Extending Baire Measures To Regular Borel Measures

Parvinder Singh

PG Department of Mathematics, S.G.G.S. Khalsa College, Mahilpur. (Punjab).

Abstract: It should be noted that a Borel measure may not be determined by its values on compact G_{δ} sets. But if some of the conditions are imposed on a Borel measure so that it can be determined by its values on compact G_{δ} sets. The answer to this question is Regularity. We can discus as in this paper by proving the result that a Borel measure is determined by its values on compact G_{δ} sets and further that every Baire measure has a unique extension to a regular Borel measure.

Definition: Let X be any set, be S any σ -ring on X, C and U be any subclasses of S.

- (1) μ be any measure on S i.e. (X, S, μ) is a measure space then we say (X, S, μ, C, U) satisfies axiom I.
- (2) If C is closed for finite unions, countable intersections, $\phi \in C$ and $\mu(c) < \infty \ \forall c \in C$, then we say that axiom II is satisfied. i.e. we say $(X, S, \mu, C, \mathcal{U})$ satisfies axiom II.
- (3) If \mathcal{U} is clsed for countable unions, finite intersections and for every $E \in \mathcal{S}$ there exist $U \in \mathcal{U}$ s.t. $E \subset \mathcal{U}$ U, then we say that $(X, \mathcal{S}, \mu, \mathcal{C}, \mathcal{U})$ satisfies axiom III.

Definition: Suppose that $(X, \mathcal{S}, \mu, \mathcal{C}, \mathcal{U})$ satisfy axiom I, II and III. Let $E \in \mathcal{S}$

- (1) If $\mu(E) = \inf \{ \mu(U) / E \subset U \in \mathcal{U} \}$, then E is said to be Outer regular.
- (2) If $\mu(E) = \sup \{ \mu(C) / E \supset C \in C \}$, then E is said to be Inner regular.
- (3) The set E is said to be Regular if it is Outer regular as well as Inner regular.
- (4) The measure μ is called Regular if every measurable set E in S is Regular.

Preposition: Suppose that (X, S, μ, C, U) satisfies axiom I, II and III. Let $E \in S$ then

- (1) E is Outer regular iff for every $\varepsilon > 0$ there exist $U \in \mathcal{U}$ s.t. $E \subset U$ and $\mu(U) \leq \mu(E) + \varepsilon$.
- (2) If for every $\varepsilon > 0$ there exist $C \in \mathcal{C}$ s.t. $C \subset E$ and $\mu(E) \le \mu(C) + \varepsilon$, then E is called Inner regular.
- (3) If E is Inner regular and $\mu(E) < \infty$ then for each $\varepsilon > 0$ there exist $C \in \mathcal{C}$, s.t. $C \subset E$ and $\mu(E) \le \infty$ $\mu(C)+\varepsilon$.

Proof: (1) Suppose E is Outer regular and $\varepsilon > 0$.

Let $\mu(E) = \infty$, By axiom III there exist $U \in \mathcal{U}$ s.t. $E \subset U \Rightarrow \mu(U) \geq \mu(E) = \infty$

 $\Rightarrow \mu(U) = \infty \Rightarrow \mu(U) \leq \mu(E) + \varepsilon$.

Now suppose that $\mu(E) < \infty$, then we have $\mu(E) \le \mu(E) + \varepsilon$ and

 $\mu(E) = \inf\{ \mu(U) / E \subset U \in \mathcal{U} \}$ then by definition of infimum there exist $U \in \mathcal{U}$ s.t. $E \subset U$ and $\mu(U) \leq U$ $\mu(E)$ + ε , shows that the condition is necessary.

Conversely: Assume that the condition is satisfied.

To show that E is Outer regular, Let n be any natural number, By the condition taking $\varepsilon = \frac{1}{n}$ we have $U_n \in$

 $\mathcal{U} \ s.t. \ \mathrm{E} \subset U_{\mathrm{n}} \ \mathrm{and} \ \mu(U_{\mathrm{n}}) \leq \mu(E) + \frac{1}{n}.$ Let $V_n = \bigcap_{i=1}^n U_i$ then $V_n \in \mathcal{U}$, (V_n) is a decreasing sequence and $\mu(E) + \frac{1}{n} \geq \mu(U_n) \geq \mu(V_n) \quad \forall n$ Therefore $\lim_{n \to \infty} \{ \mu(E) + \frac{1}{n} \} \geq \lim_{n \to \infty} \mu(U_n)$

$$\mu(E) + \frac{1}{2} \geq \mu(U_n) \geq \mu(V_n) \quad \forall n$$

 $\Rightarrow \mu(E) \ge \inf\{\mu(U_n)\} \ge \inf\{\mu(V_n)/E \subset V, V \in \mathcal{U}\} \dots (*)$

On the other hand $\mu(E) \leq \mu(V)$ for all V s.t. $E \subset V$, $V \in \mathcal{U}$.

 $\Rightarrow \mu(E) \leq \inf\{ \mu(V)/E \subset V, V \in \mathcal{U} \}$(**)

From (*) and (**) we have $\mu(E) = \inf \{ \mu(V)/E \subset V, V \in \mathcal{U} \}$, shows that E is Outer regular.

(2) And (3) can be proved similarly by using the definition of Supremum.

Preposition: (1) If $\mu(E) = \infty$ then E is Outer regular.

- (2) Every member of \mathcal{U} is Outer regular.
- (3) If $V = \bigcap_{n=1}^{\infty} U_n$, $U_n \in \mathcal{U}$, $\mu(U) < \infty$ then V is Outer regular.

Proof: (1) Let $\mu(E) = \infty$ and $U \in \mathcal{U}$ s.t. $E \subset U$, then $\mu(U) = \infty$

```
\Rightarrow inf\mathbb{Z}\mu(\mathbb{U})/\mathbb{E} \subset \mathbb{U}, \mathbb{U} \in \mathcal{U} = \infty \Rightarrow \mu(E) = \inf \{ \mu(\mathbb{U})/\mathbb{E} \subset \mathbb{U}, \mathbb{U} \in \mathcal{U} \}. Then E is Outer regular.
(2) Let W \in \mathcal{U} then \mu(W) \ge \inf\{\mu(U)/W \subset U, U \in \mathcal{U}\}\
Let U \in \mathcal{U} s.t. W \subset U then (W) \leq \mu(U) \Rightarrow \mu(W) \leq \inf\{\mu(U)/W \subset U, U \in \mathcal{U}\}\
\Rightarrow \mu(W) = \inf \{ \mu(U) / W \subset U, U \in U \}, shows that W is Outer regular.
(3) Let (U_n) be any sequence of members of \mathcal{U} s.t. \mu(U_1) < \infty
Let V = \bigcap_{n=1}^{\infty} U_n, Define V_n = \bigcap_{i=1}^{n} U_i then V_n \in \mathcal{U} and (V_n) \downarrow \bigcap_{n=1}^{\infty} V_n = \bigcap_{n=1}^{\infty} U_n = V

\Rightarrow \mu(V) = \lim_{n \to \infty} \mu(V_n) = \inf\{ \mu(V_n) \} \ge \inf\{ \mu(U) / V \subset U \in \mathcal{U} \}
\Rightarrow \mu(V) \ge \inf\{ \mu(U) / V \subset U \in \mathcal{U} \}
Let U be any member of \mathcal{U} s.t. V \subset U then \mu(V) \leq \mu(U)
\Rightarrow \, \mu(V) \, \leq \inf \{ \, \mu(U) / \, \, V \subset U \in \, \, \mathcal{U} \, \}
From (*) and (**) we get, \mu(V) = \inf\{ \mu(U) / V \subset U \in \mathcal{U} \}
 Shows that V is Outer regular.
Preposition: (1) If \mu(E) = 0 then E is Inner regular.
(2) Every member of \mathcal{C} is Inner regular.
(3) Countable unions of members of \mathcal{C} is Inner regular.
Proof: (1) Let \mu(E) = 0 and C \in \mathcal{C} and C \subset E then \mu(C) \leq \mu(E) \Rightarrow \mu(C) = 0
\Rightarrow \operatorname{Sup}\{ \mu(C)/C \subset E, C \in \mathcal{C} \} = 0 \Rightarrow \mu(E) = \operatorname{Sup}\{ \mu(C)/C \subset E, C \in \mathcal{C} \}.
Hence E is Inner regular.
(2) Let D \in \mathcal{C} then D \subseteq D, and D \in \mathcal{C}
Therefore Sup{ \mu(C)/C \subset D, C \in C} \geq \mu(D)
Also C \subset D \Rightarrow \mu(C) \leq \mu(D) \Rightarrow \sup \{ \mu(C) / C \subset D, C \in \mathcal{C} \} \leq \mu(D) \}
Therefore \mu(D) = \sup \{ \mu(C) / C \subset D , C \in \mathcal{C} \} \Rightarrow D is Inner regular.
(3) Let (D_n) be a sequence of members of \mathcal{C} and D = \bigcup_{n=1}^{\infty} D_n, Define C_n = \bigcup_{j=1}^{n} D_j then C_n \in \mathcal{C} for all n and (C_n)
is monotone increasing sequence with \sum_{n=1}^{\infty} C = \sum_{n=1}^{\infty} D_n = D
\Rightarrow (C_n) \uparrow D \Rightarrow \mu(C_n) \rightarrow \mu(D)
\Rightarrow \mu(D) = \lim_{n \to \infty} \mu(C_n) = \sup \{ \mu(C_n) \} \le \sup \{ \mu(C) / C \subset D, C \in \mathcal{C} \}
\Rightarrow \mu(D) \leq \sup{\{\mu(C)/C \subset D, C \in C\}} On the other hand if C \subset D,
C \in \mathcal{C} then \mu(C) \leq \mu(D)
\Rightarrow Sup{ \mu(C)/C \subset D, C \in \mathcal{C}} \leq \mu(D) \Rightarrow \mu(D) = \text{Sup}{\{\mu(C)/C \subset D, C \in \mathcal{C}\}}
⇒ D is Inner regular.
  Hence the proof.
Theorem: Countable union of outer regular sets is outer regular.
Proof: Let (E_n) be any sequence of outer regular sets and E = \bigcup_{n=0}^{\infty} E_n
If \mu(E) = \infty, then E is outer regular as proved earlier.
Now suppose that \mu(E) < \infty, Let \varepsilon > 0, since E_n are outer regular we can find a set
U_n \in \mathcal{U} s.t. E_n \subset U_n, and \mu(U_n) \leq \mu(E_n) + \frac{\varepsilon}{2n}
Let U = \bigcup_{n=1}^{\infty} U_n, then U \in \mathcal{U} and E \subset U then
\mu(\mathbf{U} - \mathbf{E}) = \mu\left(\left(\bigcup_{n=1}^{\infty} U_{n}\right) - \left(\bigcup_{n=1}^{\infty} E_{n}\right)\right)
   \leq \mu \left( \bigcup_{n=1}^{\infty} (U_n - E_n) \right) \leq \sum_{n=1}^{\infty} \mu (U_n - E_n) = \sum_{n=1}^{\infty} \left[ \mu (U_n) - \mu (E_n) \right] \left[ \text{Because } \mu (E_n) < \infty \right]
\Rightarrow \mu(U - E) \le \varepsilon \Rightarrow \mu(U) \le \mu(E) + \varepsilon \Rightarrow E is outer regular.
```

Theorem: Finite union of outer regular sets is outer regular.

Proof: Let E_1, E_2, \dots, E_k be k outer regular sets and let $E = \bigcup_{i=1}^{K} E_i$, Define $E_n = E_k$ for n > k. Then (E_n) is a sequence of outer regular sets and $\bigcup_{n=1}^{\infty} E_n = \bigcup_{n=1}^{\kappa} E_n = E$.

Hence E is outer regular set by the proceeding theorem.

Theorem: Finite intersection of outer regular sets of finite measure is outer regular.

Proof: Suppose E and F are outer regular sets and $\mu(E) < \infty$ and $\mu(F) < \infty$.

Let $\varepsilon > 0$ be given, by the outer regularity of E, we can find a set $U \in \mathcal{U}$ s.t. $E \subset U$ and $\mu(U) \leq \mu(E) + \frac{\varepsilon}{2}$

Similarly we can find a set $V \in \mathcal{U}$ s.t. $F \subset V$ and $\mu(V) \leq \mu(F) + \frac{\varepsilon}{2}$

Then
$$U \cap V \in \mathcal{U}$$
, $E \cap F \subset U \cap V$ and $\mu[(U \cap V) - (E \cap F)] \le \mu[(U - E) \cup (V - F)]$
 $\le \mu(U - E) + \mu(V - F) = [\mu(U) - \mu(E)] + [\mu(V) - \mu(F)] = \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$

 $\Rightarrow \mu[(U \cap V) - (E \cap F)] \le \varepsilon \Rightarrow E \cap F$ is outer regular.

Theorem: The countable intersection of outer regular sets of finite measure is outer regular.

Proof: Let (E_n) be any sequence of outer regular sets of finite measure and $E = \bigcap_{n=1}^{\infty} E_n$.

To show that E is outer regular.

Let $\varepsilon > 0$, Define $F_n = \bigcap_{j=1}^n E_j$, then (F_n) is a decreasing sequence of outer regular sets and $\lim_{n \to \infty} (F_n) = \bigcap_{n=1}^{\infty} F_n = \bigcap_{n=1}^{\infty} F_n$

$$\bigcap_{n=1}^{\infty} E_n = \text{E. Thus } (F_n) \downarrow \text{E} \text{ and } \mu(F_i) < \infty \text{ for all i.}$$

By continuity of measure for decreasing sequences we obtain that

$$\mu(E) = \lim_{n \to \infty} \mu(F_n) \text{ i.e. } \mu(F_n) \to \mu(E)$$

 \Rightarrow There exist k s.t. $\mu(F_k) \le \mu(E) + \frac{\varepsilon}{2}$, Since F_k is outer regular and $\mu(F_k) < \infty$, we can find

$$U \in \mathcal{U} \text{ s.t. } F_k \subset U \text{ and } \mu(U) \leq \mu(F_k) + \frac{\varepsilon}{2},$$

Thus
$$E \subset U$$
 and $\mu(U - E) = \mu[(U - F_k) \cup (F_k - E)]$

$$\leq \mu(\mathbf{U} - \mathbf{F}_{\mathbf{k}}) + \mu(\mathbf{F}_{\mathbf{k}} - \mathbf{E}) \leq \mu(\mathbf{U}) - \mu(\mathbf{F}_{\mathbf{k}}) + \mu(\mathbf{F}_{\mathbf{k}}) - \mu(\mathbf{E}) = \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

 $\Rightarrow \mu(U - E) < \varepsilon$, Shows that E is outer regular.

Theorem: Finite union of inner regular sets is inner regular.

Proof: Let E and F be two inner regular sets. To show that EUF is also inner regular.

(1) Let
$$\mu(E) = \infty$$
, then Sup{ $\mu(C) / E \supset C \in \mathcal{C}$ } = ∞

$$\Rightarrow$$
 Sup{ $\mu(C)/C \subset E \cup F, C \in C$ } = ∞

The fact $\mu(E) = \infty$ gives that $\mu(E \cup F) = \infty \Rightarrow \mu(E \cup F) = \sup{\{\mu(C)/C \subset E \cup F, C \in C\}}$

 \Rightarrow E U F is inner regular.

- (2) Let $\mu(F) = \infty$, then the argument is same as above.
- (3) Finally suppose that $\mu(E) < \infty$, $\mu(F) < \infty$, Consider any $\varepsilon > 0$, as E is inner regular and $\mu(E) < \infty$ ∞ , therefore there exist $C \in \mathcal{C}$ s.t. $C \subset E$ and $\mu(E) < \mu(C) + \frac{1}{2}$

By the same argument there exist D, D \subset F and $\mu(F) < \mu(D) + \cdots$

Now $C \cup D \in \mathcal{C}$, $C \cup D \subset E \cup F$ and $\mu[(E \cup F) - (C \cup D)] \le \mu[(E - C)] + \mu[(F - D)]$ $\le \mu[(E - C)] + \mu[(F - D)] = \mu(E) - \mu(C) + \mu(F) - \mu(D) \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$

$$\leq \mu[(E-C)] + \mu[(F-D)] = \mu(E) - \mu(C) + \mu(F) - \mu(D) \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \frac{\varepsilon}{2}$$

$$\Rightarrow \mu[(E \cup F) - (C \cup D)] \le \varepsilon \Rightarrow \mu(E \cup F) \le \mu(C \cup D) + \varepsilon \Rightarrow E \cup F$$
 is inner regular.

Theorem: The countable union of Inner regular sets is Inner regular.

Proof: Let (E_n) be any sequence of inner regular sets and $E = \bigcup_{n=1}^{\infty} E_n$,

Let $F_n = \bigcup_{i=1}^n E_i$, then in view of the above theorem F_n is inner regular for all n. Also F_n is monotonic increasing

sequence and
$$\lim_{n\to\infty} (F_n) = \bigcup_{n=1}^{\infty} F_n = \bigcup_{n=1}^{\infty} E_n = E$$

i.e. $(F_n) \uparrow F \to \mu(F_n) \to \mu(F_n)$

As F_k is inner regular, we have $\mu(F_k) = \sup \{ \mu(C) / C \subset F_k, C \in C \}$ and $C \subset F_k \subset E$

$$\Rightarrow$$
 C \in C, C \subset E and μ (C) $>$ n \Rightarrow Sup{ μ (C)/ E \supset C \in C} = ∞

$$\Rightarrow \mu(E) = \sup \{ \mu(C) / E \supset C \in C \} \Rightarrow E \text{ is inner regular.}$$

Case(2) Let $\mu(E) < \infty$, Then take $\varepsilon > 0$, as $\mu(E) < \infty$ and $\mu(F_k) \to \mu(E)$, we can find k s.t.

 $\mu(F_k) \leq \mu(E) + \frac{\varepsilon}{2}$, for inner regularity of F_k , we can find $D \in \mathcal{U}$ s.t. $D \subset F_k$

And
$$\mu(F_k) < \mu(D_k) + \frac{\varepsilon}{2}$$
,

Then
$$\mu(E-D) = \mu[(E-F_k) \cup (F_k-D)] = \mu(E) - \mu(F_k) + \mu(F_k) - \mu(D) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

 $\Rightarrow \mu(E-D) < \varepsilon \Rightarrow \mu(E) - \mu(D) < \varepsilon \Rightarrow \mu(E) < \mu(D) + \varepsilon$, Proves that E is inner regular.

Theorem: Countable intersection of inner regular sets of finite measure is inner regular.

Proof: Let (E_n) be any sequence of inner regular sets s.t. $\mu(E_n) < \infty, \forall n$.

Let
$$E = \bigcap_{n=1}^{\infty} E_n$$
, Let $\varepsilon > 0$, Since E_n is inner regular and $\mu(E_n) < \infty$, we can find a set $C_n \in \mathcal{C}$ s.t. $C_n \subset E_n$ and $\mu(E_n) < \mu(C_n) + \frac{\varepsilon}{2^n}$, Define $C = \bigcap_{n=1}^{\infty} C_n$, Then $C \in \mathcal{C}$, $C \subset E$

$$\mu(E_n) < \mu(C_n) + \frac{\varepsilon}{2n}$$
, Define $C = \int_{n-1}^{\infty} C_n$, Then $C \in \mathcal{C}$, $C \subset E$

and
$$\mu(E-C) = \mu\left[\left(\bigcap_{n=1}^{\infty} E_n\right) - \left(\bigcap_{n=1}^{\infty} C_n\right)\right] \le \mu\left(\bigcup_{n=1}^{\infty} (E_n - C_n)\right) \le \sum_{n=1}^{\infty} \mu(E_n - C_n)$$

$$\leq \sum_{1}^{\infty} \mu(E_n) - \sum_{1}^{\infty} \mu(C_n) \leq \sum_{1}^{n=1}^{\infty} \frac{\varepsilon}{2^n} = \varepsilon$$

$$\Rightarrow \mu(E) - \mu(C) < \varepsilon \Rightarrow \mu(E) < \mu(C) + \varepsilon \Rightarrow E \text{ is inner regular.}$$

Theorem: Finite intersection of inner regular sets of finite measure is inner regular.

Proof: Let E_1, E_2, \dots, E_k be finitely many inner regular sets with $\mu(E_i) < \infty$ for $1 \le i \le k$

Define $E_n = E_k$ for n > k.

Then (E_n) is a sequence of inner regular sets with $\mu(E_n) < \infty$ for all n.

By the proceeding theorem $\bigcap_{n=1}^{\infty} E_n$ is inner regular.

But
$$\bigcap_{n=1}^{\infty} E_n = \bigcap_{n=1}^{k} E_n \Rightarrow \bigcap_{n=1}^{k} E_n$$
 is inner regular.

Note: From the above said theorems we can say that

- (1) Countable union of regular sets is regular.
- (2) Finite union of regular sets is regular.
- (3) Countable intersection of regular sets of finite measure is regular.
- (4) Finite intersection of regular sets of finite measure is regular.

Properties of Baire Measure

Remark: Let v be any Baire measure on L.C.H. space X, Ω be the σ -ring of Baire sets, Let \mathcal{C} denote the class of compact G_{δ} sets and \mathcal{U} be the class of open Baire sets. Then axioms I,II,III are satisfied.

Proof: (1) Axiom (I) is obvious.

(2) $\phi \in \mathcal{C}$, Let A,B $\in \mathcal{C}$, then A and B are compact G_{δ} sets \Rightarrow A \cap B is compact G_{δ} set, A \cup B is also compact G_{δ} set \Rightarrow A \cap B, A \cup B \in C.

By $v(C) < \infty \ \forall \ C \in C$, By definition of Baire measure.

Let (C_n) be any sequence of members of C and $C = \bigcap_{n=1}^{\infty} C_n$, Since each C_n is compact, C is closed and $C \subset C_n \Rightarrow$ C is compact. As countable intersection of G_{δ} sets is G_{δ} set,

Hence $C \in \mathcal{C}$. Therefore axiom II is satisfied.

(3) Let A, B $\in \mathcal{U}$, then A and B are open Baire sets \Rightarrow A \cap B is open Baire set \Rightarrow A \cap B $\in \mathcal{U}$.

Let (A_n) be any sequence of members of \mathcal{U} and $A = \bigcup_{n=1}^{\infty} A_n$, Since A_n are open for all n and union of open sets is

open, it follows that A is open. $A_n \in \Omega \Rightarrow \bigcup_{n=1}^{\infty} A_n \in \Omega \Rightarrow A \in \Omega$,

Thus A is a open Baire set \Rightarrow A \in \mathcal{U} . Let E \in Ω . Since $\Omega = \mathfrak{S}(\mathcal{C})$, we have E $\subset \bigcup_{n=1}^{\infty} K_n$, where $K_n \in \mathcal{C} \forall n$ $\Rightarrow K_n \subset X \forall n.$

There exist an open Baire set V_n s.t. $K_n \subset V_n$ [By Sandwich Theorem]

Let $V = \bigcup_{n=1}^{\infty} V_n$, then V is an open Baire set and hence $V \in \mathcal{U}$. From $E \subset \bigcup_{n=1}^{\infty} K_n \Rightarrow E \subset V$ and $V \in \mathcal{U}$. Shows that axiom III is also satisfied.

Definition: Let v be any Baire measure on X, C be the class of compact G_{δ} sets and U be the class of open Baire sets. If v be inner regular w.r.t. \mathcal{C} and outer regular w.r.t. \mathcal{U} then v is called a **Regular Baire Measure** i.e. v is called regular if it is regular w.r.t. (X, Ω, v, C, U) where C is the class of G_{δ} sets and U be the class of open Baire sets.

Theorem: Let C be any compact G_{δ} set then C is regular.

Proof: As proved earlier that every member of \mathcal{C} is inner regular. Therefore it is enough to show that C is outer regular.

DOI: 10.9790/5728-12123444 37 | Page www.iosrjournals.org

As C is a G_{δ} set, therefore there exist a sequence (U_n) of open sets s.t. $C = \bigcap_{n=1}^{\infty} U_n$

 \Rightarrow C \subset U_n , C is compact, U_n is open for all n.

Hence by Baire Sandwich Theorem there exists Baire sets V_n and D_n s.t. $C \subset V_n \subset D_n \subset U_n$.

 V_n is open, D_n is compact G_δ set, Obviously $C = \bigcap_{n=1}^\infty V_n$, V_n is open Baire set $\Rightarrow V_n \in \mathcal{U}, \forall n$.

 $\Rightarrow V_n$ is outer regular for all n.

As $V_n \subset D_n$ and $v(D_n) < \infty \ \forall \ n$, It follows that $\bigcap_{n=1}^{\infty} V_n$ is outer regular, Shows that C is outer regular. Follows that C is regular.

Theorem: Let C and D be compact G_{δ} sets, then C-D is regular.

Case (1): Assume that $C \supset D$, since D is a G_{δ} set there exist a sequence (U_n) of open sets s.t. $D = \bigcap_{n=1}^{\infty} U_n \Rightarrow$ $D \subset U_n$ for all $n \Rightarrow$ There exist open Baire set V_n s.t. $D \subset V_n \subset U_n$ for all n and V_n is a countable union of compact G_δ sets. [By Baire Sandwich Theorem]

compact
$$G_{\delta}$$
 sets. [By Baire Sandwich Theorem]

Obviously $D = \bigcap_{n=1}^{\infty} V_n$, Hence $C - D = C - (\bigcap_{n=1}^{\infty} V_n) = C \cap (\bigcap_{n=1}^{\infty} V_n)^c = C \cap (\bigcap_{n=1}^{\infty} V_n^c)$

$$= \bigcup_{n=1}^{\infty} (C \cap V_n^c) = \bigcup_{n=1}^{\infty} (C - V_n)$$

$$= \bigcup_{n=1}^{\infty} (\mathsf{C} \cap \mathsf{V}_n^c) = \bigcup_{n=1}^{\infty} (\mathsf{C} - \mathsf{V}_n)$$

$$\Rightarrow$$
 C-D = $\bigcup_{n=1}^{\infty}$ (C- V_n)

As V_n is open is open and countable union of compact G_δ sets, it follows that V_n^c is closed G_δ set. $\Rightarrow X - V_n$ is closed G_δ set $\Rightarrow C \cap (X - V_n)$ is compact G_δ set $\Rightarrow C - V_n$ is compact G_δ set

$$\Rightarrow \text{C-}V_n \text{ is regular} \Rightarrow \bigcup_{n=1}^{\infty} \left(\text{C-}V_n\right) \text{ is regular} \Rightarrow \text{C-D is regular}.$$

Case (2): Let C and D be any compact G_{δ} sets, Define E = C \cap D then C-D = C-E \Rightarrow C \cap D is compact G_{δ} set, then $C \supset E$ and C and E are compact G_{δ} sets, therefore from case (1) C-E is regular \Rightarrow C-E = C-D is regular.

Theorem: Every Baire measure is regular.

Proof: Let ν be any Baire measure Ω be the σ -ring of Baire sets, \mathcal{C} be the class of compact G_{δ} sets, \mathcal{U} be the class of open Baire sets.

Let \mathcal{R} be the ring generated by \mathcal{C} , then every member of \mathcal{R} is of the type $\bigcup_{i=1}^{n} (A_i - B_i)$ where A_i and B_i are members of \mathcal{C} i.e. compact G_{δ} sets and $A_i \supset B_i$ and $A_i - B_i$ are disjoint for

Since difference of compact G_δ sets is regular $\Rightarrow A_i - B_i$ is regular for each i

$$\Rightarrow \bigcup_{i=1}^{n} (A_i - B_i)$$
 is regular.

Thus every member of $\mathcal R$ is regular(1)

Let C be any compact G_{δ} set. Define $\mathcal{M} = \{E \in \Omega / C \cap E \text{ is regular}\}\$

Let $A \in \mathcal{R}$, then A is regular from (1), Also C is regular [Because compact G_{δ} set]

Hence $C \cap A$ is regular $\Rightarrow A \in \mathcal{M}$

Shows that
$$\mathcal{R} \subset \mathcal{M}$$
(2)

$$\Rightarrow \bigcup_{n=1}^{\infty} (C \cap E_n)$$
 is regular $\Rightarrow C \cap (\bigcup_{n=1}^{\infty} E_n)$ is regular $\Rightarrow \bigcup_{n=1}^{\infty} E_n \in \mathcal{M}$

Let (E_n) be any increasing sequence of members of \mathcal{M} then $\mathbb{C} \cap E_n$ is regular for all n. $\Rightarrow \bigcup_{n=1}^{\infty} (\mathbb{C} \cap E_n) \text{ is regular } \Rightarrow \mathbb{C} \cap (\bigcup_{n=1}^{\infty} E_n) \text{ is regular } \Rightarrow \bigcup_{n=1}^{\infty} E_n \in \mathcal{M}.$ Let (F_n) be any decreasing sequence of members of \mathcal{M} then $\mathbb{C} \cap F_n$ is regular for all n and $v(\mathbb{C} \cap F_n) \leq \mathbb{C} \cap \mathbb{C}$ $v(C) < \infty$

$$\Rightarrow \bigcap_{n=1}^{\infty} (C \cap F_n)$$
 is regular $\Rightarrow C \cap (\bigcap_{n=1}^{\infty} F_n)$ is regular $\Rightarrow \bigcap_{n=1}^{\infty} F_n \in \mathcal{M}$

 $\Rightarrow \bigcap_{n=1}^{\infty} (C \cap F_n) \text{ is regular} \Rightarrow C \cap (\bigcap_{n=1}^{\infty} F_n) \text{ is regular} \Rightarrow \bigcap_{n=1}^{\infty} F_n \in \mathcal{M}.$ Shows that \mathcal{M} is closed for monotone limits, Hence \mathcal{M} is the monotone class. From (2) we have $\mathcal{R} \subset \mathcal{M}$

Therefore by lemma on monotone classes we have $\mathfrak{S}(\mathcal{R}) \subset \mathcal{M} \to \Omega \subset \mathcal{M} \to C \cap E$ is regular $\forall E$

Let E be any Baire set. Then $E \in \Omega$ and $\Omega = \mathfrak{S}(\mathcal{C}) \Rightarrow E = \bigcup_{n=1}^{\infty} K_n$ where $K_n \in \mathcal{C} \ \forall \ n$.

i.e.
$$K_n$$
 is a compact G_δ set \forall n. Thus $E = E \cap (\bigcup_{n=1}^\infty K_n) = \bigcup_{n=1}^\infty (E \cap K_n)$

i.e. K_n is a compact G_δ set \forall n. Thus $E = E \cap (\bigcup_{n=1}^\infty K_n) = \bigcup_{n=1}^\infty (E \cap K_n)$ From (3) we have $E \cap K_n$ is regular \forall n $\Rightarrow \bigcup_{n=1}^\infty (E \cap K_n)$ is regular \Rightarrow E is regular \forall E $\in \Omega$

Prove that v is regular.

Properties of Borel Measures:

Definition: Let X be L.C.H. space, Λ be the σ -ring of Borel sets, μ be the Borel measure, \mathcal{C} be the class of compact sets and \mathcal{U} be the class of open Borel sets. If μ is regular w.r.t. the system $(X, \Lambda, \mu, C, \mathcal{U})$. Then μ is regular Borel Measure.

Preposition: Let X be L.C.H. space, \wedge be the σ -ring of Borel sets, μ be the Borel measure, \mathcal{C} be the class of compact sets and \mathcal{U} be the class of open Borel sets. Then $(X, \Lambda, \mu, \mathcal{C}, \mathcal{U})$ satisfies axiom I,II,III.

Proof: Axiom I is obviously satisfied.

Axiom II: $\in \mathcal{C}$, as ϕ is compact.

Let A, B $\in \mathcal{C}$ then A and B are compact sets. \Rightarrow AU B is compact \Rightarrow AU B $\in \mathcal{C}$.

Let (A_n) be any sequence of members of \mathcal{C} . Let $A = \bigcap_{n=1}^{\infty} A_n$, since A_n is closed set. As $A \subset A_n$, A_n is compact, It follows that A is compact $\Rightarrow A \in \mathcal{C}$. The measure μ is finite on \mathcal{C} . Hence by definition Axiom II is also satisfied.

Axiom III: Let A, B $\in \mathcal{U}$ then A and B are open Borel sets. \Rightarrow A \cap B is open Borel set \Rightarrow A \cap B $\in \mathcal{U}$.

Let (A_n) be any sequence of members of \mathcal{U} . Let $E = \bigcup_{n=1}^{\infty} A_n$, since A_n are open Borel sets. $\Rightarrow \bigcup_{n=1}^{\infty} A_n$ is open

Borel set $\Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{U}$.

Finally consider any Borel set S, then $S \in \Lambda$ and $\Lambda = \mathfrak{S}(\mathcal{C}) \Rightarrow S \subset \bigcup_{n=1}^{\infty} K_n$ where $K_n \in \mathcal{C}$ for all n.

By Baire Sandwich Theorem there exist an open Baire set V_n such that $K_n \subset V_n \subset X$ for all n. Let $V_n = \bigcup_{n=1}^{\infty} V_n$, then V is an open Baire set and $S \subset \bigcup_{n=1}^{\infty} K_n \subset \bigcup_{n=1}^{\infty} V_n$ i.e. $S \subset V$. Since every Baire set is a Borel set, we have $S \subset V$ and $V \in U$.

Proves that axiom III is satisfied.

Theorem: Let μ be any regular Borel measure and C be any compact set, then there exist a compact G_{δ} set D s.t. $C \subset D$ and $\mu(C) = \mu(D)$.

Proof: Since μ is regular, the set C is regular, hence C is outer regular, therefore for any natural number n there exist an open Borel set U_n s.t. $C \subset U_n$ and $\mu(U_n) \leq \mu(C) + \frac{1}{n}$

$$\Rightarrow \mu(C) \leq \mu(U_n) \leq \mu(C) + \frac{1}{n}$$

$$\Rightarrow \mu(C) \le \inf\{\mu(U_n)\} \le \inf\{\mu(C) + \frac{1}{n}\} \Rightarrow \mu(C) \le \inf\mu(U_n) \le \mu(C)$$

$$\Rightarrow \mu(C) = \inf \mu(U_n) \qquad \qquad \dots \dots \dots (*)$$

 $\Rightarrow \mu(C) = \inf \mu(U_n)$ (*) Since C is compact contained in U_n then by Baire Sandwich Theorem there exist a compact G_δ set D_n s.t. C $\subset D_n \subset U_n$.

Let $D = \bigcap_{n=1}^{\infty} D_n$ then D is compact G_{δ} set and $C \subset D$.

From $C \subset D \subset U_n$ for all n, we get $\mu(C) \leq \mu(D) \leq \mu(U_n)$ for all n

- $\Rightarrow \mu(C) \le \mu(D) \le Inf \mu(U_n)$ for all n
- $\Rightarrow \mu(C) \le \mu(D) \le \mu(C) \Rightarrow \mu(C) = \mu(D)$, Proved.

Theorem: Let μ_1 , μ_2 be two Borel measures and $\mu_1(\mathcal{C}) = \mu_2(\mathcal{C})$ for every compact set \mathcal{C} then $\mu_1 = \mu_2$. **Proof:** Let \mathcal{C} be the class of compact subsets of \mathcal{X} , \mathcal{R} be the ring generated by \mathcal{C} then every member of \mathcal{R} is of the form $\bigcup_{i=1}^{n} (A_i - B_i)$ where $A_i, B_i \in \mathcal{C}$, $A_i \supset B_i$ and $A_i - B_i$ are disjoint.

Let
$$A \in \mathcal{R}$$
 and $A = \bigcup_{i=1}^{n} (A_i - B_i)$, then $\mu_1(A) = \sum_{i=1}^{n} \mu_1(A_i - B_i)$

$$= \sum_{i=1}^{n} [\mu_1(A_i) - \mu_1(B_i)] \qquad [\text{Because } \mu_1 \text{ is finite on } \mathcal{C}]$$

$$= \sum_{i=1}^{n} [\mu_2(A_i) - \mu_2(B_i)] \qquad [\text{Because } \mu_1 = \mu_2 \text{ on } \mathcal{C}]$$

$$= \sum_{i=1}^{n} [\mu_1(A_i) - \mu_1(B_i)]$$
 [Because

$$= \sum_{i=1}^{n} [\mu_2(A_i) - \mu_2(B_i)]$$
 [Becaus

$$= \sum_{i=1}^{n} \mu_2(A_i - B_i) = \mu_2[\bigcup_{i=1}^{n} (A_i - B_i)] = \mu_2(A), \text{ shows that } \mu_1 = \mu_2 \text{ on } \mathcal{R}.$$

By Caratheodory's Extension Theorem $\mu_1 = \mu_2$ on $\mathfrak{S}(\mathcal{R}) \Rightarrow \mu_1 = \mu_2$ on $\mathfrak{S}(\mathcal{C})$

i.e. $\mu_1 = \mu_2$ on σ -ring of Borel sets.

Remark: By the above theorem we show that a Borel measure is uniquely determined by its values on compact sets. It should be noted that a Borel measure may not be uniquely fixed by its values on compact G_{δ} sets. However the result holds in case of regular Borel measures.

Theorem: Let μ_1 , μ_2 be two Regular Borel Measures and $\mu_1(D) = \mu_2(D)$ for every compact G_δ set D then $\mu_1(E) = \mu_2(E)$ for every Borel set E.

Proof: To prove that $\mu_1(E) = \mu_2(E)$ for every Borel set E it is enough to prove that $\mu_1(C) = \mu_2(C)$ for every compact set C.

Let C be any compact set, since μ_1 is regular Borel measure we can find a compact G_δ set D_1 such that C $\subset D_1$ and $\mu_1(C) = \mu_2(D_1)$ (1)

By the same argument we can find a compact G_{δ} set D_2 such that $C \subset D_2$ and

 $\mu_2(C) = \mu_2(D_2)$ (2)

Define $D = D_1 \cap D_2$, then D is a compact G_δ set and $C \subset D_1$ and $C \subset D_2 \Rightarrow C \subset D$.

 $\Rightarrow \mu_1(C) \le \ \mu_1(D_1) \le \mu_1(D) = \mu_2(D) \le \ \mu_2(D_2) = \mu_2(C) \Rightarrow \mu_1(C) \le \mu_2(C)$

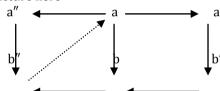
By the same argument we get $\mu_2(C) \le \mu_1(C)$.

Hence $\mu_1(C) = \mu_2(C)$, this completes the proof.

Theorem: Let μ_1 , μ_2 be two Regular Borel Measures then the following statements are equivalent

- (a) $\mu_1(E) = \mu_2(E)$ for every Borel set E.
- (a') $\mu_1(C) = \mu_2(C)$ for every compact set C.
- (a") $\mu_1(U) = \mu_2(U)$ for every open bounded set U.
- (b) $\mu_1(F) = \mu_2(F)$ for every Baire set F.
- (b') $\mu_1(D) = \mu_2(D)$ for every compact G_δ set D.
- (b'') $\mu_1(F) = \mu_2(F)$ for every open bounded Baire set F.

Proof: For the proof we draw a picture here



From the picture it is obvious that we simply need to prove that $(b^{''}) \rightarrow (a)$

Suppose that $(b^{''})$ holds, to show that $\mu_1 = \mu_2$

For this it is enough to prove that $\mu_1(D) = \mu_2(D)$ for every compact G_δ set D.

As μ_1 and μ_2 are regular, so consider any compact G_{δ} set D, Let $D = \bigcap_{n=1}^{\infty} U_n$, where U_n are open sets.

By Baire sandwich theorem, for every n there exist an open Baire set V_n and a compact G_δ set D_n such that $D \subset V_n \subset D_n \subset U_n \Rightarrow D = \bigcap_{n=1}^{\infty} V_n$, V_n is open bounded Baire set because $V_n \subset D_n$ and D_n are compact.

Define $W_n = \bigcap_{i=1}^n V_i$, then (W_n) is a decreasing sequence of open bounded and Baire sets and

$$\bigcap_{n=1}^{\infty} W_n = \bigcap_{n=1}^{\infty} V_n = D \Rightarrow (W_n) \downarrow D \Rightarrow \mu_1(D) = \lim_{n \to \infty} \mu_1(W_n) \text{ and } \mu_2(D) = \lim_{n \to \infty} \mu_2(W_n)$$

But $\mu_1(W_n) = \mu_2(W_n)$ for all n from the supposition.

Hence $\lim_{n\to\infty} \mu_1(W_n) = \lim_{n\to\infty} \mu_2(W_n) \Rightarrow \mu_1(D) = \mu_2(D)$ for all compact G_δ set D.

 $\Rightarrow \mu_1(E) = \mu_2(E)$ for every Baire set E. Proved.

Note: The above theorem, in addition brings out the fact that a Baire measure can have at the most one extension to a Regular Borel Measure. It will be proved here that every Baire measure can be extended to a regular Borel measure. This will settle the question that every Baire measure possess a unique extension to a regular Borel measure.

Definition: If U- C $\in \mathcal{U}$ for every U $\in \mathcal{U}$ and C $\in \mathcal{C}$, then we say that $(X, \mathcal{S}, \mu, \mathcal{C}, \mathcal{U})$ satisfy axiom IV.

Theorem: Suppose (X, S, μ, C, U) satisfies axiom I to IV and every member of C is outer regular then C-D is outer regular foe every C and D $\in C$.

Proof: Assume first that $C \supset D$, then from the hypothesis of the theorem C is outer regular, Let $\varepsilon > 0$, we can find $V \in \mathcal{U}$ s.t. $C \subset V$ and $\mu(U) \leq \mu(C) + \varepsilon$.

As axiom IV be satisfied, it follows that $U-D \in \mathcal{U}$.

Also
$$\mu[(U-D)-(C-D)] = \mu[(U-C)] = \mu(U) - \mu(C) \le \varepsilon$$
. [Because $\mu(C) < \infty$] $\Rightarrow \mu[(U-D)-(C-D)] \le \varepsilon \Rightarrow \mu[(U-D)] \le \mu[(C-D)] + \varepsilon$

Shows that C-D is outer regular.

Now suppose that C and D be any members of C.

Define $E = C \cap D$ then $C-D = C-(C \cap D) = C-E$, Since $C \in C$, $E = C \cap D \in C$ and $C \supset E$.

It follows from above that C-E is outer regular \Rightarrow C-D is outer regular.

Definition: Let $A \subseteq X$, Suppose there exist $C \in \mathcal{C}$ s.t. $A \subseteq C$, then A is said to be bounded.

Definition: Suppose every member of \mathcal{C} is conained in a bounded member of \mathcal{U} , i.e. for every $C \in \mathcal{C}$ there exist $U \in \mathcal{U}$, $D \in \mathcal{C}$ s.t. $C \subset U \subset D$, Then we say that $(X, \mathcal{S}, \mu, \mathcal{C}, \mathcal{U})$ satisfies axiom V.

Theorem: Suppose (X, S, μ, C, U) satisfies axioms I to V, assume that every bounded member of U is inner regular, then C-D is inner regular for all C and D $\in \mathcal{C}$.

Proof: Let C and D $\in \mathcal{C}$, assume that C \supset D. Let $\varepsilon > 0$, by axiom V there exist a bounded member U $\in \mathcal{U}$ s.t. $C \subset U$. By axiom IV, $U - D \in \mathcal{U}$, also U - D is bounded.

By hypothesis of the theorem U-D is inner regular.

Let $\varepsilon > 0$, Let $E \in \mathcal{C}$ s.t. $E \subset U$ -D

And $\mu[(U-D)] \le \mu(E) + \varepsilon$, $C \cap E \subset C$ -D and $C \cap E \in \mathcal{C}$ also (C-D)- $(C \cap E) \subset U$ - D-E

 $\Rightarrow \mu[(C-D) - (C \cap E)] \leq \mu[(U-D) - E]$

 $=\mu[(U-D)]-\mu[(E)] \le \varepsilon$ [Because $\mu(C) < \infty, E \in C$]

 $\Rightarrow \mu$ (C-D) $\leq \mu$ (C \cap E) + ε , shows that C-D is inner regular.

Now suppose that C and D are any members of \mathcal{C} , Let $E = C \cap D$ then $E \in \mathcal{C}$, $C \supset E$ therefore C-E is inner regular, But C - E = C-D, Hence C-D is inner regular.

Definition: Suppose C-V $\in \mathcal{C}$ for all $C \in \mathcal{C}$, $U \in \mathcal{U}$, then we say that $(X, \mathcal{S}, \mu, \mathcal{C}, \mathcal{U})$ satisfies axiom VI.

Theorem: Suppose axiom I to VI are satisfied, then the following statements are equivalent.

- (a) Every member of C is outer regular.
- (b) Every bounded member of \mathcal{U} is inner regular.

Proof: Suppose (a) is true. Let U be any bounded member of \mathcal{U} . Let $C \in \mathcal{C}$ s.t. $U \subset C$, then by axiom VI, C-U $\in \mathcal{C}$. By supposition C- U is outer regular.

Let $\varepsilon > 0$, then there exist $V \in \mathcal{U}$ s.t. $C-U \subset V$ and $\mu [V-(C-U)] \le \varepsilon$ (1)

From $U \subset C$ and $C-U \subset V$ we get $U - (C-V) \subset V - (C-U)$

Therefore $\mu [U-(C-V)] \le \mu [V-(C-U)] \le \varepsilon$ [From (1)]

 $\Rightarrow \mu(U) \le \mu(C-V) + \varepsilon$ and $C-V \in C$, $C-V \subset U$, Shows that U is inner regular, Hence (a) \Rightarrow (b).

Further Let (b) holds, to show that (a) is true, let $C \in \mathcal{C}$. By the axiom V, there exist a bounded member U of \mathcal{U} s.t. $C \subset U$, But by axiom IV we get $U - C \in \mathcal{U}$,

Also U- C is bounded and by supposition U-C is inner regular.

Let $\varepsilon > 0$, by inner regularity we can find $D \in \mathcal{C}$ s.t. $D \subset U$ - C and $\mu [(U-C)-D] \leq \varepsilon$ (2)

By axiom IV, U-D $\in \mathcal{U}$, From C \subset U, D \subset U-C, we get C \subset U-D and

 $\mu [(U-D)-C] = \mu [(U-C)-D] \le \varepsilon [From (2)]$

 $\Rightarrow \mu (U-D) \le \mu (C) + \varepsilon$, V-D $\in \mathcal{U}$ and $C \subset U-D$, Shows that C is outer regular.

Hence (b) \Rightarrow (a).

Definition: Suppose $S = \mathfrak{S}(\mathcal{C})$, then we say that $(X, S, \mu, \mathcal{C}, \mathcal{U})$ satisfies axiom VII.

Theorem: Suppose $(X, S, \mu, C, \mathcal{U})$ satisfies axioms I to VII, then the following statements are equivalent.

- (a) μ is regular.
- (b) Every member of \mathcal{C} is outer regular.
- (c) Every bounded member of \mathcal{U} is inner regular.

Proof: In proceeding theorems we proved that (b) \Leftrightarrow (c), Thus obviously (a) \Rightarrow (b) and (a) \Rightarrow (c), therefore it is enough to prove that $(c) \Rightarrow (a)$.

Suppose that (c) holds, then (b) is also true, to show that (a) holds.

Let \mathcal{R} be the ring generated by \mathcal{C} . Let $S \in \mathcal{R}$ then $S = \bigcup_{i=1}^{n} (A_i - B_i)$ where $A_i, B_i \in \mathcal{C}$, It is earlier proved that C-D is regular for all C and $D \in \mathcal{C}$. Hence $A_i - B_i$ is regular for each i.

$$\Rightarrow \bigcup_{i=1}^{n} (A_i - B_i)$$
 is regular \Rightarrow S is regular for every S $\in \mathcal{R}$(1)

Consider any $C \in \mathcal{C}$ define $\mathcal{M} = \{ E \in \mathcal{S} / C \cap E \text{ is regular } \}$, If $S \in \mathcal{R}$ then S is regular, As $C \in \mathcal{C}$ and every member of \mathcal{C} is outer regular hence regular, it follows that C is regular. This implies that $C \cap S$ is regular \Rightarrow S $\in \mathcal{M}$. Shows that $\mathcal{R} \subset \mathcal{M}$(2)

Let (E_n) be any increasing sequence of members of \mathcal{M} .

Then $C \cap E_n$ is regular for all n. Therefore $\bigcup_{n=1}^{\infty} (C \cap E_n)$ is regular. This implies that $C \cap (\bigcup_{n=1}^{\infty} E_n)$ is regular $\Rightarrow \bigcup_{n=1}^{\infty} E_n \in \mathcal{M} \Rightarrow \lim_{n \to \infty} (E_n) \in \mathcal{M}$(*)

$$C \cap (\bigcup_{n=1}^{\infty} E_n)$$
 is regular $\Rightarrow \bigcup_{n=1}^{\infty} E_n \in \mathcal{M} \Rightarrow \lim_{n \to \infty} (E_n) \in \mathcal{M}$(*)

Let (F_n) be any decreasing sequence of of members of $\mathcal M$ then $\mathsf C\cap F_n$ is regular for all n. Therefore $\bigcap_{n=1}^{\infty} (C \cap F_n)$ is regular. This implies that $C \cap (\bigcap_{n=1}^{\infty} F_n)$ is regular.

$$\Rightarrow \bigcap_{n=1}^{n=1} F_n \in \mathcal{M} \Rightarrow \lim_{n \to \infty} (F_n) \in \mathcal{M}.$$

$$= \prod_{n=1}^{n=1} F_n \in \mathcal{M} \Rightarrow \lim_{n \to \infty} (F_n) \in \mathcal{M}.$$

$$= \prod_{n=1}^{n=1} F_n \in \mathcal{M} \Rightarrow \lim_{n \to \infty} (F_n) \in \mathcal{M}.$$

From (*) and (**) we note that \mathcal{M} is closed for monotone limits of its members, therefore \mathcal{M} must be a monotone class.

From (2) we have
$$\mathcal{R} \subset \mathcal{M} \Rightarrow \mathfrak{S}(\mathcal{R}) \subset \mathcal{M} \quad \{\text{By L.M.C.}\} \Rightarrow \mathfrak{S}(\mathcal{C}) \subset \mathcal{M}$$

 $\Rightarrow S \subset \mathcal{M} \{Axiom VII\}$

 \Rightarrow Cn E is regular for every E \in S(3) Let A \in S , as $S = \mathfrak{S}(\mathcal{C})$, every member of S is contained in a countable union of members of \mathcal{C} .

Therefore
$$A \subset_{n=1}^{\infty} K_n$$
, where $K_n \in \mathcal{C} \forall n$.
This gives $A = A \cap \left(\bigcup_{n=1}^{\infty} K_n\right) = \bigcup_{n=1}^{\infty} (A \cap K_n)$

From (3) we see that $A \cap K_n$ is regular for every n. This gives that $\bigcup_{n=1}^{\infty} (A \cap K_n)$ is regular.

 \Rightarrow A is regular \forall A \in S, that means μ is regular and this completes the proof.

Theorem: Let μ be a Borel measure on X, then the following statements are equivalent.

- (a) μ is regular.
- (b) Every compact set is outer regular.
- (c) Every bounded open Borel set is inner regular.

Proof: Let \wedge be the σ -ring of Borel sets, \mathcal{C} be the class of compact sets, \mathcal{U} be the class of open Borel sets of X. It is proved earlier that (X, Λ, μ, C, U) satisfies axioms I, II, III.

Now we have

Axiom IV: Let $U \in \mathcal{U}$ and $C \in \mathcal{C}$, then C is compact \Rightarrow C is closed \Rightarrow \mathcal{C}^c is open.

Since U is open we get $U \cap C^c$ is open \Rightarrow U-C is open. Also U-C is Borel set as U and C are Borel sets. Shows that $U-C \in \mathcal{U}$. Therefore Axiom IV is satisfied.

Axiom V: Let $C \in \mathcal{C}$, then C is compact.

By Baire sandwich theorem there exist Baire sets V and D s.t. $C \subset V \subset D$ and V is open, D is compact G_{δ} set. Shows that axiom V is satisfied.

Axiom VI: Let $C \in C$ and $U \in U$ then U is open $\Rightarrow U^c$ is closed and C is also closed

- \Rightarrow C \cap U^c is closed \Rightarrow C-U is closed subset of a compact set C, hence C-U is a compact set
- \Rightarrow C-U \in C, shows that axiom VI is satisfied.

Axiom VII: As $S = \mathfrak{S}(C)$, then we say that (X, S, μ, C, U) satisfies axiom VII.

Definition: Let X be a topological space then Baire $\sigma - algebra \, \mathfrak{B}_0(X)$ on X is the smallest $\sigma - algebra$ containing the pre-images of all continuous functions f: $X \to X$. And if there exist a measure μ on $\mathfrak{B}_0(X)$ s.t. $\mu(X) < \infty$. Then μ is called a finite Baire measure on X. Further if $\mathfrak{B}(X)$ is the Borel $\sigma - algebra$ on X (i.e. the smallest $\sigma - algebra$ containing the open sets of X) then $\mathfrak{B}_0(X) \subset \mathfrak{B}(X)$.

Definition: Borel sets are those sets of X belonging to the smallest $\sigma - algebra$ that contains all closed subsets of X. Clearly a Baire set is always a Borel set. But in many familiar spaces including all metric spaces the classes of all Baire sets and Borel sets are coincide.

Remark: If X be the metric space then $\mathfrak{B}_0(X) = \mathfrak{B}(X)$.

Regular Borel Measure: Let μ be a Borel measure on a space X and let $E \in \mathfrak{B}$. We say that the measure μ is outer regular on E if $\mu(E) = \inf\{\mu(U): E \subset U, U \text{ is open}\}\$ and we say that measure μ is inner regular on E if $\mu(E) = \sup\{\mu(K) : K \subset U, K \text{ is compact }\}$. If μ is both inner and outer regular on E then we say that μ is regular on E. Further μ is called Regular Borel measure if it is regular on every Borel set. For example a Radon measure is a Borel measure which is

- a. Finite on every compact set.
- b. Outer regular on every Borel set.
- c. Inner regular on every open set.

Preposition: Let μ be a Borel measure which is finite on compact sets. Then the following statements are equivalent.

DOI: 10.9790/5728-12123444 42 | Page www.iosrjournals.org

1. μ is outer regular on σ -bounded sets.

2. μ is inner regular on σ -bounded sets.

Proof: (1) \Rightarrow (2) Suppose that E is a bounded Borel set and E \subset L. Where L is compact. Assume that $\varepsilon > 0$. We have to prove that there is a compact set $K \subseteq E$ with $\mu(K) \ge \mu(E)$ - ε . As the relative compliment L/E is bounded by outer regularity there is an open set $0 \supseteq L/E$ such that $\mu(0) \le \mu(L/E)$ $+\varepsilon$. It follows that $K = L/0 = L \cap O^c$ is a compact set of E satisfying μ (K) $=\mu$ (L) $-\mu$ (L \cap 0) $\geq \mu$ (L) $-\mu$ $(0) \ge \mu(L/E) - \varepsilon$, as required.

In general let $E = E_1 \cup E_2 \cup E_3 \cup ...$ is a countable union of bounded Borel sets E_i . We may assume that the sets E_i are disjoint. If some of the E_i has finite measure, then by above we have $\sup\{\mu(K): K \subseteq E_i\}$ Ei, $K \in k = \mu Ei = +\infty$, where k is the family of compact sets. Then $\sup_{\ell} K : K \subseteq E$, $K \in k = \mu E = +\infty$ Proved.

But on the other hand if $\mu(E_i) < \infty$ for each i then for any $\varepsilon > 0$ we can find a sequence of compact sets $K_i \subseteq E_i$ with the property that $\mu(E_i) \le \mu(K_i) + \frac{\varepsilon}{2^i}$.

Taking $L_n = K_1 \cup K_2 \cup \dots \cup K_n$, it is clear that L_n is a compact subset of E for which $\mu(L_n) = \sum_{i=1}^n \mu(K_i) \geq \sum_{i=1}^n \mu(K_i) - \frac{\varepsilon}{2^i} \geq \sum_{i=1}^n \mu(K_i) - \varepsilon$. Taking supremum over n we get $\sup \mu(L_n) \geq \sum_{i=1}^n \mu(K_i) = \sum_$ $\mu(E) - \varepsilon$. Which shows that μ is Inner regular on σ -bounded sets.

(2) \Rightarrow (1) Let E be abounded Borel set. Then closure of E is \bar{E} and is compact set and by single covering there exist a bounded open set U s.t. $\overline{E} \subseteq U$. Let $\varepsilon > 0$ then L/E is a bounded Borel set, then by Inner regularity there exist a bounded compact set $K \subseteq L/E$ with the property that $\mu(K) \ge \mu(L/E) - \varepsilon$. Let V $= U/K = U \cap K^c$ then V is a bounded and open which contains E and $\mu(V) = \mu(U \cap K^c) \le \mu(L \cap K^c) = \mu(U \cap K^c)$ $\mu(L) - \mu(K) \le \left(\mu\left(\frac{L}{E}\right) - \varepsilon\right) = \mu(E) - \varepsilon$. As ε is arbitrary positive and this proves that μ is outer regular on

Further let $E = \bigcup_n E_n$ where each E_n is a bounded Borel set and each E_i is disjoint and $\mu(E_n) < \infty$ for all n. From the above we have a sequence of open sets $O_n \supseteq E_n$ such that $(O_n) \le \mu(E_n) + \frac{\varepsilon}{2^n}$. Therefore the set E is contained in the union of $0 = \bigcup_n O_n$ and we get $\mu(O) \leq \sum_{i=1}^n \mu(O_i) \leq \sum_{i=1}^n \mu(E_i) + \varepsilon = \mu(E) + \varepsilon$. Hence the proof.

Content: A real valued function defined on a σ – algebra \mathcal{A} of sub sets of a space X is said to be a content on X if 1) $\mu(A) > 0$ for all $A \in \mathcal{A}$.

2) $\mu(\emptyset) = 0$ and 3) $\mu(A_1 \cup A_2) = \mu(A_1) + \mu(A_2)$ for all $A_1, A_2 \in \mathcal{A}$.

Preposition: Let λ be a content on X and μ be a regular Borel measure induced by λ , then the following statements are equivalent.

1. λ is regular content.

2. μ is an extension of λ .

Proof: Suppose that (1) holds i.e. λ is a regular content. Let C be any compact set, and > 0, By the regularity of λ , we can find a compact set D s.t.

$$C \subset D$$
 and $\lambda(D) \leq \lambda(C) + \varepsilon$

....(1)

Let λ^* be the outer measure induced by λ . Then let U=D then $C\subset U\subset D$ and U is an open bounded Borel {Because λ^* is monotone} set, we have $\lambda^*(C) \leq \lambda^*(U)$

$$\leq \lambda(D)$$
) $\leq \lambda(C) + \varepsilon$ {By (1)}

But $\mu(C) = \lambda^*(c)$ Therefore $\lambda^*(C) = \lambda(C)$ i.e. $\mu(C) = \lambda(C)$ which shows that μ Hence $\lambda^*(C) \leq \lambda(C)$ is an extension of λ .

Now suppose that (2) holds, that means μ is an extension of λ . Hence λ is restriction of μ and μ is regular Borel measure. Hence by case (1) λ is a regular content.

Remark: Let C and D be two disjoint sets of X, and then there exist open bounded Baire sets U and V s.t. $C \subset U$ and $D \subset V$.

Proof: Let $x \in C$ then $x \notin D$ we can find disjoint open sets U_x and V_x s.t. $x \in U_x$, $D \subset V_x$. It is clear that $\{V_x \mid x \in C\}$ is an open cover for C and C is compact, hence there exist a finite sub cover x_1, x_2, \dots, x_n s.t. $C \subset \bigcup_{i=1}^n U_{x_i}$. Let $U^* = \bigcup_{i=1}^n U_{x_i}$ and $V^* = \bigcap_{i=1}^n V_{x_i}$ then U^* and V^* are disjoint open sets and $C \subset U^*$ and $D \subset V^*$, By Baire sandwich theorem there exist open bounded Baire sets U and V s.t. $C \subset U \subset U^*$ and $D \subset V$ $D \subset V^*$ and obviously U and V are disjoint.

Main Result: Every Baire measure has a unique extension to a regular Borel measure.

Lemma: Let v be any Baire measure on X. Define $\lambda(C) = Inf\{v(C)/C \subset U, U \text{ is open Baire set}\}$. Then λ is a regular content and $\lambda(D) = \mu(D)$ for every compact G_{δ} set D.

DOI: 10.9790/5728-12123444

Proof of the Lemma: (1) Since $v \ge 0$ then obviously $\lambda \ge 0$.

Let C be any compact set, By Baire sandwich theorem we can find an open Baire set U and a compact G_{δ} set D s.t. $C \subset U \subset D$. Which gives that $\lambda(C) \leq \nu(U) \leq \nu(D) < \infty$ which shows that is λ a real valued.

- (2) Suppose C and D are two compact sets and $C \subset D$. Let U be any open Borel set s.t. $D \subset U$ then $C \subset U \Rightarrow$ $\lambda(C) \le \nu(U) \Rightarrow \lambda(C) = Inf\{\nu(U)/U \text{ is open Baire set and } D \subset U\}.$
- $\Rightarrow \lambda(C) \leq \lambda(D) \Rightarrow \lambda$ is monotone.
- (3) Let C and D be compact sets and U be any open Baire set s.t. $C \subset U$ and V any open Baire set s.t. D $\subset V$ then $C \cup D \subset U \cup V \Rightarrow \lambda(C \cup D) \leq \nu(U \cup V) \leq \nu(U) + \nu(V)$
- $\Rightarrow \lambda(C \cup D) \le \inf\{\nu(U)\} + \inf\{\nu(V)\} \Rightarrow \lambda(C \cup D) \le \lambda(C) + \lambda(D) \Rightarrow \lambda \text{ is sub additive.}$
- (4) Let C and D be any two disjoint compact sets then by above remark we can find disjoint open bounded Baire sets U and V s.t. $C \subset U$ and $D \subset V$. Let W be an open Baire set s.t. $C \cup D \subset W$ then C \subset U \cap W and D \cap V \cap W.

Since $W \supset (U \cap W) \cup (V \cap W)$, we get $\nu(W) \ge \nu[(U \cap W) \cup (V \cap W)] = \nu(U \cap W) + \nu(V \cap W) \ge \nu[(U \cap W) \cup (V \cap W)] = \nu(U \cap W) + \nu(V \cap W) \ge \nu[(U \cap W) \cup (V \cap W)] = \nu(U \cap W) + \nu(V \cap W) = \nu[(U \cap W) \cup (V \cap W)] = \nu(U \cap W) + \nu(V \cap W) = \nu[(U \cap W) \cup (V \cap W)] = \nu(U \cap W) + \nu(V \cap W) = \nu[(U \cap W) \cup (V \cap W)] = \nu[(U \cap W) \cup (U \cap W)] = \nu[($ $\lambda(C) + \lambda(D)$. $\Rightarrow \inf \{ \nu(W) \} \geq \lambda(C) + \lambda(D)$ then from (3) we get $\lambda(C \cup D) \leq \lambda(C) + \lambda(D)$. Hence we get $\lambda(C \cup D) = \lambda(C) + \lambda(D)$. This proves that λ is content.

- (5) **Regularity**: Let C be any compact set, $\varepsilon > 0$ then by definition of λ we can find an open Baire set U such that $C \subset U$ and $\nu(U) \leq \lambda(C) + \varepsilon$. By Baire sandwich theorem we can find an open Baire set V and a compact G_{δ} set D s.t. $C \subset V \subset D \subset U$. Then $C \leq D$ and $\lambda(D) \leq \nu(U) \leq \lambda(C) + \varepsilon \Rightarrow \lambda(C) = Inf\{\lambda(D)/C \leq D\}$ \mathcal{D}_{i} ,D is compact. This proves that λ is regular content.
- (6) **Finally:** Let D be any compact G_{δ} set. Let (U_n) be any sequence of open sets s.t.
- $D = \bigcap_{i=1}^{n} (U_n)$ for each n, $D \subset U_n$, By Baire sandwich theorem we can find an open Baire set V_n and

compact G_{δ} set D_n s.t. $D \subset V_n \subset D_n \subset U_n \Rightarrow D = \bigcap_{i=1}^n (V_n)$. $Define\ W_n = \bigcap_{i=1}^n (V_i)$. Then (W_n) is a monotone decreasing sequence of open bounded Baire sets s.t. $(W_n) \to \stackrel{\cdot}{D} \ \Rightarrow \ \nu(W_n) \) \to \ \nu(D). \ \ \text{as} \ \ D \subset W_n \ \ \text{for all} \ \ n \ \Rightarrow \lambda(D) \leq \lim_{n \to \infty} \nu(W_n) \Rightarrow \lambda(D) \ \leq \nu(D)$(*)

If V be any Open Baire set s.t. $D \subset V$ then $v(D) \leq v(V) \Rightarrow v(D) \leq \inf\{v(W)\} \Rightarrow v(D) \leq \lambda(D)$(**)

From (*) and (**) we get $\lambda(D) = \nu(D)$.

Proof of the Main Theorem: Let ν be any Baire measure on X.

Define for compact set C, $\lambda(C) = Inf\{\nu(U)/C \subset U, U \text{ is Baire set}\}$. Then λ is a regular content. Let μ be the regular Borel measure induced by λ . Then Let μ is an extension of λ .Let ν' be the Baire restriction of μ . Let D be any compact G_{δ} set,

then $\nu(D) = \lambda(D) = \nu/(D)$ [By above lemma]

 $\Rightarrow \nu(E) = \nu/(E)$ For all Baire set E. $\Rightarrow \nu(E) = \mu(E)$ For every Baire set E.

i.e. μ is an extension of ν . Thus Baire measure ν has been extended to a regular Borel measure μ .

Uniqueness: Let μ_1 and μ_2 be two regular Borel measures such that $\mu_1(D) = \mu_2(D)$ for every compact G_{δ}

To prove above we have to show that $\mu_1(E) = \mu_2(E)$ for every Borel set E. For this it is suffices to prove that $\mu_1(C) = \mu_2(C)$ for every compact set C.

Let C be any compact set. Since μ_1 is regular Borel measure we can find a compact G_{δ} set D_1 such that C $\subset D_1$ and $\mu_1(C) = \mu_1(D_1)$(1)

By the same argument we can find a compact G_{δ} set D_2 such that $C \subset D_2$ and $\mu_2(C) = \mu_2(D_2)$

Define $D=D_1\cap D_2$, then D is a compact G_δ set and $C\subset D_1$ and $C\subset D_2\Rightarrow C\subset D$ shows that $\mu_1(C)=$ $\mu_1(D_1) \le \mu_1(D) = \mu_2(D) \le \mu_2(D_2) = \mu_2(C) \Rightarrow \mu_1(C)) \le \mu_2(C)$

By the same argument $\mu_2(C) \leq \mu_1(C)$.

Hence proved that $\mu_1(C) = \mu_2(C)$.

References

- [1]. G. Choquet. Lectures on Analysis Volume II: Representation Theory, volume 2 of Mathematics Lecture Note Series. W.A. Benjamin, Inc, London, 1969.
- [2]. M. Ghasemi, S. Kuhlmann, and M. Marshall. Application of Jacobi's representation theorem to locally multiplicatively convex topological real algebras.J. Funct. Anal., 266(2): 1041 1049,2014
- [3]. William Arveson. Notes on measure and integration in locally compact spaces. University of California, USA. (1996)
- Halmos, P. R., Measure Theory, Van Nostrand, Princeton, 1950. [4].
- [5]. Royden, H. L., Real Analysis, third edition, Macmillan, New York, 1988.
- P. Mattila, "Geometry of sets and measures in euclidean spaces". Cambridge Studies in Advanced Mathematics, 44. Cambridge [6]. University Press, Cambridge, 1995