluid in the porous space. Due to 

the volume averaging process, some information is lost, thus requiring supplementary empirical relation for the 

Darcy resistance [5] to be known as a measure of the resistance to the flow in the bulk of the porous space and r 

is also a measure of the flow resistance offered by the solid matrix; then r satisfies the following equation [5]:     

                                                                                                                               

𝑟 = −
∅

𝑘
  μ + α1  

𝜕  

𝜕𝑡
 𝑉                                                                                     (9)  

  Using (9) into (7) we have                                                                                                                                       

ρ
dV

dt
 = div T −  

∅

𝑘
  μ + α1  

𝜕  

𝜕𝑡
 𝑉                                                                 (10)  

Substituting (3) into above equation, one obtains                                                                                                     

ρ
dV

dt
 = −∇𝑝 + divS −  

∅

𝑘
  μ + α1  

𝜕  

𝜕𝑡
 𝑉                                                     (11)  

where S is the extra stress tensor which for second grade fluid is                                                                            

𝑆 =  𝜇𝐴1  +  𝛼1𝐴2  +  𝛼2𝐴2                                                                            (12)  
It is noted that if the terms dV/dt and divS are ignored then 𝐸𝑞(11) reduces to 7 .  Now from 𝐸𝑞𝑠(4), (10) and 

(11) we can write:                                                                                                                                                      
 ∂u

∂t
− v 

∂2u

∂y2
− 𝑑2  

∂3u

∂y2 ∂t
+

∅

𝑘
  𝑉 + 𝑑2  

𝜕  

𝜕𝑡
 u = 0                                     (13)  

in which 𝜈 =  𝜇/𝜌 is the kinematic viscosity, 𝜌𝑑2 =  𝛼1(𝑑 ≥  0) , the elastic coefficient, has the unit of length 

[2]) and pressure gradient in the 𝑥 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 is neglected which is reasonable when there is no applied  

pressure gradient. We are interested here in initial-boundary value problems of Couette flow with sudden 

motion of bottom plate, in special case when 𝛽 = 0.                                                                                                              

 

III.  Solution By Laplace Transform For Unsteady Couette Flow Of A Second Grade Fluid In A 

Layer Of Porous Medium[𝟐] 
      Hayat [2], used Laplace transform to solve the governing equation for the flow of the second grade 

fluid between two parallel plates. This section deals with the solution of a second grade fluid in a porous layer in 

absence of the pressure gradient. The flow is induced due to motion of the pressure gradient. The flow is 

induced due to motion of the lower plate i.e., for t >  0, the plate at y =  0 starts to slide in its own plane with a 

constant speed U0, i.e. the velocity of the plate is given by (U0 , 0, 0) . The plate at y =  h is kept fixed. under 

this situation, the governing equation (1) with the boundary - initial conditions are given by :                                

   

 1 + 𝛽2𝑙2  
𝜕𝑢

𝜕𝑡
−  

𝜕2𝑢

𝜕𝑦2
− 𝑙2  

∂3u

∂y2 ∂t
+ β

2u = 0                               

           u  0, t =  U0H(t)                                                                                                (14) 

u (h, t)  =  0                                                                                                         (15) 

u  y, 0 =  0,  y >  0                                                                               (16) 

H(t) denotes the Heaviside unit step function,                                                                                                      

 

                                                                                                      

 



On Modifying Eigenfunction-Expansions For Unsteady Couette Flow Of A Second Grade Fluid In A  

 

DOI: 10.9790/5728-12122833                                          www.iosrjournals.org                                        30 | Page 

Defining the dimensionless quantities                                                                                                                        

u =
u

U0

   , y =
y

h
  , t ́ =

vt

h2
 , ω ́ =

h2  ω

v
, l =

d

h
  , β = h ∅/k 

the governing problem is :     

 1 + β
2l2  

∂u

∂t
−  

∂2u

∂y2
− l2  

∂3u

∂y2 ∂t
+ β

2u = 0                                

u  0, t =  H  t                                                                                                 (17) 

u  1, t =  0                                                                                                       (18) 

 u  y, 0 =  0  y >  0                                                                                     (19) 

 where the primes have been suppressed for simplicity. 

For the governing problem subject to (17 − 19), we define 

𝑢   𝑦, 𝑠 =  𝐿 𝑢  𝑦, 𝑡  =   𝑒−𝑠𝑡𝑢  𝑦, 𝑡 𝑑𝑡   

∞

0

 

as the Laplace transform of u (y, t) (where s is a Laplace transform parameter). Taking Laplace transform of (1) 

and , we arrive at                                                                                                                                                         

∂2u 

∂y2
−   

β
2 + s 1 + β

2l2 

1 + sl2
 u = 0                                                                           (20) 

u   0, s =
1

s
  ,        u  1, s =  0                                                                                  (21) 

Solving the above problem we have  

u   y, s =
sinh q 1 − y 

s sinh q
                                                                                            (22) 

q =  
β

2 + s 1 + β
2l2 

1 + sl2

1
2

                                                                                          (23) 

Taking inverse Laplace transform we obtain 

u  y, t = Uθ  t 
 1

2πi 
  

sinh q 1 − y e−st

s sinh q
 ds.

∞

0

                                               (24) 

     In order to obtain the solution, we have to solve the integral in (24). For that we use the complex variable 

theory. It is seen that 𝑠 =  0 is a simple pole.                                                                                                           

 Therefore, the residue at 𝑠 =  0 is :  

𝑅𝑒𝑠  0 =
sinh 𝛽 1 − 𝑦  

𝑠 𝑠𝑖𝑛ℎ 𝛽
                                                                                     (25) 

The other singular points are the zeros of 

𝑠𝑖𝑛ℎ 𝑞 =  0.                                                                                                 (26) 
Setting  q =  iλ , we find 

𝑠𝑖𝑛 𝜆 =  0.                                                                                                  (27) 
If  λn = nπ, n =  1, 2, 3, . . . , ∞ are the zeros of (27) then 

𝑠𝑛  =  − 
𝛽2 + 𝑛2𝜋2

1 + (𝛽2 + 𝑛2𝜋2)𝑙2

 

 ,      𝑛 =  1, 2, 3, . . . , ∞                            (28) 

are the poles. The residue at all these poles is obtained as 

𝑅𝑒𝑠  𝑠𝑛 =
2 −1 𝑛𝑛 𝜋𝑒𝑠𝑛 𝑡  

 𝛽2 + 𝑛2𝜋2   1 +  𝛽2 + 𝑛2𝜋2 𝑙2  
                                                         (29) 

Res (0) and Res(𝑠𝑛 ) , a complete solution is given by 

𝑢  𝑦, 𝑡 =  𝜃 𝑡  
sinh 𝛽 1 − 𝑦  

 𝑠𝑖𝑛ℎ 𝛽
+ 2𝜋 

  −1 𝑛𝑛 𝑒𝑠𝑛 𝑡  

 𝛽2 + 𝑛2𝜋2   1 +  𝛽2 + 𝑛2𝜋2 𝑙2  
 

∞

𝑛=0

sin 𝑛𝜋  1 − 𝑦                 (30) 

In special case when β = 0 we find that:    

𝑢  𝑦, 𝑡 =  𝐻 𝑡   1 − 𝑦 + 2𝜋 
  −1 𝑛𝑛 𝑒𝑠𝑛 𝑡  

 𝑛2𝜋2  1 + 𝑛2𝜋2𝑙2 
 

∞

𝑛=0

sin 𝑛𝜋  1 − 𝑦                                                       (31) 

𝑠𝑛  =  − 
𝑛2𝜋2

1 + (𝑛2𝜋2)𝑙2

 

                                                                     (32) 
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IV.   Solutions By The Textbook Eigenfunction Expansion Technique. 
The governing differential equation in Special case when 𝛽 = 0 is :  

 ∂u

∂t
−  

∂2u

∂y2
− 𝑙2  

∂3u

∂y2 ∂t
= 0                                                                      (33) 

With boundary conditions:  

𝑢 0, 𝑡 = 𝑈0𝐻(𝑡)                                                                   (34) 

𝑢(ℎ, 𝑡) = 0                                                                             (35) 

𝑢(𝑦, 0) = 0     𝑓𝑜𝑟     0                                                         (36) 

     Now, we introduce a transformation functionUsing this observation, the textbook approach[Carslaw and 

Jaeger, 1959; Batchelor, 1967; Leal, 2007; Bruus, 2008] is to now make the change of dependent variable           

                                                                         

𝑢 𝑦, 𝑡 = 𝑣 𝑦, 𝑡 + 𝑈𝑠𝑠                                                                         (37) 

𝜕𝑣

𝜕𝑡
=  

𝜕𝑢

𝜕𝑡
 ,
𝜕2𝑣

𝜕𝑦2
=  

𝜕2𝑢

𝜕𝑦2
 ,    

𝜕3𝑢

 𝜕𝑦2𝜕𝑡
=  

𝜕3𝑣

 𝜕𝑦2𝜕𝑡
                                          (38) 

we find that 𝑣 𝑦, 𝑡 satisfies  

𝜕𝑣

𝜕𝑡
−  

𝜕2𝑣

𝜕𝑦2
− 𝑙2  

𝜕3𝑣

𝜕𝑦2𝜕𝑡
−= 0                                                         (39) 

 under conditions : 

𝑣 0, 𝑡 = 𝑈0𝐻 𝑡                                                                                ( 40) 

           𝑣 1, 𝑡 = 0                                                                                         (41)  

𝑣 𝑦, 0 = −𝑈𝑠𝑠                                                                                  (42)  

We seek a solution by the form  

v y, t =  Tn t . Ψn

∞

n=1

 y ,                                                                               (43)  

It is well known (Titchmarsh, 1962)[11] that the eigenvalue problem: 

  𝛹 ′′
𝑛 𝑦 =  − 𝜆 𝛹𝑛 𝑦                                                               (44) 

Substitution into the Eq. (38 ) we have:  

  
𝑑𝑇𝑛

𝑑𝑡
 𝛹𝑛 𝑦 

∞

𝑛=1

−     𝑇𝑛 𝑡 𝛹
′′
𝑘 𝑦 

∞

𝑛=1

 − 𝑙2    
𝑑𝑇𝑛
𝑑𝑡

 𝑡 𝛹 ′′
𝑘 𝑦 

∞

𝑛=1

 = 0                          (45) 

Multiplying by Ψm y  , and integrating from  0 → 1  we find that 

 
dTn

dt
 Ψn y 

∞

n=1

−     Tn t Ψ′′
k y 

∞

n=1

 − 𝑙2    
dTn

dt
 t Ψ′′

k y 

∞

n=1

 = 0                           (46) 

 1 + 𝑙2λ
    

dTn

dt
 +  λn Tn t =  0                                                                      (47) 

                     T0 =  
−2  
𝑛𝜋

 

dTn

dt
+

 λ n 

(1 + 𝑙2λ
  )

Tn t = 0                                                                                  (48) 

Let:  𝛽 =  
 λ n  

(1+𝑙2λ
  )

 

                            Tn t =  
−2  

𝑛𝜋
 exp −𝛽 𝑡                                                                                       (49) 

The solution is: 

u y, t =  1 − y −  
2

𝜋
  

∞

n=1

exp −𝛽𝜆 𝑡 𝑠𝑖𝑛( 𝑛𝜋𝑦)  
𝑛

                                            (50) 

 

V.   Solution Using The Modifiyng Eigenfunction Expansion Suggested By Ivan's [1] 
The governing differential equation as in section (IV) is :  

    
∂u

∂t
−  

∂2u

∂y2
− 𝑙2  

∂3u

∂y2 ∂t
−= 0    

With the same boundary conditions:               

               u 0, t =  𝐻 𝑡 U0    
u 1, t = 0 

                   u y, 0 = 0 , (𝑦 >  0) 
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Now, we introduce a transformation function suggested by Ivan is : 

  𝑢 𝑦, 𝑡 = 𝑣 𝑦, 𝑡 +  𝑈𝑠𝑠  𝐻 𝑡  ,              𝑈𝑠𝑠 = 1 − 𝑦                                 (51)  
So we have: 

∂u

∂t
=

∂v

∂t
+ 𝑈𝑠𝑠(𝑦)𝛿(t)  ,

∂2u

 ∂y2
=  

∂2v

∂y2
    ,   

∂3u

 ∂y2 ∂t
=  

∂3v

 ∂y2 ∂t
                           

we find  v y, t satisfies : 

  
∂v

∂t
+ 𝑈𝑠𝑠 𝑦 𝛿 t  −    

∂2v

∂y2 − 𝑙2  
∂3v

∂y2 ∂t
−= 0                                                       (52)  

underconditions : 

  𝑣 0, 𝑡 = 0                                                                                   (53) 

𝑣 1, 𝑡 = 0                                                                                    54  

𝑣 𝑦, 0 = 0                                                                                   55  

     This interpretation is a demonstration of Duhamel’s principle [3](Duhamel, 1833; namely, that a time-

varying boundary condition can be “exchanged” for a homogeneous boundary condition at the “cost” of adding 

a time-varying source term to the linear BVP. Notice that the textbook approach exchanges the inhomogeneous 

boundary conditions for a homogeneous boundary condition at the cost of an inhomogeneous initial condition. 

Philosophically, this is already problematic because the cumulative effects of the boundary condition from t = 0 

up to t = ∞ , have been “condensed” into an initial condition and imposed 𝑡 =  0, an act that readily violates the 

principle of causality, namely “no output before the input” (Toll) [12].                                                                    

The method of separation of variables suggests that the ansatz substituting and using the  orthogonality   relation 

from Eq. (44 ), we seek a solution of the form                                                                                                           

                                                                                                                                           

 y, t =  Tn t Ψn

∞

n=1

 y ,                          

Substitution into the Eq. (52) we have :  

   
dTn

dt
 . Ψn y 

∞

n=1

+ 𝑈𝑠𝑠 𝑦 𝛿 t  + 𝜆  Tn t . 𝛹𝑛 𝑦  

∞

n=1

+  𝜆𝑙2   
dTn

dt
. 𝛹𝑛 𝑦  

∞

n=1

= 0       (56) 

Substituting into Eq.(56) and using the orthogonality relation from Eq.(44 ), Multiplying by Ψm y  , and 

integrating from  0 → 1 ,  we find that :                                                                                                                     

                                                                                

 1 +  𝜆𝑙2 
𝑑𝑇𝑛
𝑑𝑡

 + 𝜆𝑇𝑛 𝑡 =
−2

𝑛𝜋
 𝛿 t                                                             (57) 

                     T 0 = 0               
So by Laplace transform:     

(1 +  𝜆𝑙2)𝑠𝑇 𝑠 − 𝑇 0 + 𝜆𝑇 𝑠 + 𝑇 𝑠 = −
2

𝑛𝜋
                                 (58) 

T s =  −
2U

nπ
.   

1

  1+ 𝜆𝑙2 𝑠+𝜆
                                                                             (59)  

T t = −
2U

nπ
 L−1 .   

1

  1 +  𝜆𝑙2 𝑠 + 𝜆
                                                                         (60) 

T t =  −
2

nπ

1

  1 +  𝜆𝑙2 + 𝜆
. exp  −

𝜆t

  1 +  𝜆𝑙2 
                                                    (61) 

The solution is: 

𝑢  𝑦, 𝑡 =  𝐻 𝑡   1 − 𝑦 + 2𝜋 
  −1 𝑛𝑛 𝑒𝑠𝑛 𝑡  

 𝑛2𝜋2  1 + 𝑛2𝜋2𝑙2 
 

∞

𝑛=0

sin 𝑛𝜋  1 − 𝑦                              (62) 

 

VI: Discussion And Conclusion: 
     Ivan Christov  explained that in [1] most mathematics and engineering textbooks describe the process of 

steady state of a linear parabolic partial differential equation as a technique for obtaining a boundary-value 

problem with homogeneous boundary conditions that can be solved by separation of variables ( i.e ., 

eigenfunction- expansions), these boundary-value problems can be solved correctly using eigenfunction 

expansions, and he presented the formulation that makes this possible So in this paper we examined the 

suggestion of Ivan's for the generalized second grade fluid with the Laplace Transform in the paper of Hayat [2] 

in speical case  of the Eq. (1) when , 𝛽 = 0 . We found that the solution of  the paper of Hayat with Laplace 

Transform in  Eq. (31 ) agrees exactly with the solution of modifying separation of variables (i.e., eigenfunction 



On Modifying Eigenfunction-Expansions For Unsteady Couette Flow Of A Second Grade Fluid In A  

 

DOI: 10.9790/5728-12122833                                          www.iosrjournals.org                                        33 | Page 

expansions) in section (V) in Eq .(62) , In section (IV) the solution in Eq.(50) are not identical with the same 

solutions found in sections (III) , (V)  for the same IBVP,  so the  modifying separation of variables (i.e., 

eigenfunction expansions) is more  accurate than the textbook eigenfunction expansion technique and more 

flexible than Laplace Transform on describing the properties of a viscoelastic fluid.  
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