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Abstract: This paper deals with the problem of Latin Square Design (LSD) test using Trapezoidal Fuzzy
Numbers (tfns.).  The proposed test is analysed under various types of trapezoidal fuzzy models such as Alpha
Cut Interval, Membership Function, Ranking Function, Total Integral Value and Graded Mean Integration
Representation.  Finally a comparative view of the conclusions obtained from various test is given.  Moreover,
two numerical examples having different conclusions have been given for a concrete comparative study.
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I. Introduction
Fuzzy set theory [29] has been applied to many areas which need to manage uncertain and vague data.

Such areas include approximate reasoning, decision making, optimization, control and so on.  In traditional
statistical testing [11], the observations of sample are crisp and a statistical test leads to the binary decision.
However, in the real life, the data sometimes cannot be recorded or collected precisely.  The statistical
hypotheses testing under fuzzy environments has been studied by many authors using the fuzzy set theory
concepts introduced by Zadeh [29]. Viertl [23] investigated some methods to construct confidence intervals and
statistical tests for fuzzy data.  Wu [27] proposed some approaches to construct fuzzy confidence intervals for
the unknown fuzzy parameter.  A new approach to the problem of testing statistical hypotheses is introduced by
Chachi et al. [8].  Mikihiko Konishi et al. [15] proposed a method of ANOVA for the fuzzy interval data by
using the concept of fuzzy sets.  Hypothesis testing of one factor ANOVA model for fuzzy data was proposed
by Wu [26, 28] using the h-level set and the notions of pessimistic degree and optimistic degree by solving
optimization problems. Gajivaradhan and Parthiban analysed one-way ANOVA test using alpha cut interval
method for trapezoidal fuzzy numbers [16] and they presented a comparative study of 2-factor ANOVA test
under fuzzy environments using various methods [17].

Liou and Wang ranked fuzzy numbers with total integral value [14].  Wang et al. presented the method
for centroid formulae for a generalized fuzzy number [25].  Iuliana Carmen BĂRBĂCIORU dealt with the
statistical hypotheses testing using membership function of fuzzy numbers [12].  Salim Rezvani analysed the
ranking functions with trapezoidal fuzzy numbers [20].  Wang arrived some different approach for ranking
trapezoidal fuzzy numbers [25].  Thorani et al. approached the ranking function of a trapezoidal fuzzy number
with some modifications [21].  Salim Rezvani and Mohammad Molani presented the shape function and Graded
Mean Integration Representation for trapezoidal fuzzy numbers [19].  Liou and Wang proposed the Total
Integral Value of the trapezoidal fuzzy number with the index of optimism and pessimism [14].

In this paper, we propose a new statistical fuzzy hypothesis testing of ANOVA for three factors of
classifications (Latin Square Design-LSD) in which the designated samples are in terms of fuzzy (trapezoidal
fuzzy numbers) data.  The main idea in the proposed approach is, when we have some vague data about an
experiment, what can be the result when the centroid point/ranking grades of those imprecise data are employed
in hypothesis testing?  For this reason, we use the centroid/ranking grades of trapezoidal fuzzy numbers (tfns.)
in hypothesis testing.

Suppose the observed samples are in terms of tfns., we can evenhandedly use the centroid/ranking
grades of tfns. for statistical hypothesis testing.  In arriving the centroid/ranking grades of tfns., various methods
are used to test which could be the best fit.  Therefore, in the proposed approach, the centroid point/ranking
grades of tfns. are used in LSD.  Moreover we provide the decision rules which are used to accept or reject the
fuzzy null and alternative hypotheses.  In fact, we would like to counter an argument that the centroid/ranking
graded data can be general enough to deal with 3-factor ANOVA method (LSD) under fuzzy environments.  In
the decision rules of the proposed testing technique, the degrees of optimism, pessimism and h-level sets are not
used as in Wu [26].  For better understanding, the proposed fuzzy hypothesis testing technique of LSD using
tfns., two different kinds of numerical examples are illustrated at each models.  And the same concept can also
be used when we have samples in terms of triangular fuzzy numbers [5, 26].
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II. Preliminaries
Definition 2.1. Generalized Fuzzy Number

A generalized fuzzy number A (a, b, c, d; w) is described as any fuzzy subset of the real line ,

whose membership function   A
μ x satisfies the following conditions:

i.   A
μ x is a continuous mapping from  to the closed interval  0, ω ,  0 ω 1  ,

ii.     A
μ x  = 0, for all x - , a  ,

iii.     L A
μ x L x is strictly increasing on  a, b ,

iv.     A
μ x ω,  for all b, c ,  as ω is a constant and 0 < ω 1  ,

v.     R A
μ x R x is strictly decreasing on  c, d ,

vi.     A
μ x 0,  for all x d,   where a, b, c, d are real numbers such that a < b c < d .

Definition 2.2. A fuzzy set A is called normal fuzzy set if there exists an element (member) ‘x’ such that

  A
μ x 1 . A fuzzy set A is called convex fuzzy set if

          1 2 1 2A A A
μ αx + 1 - α x min μ x , μ x where 1 2x , x X and  α 0, 1 . The set


   α
A

A x X μ x α   is said to be the α - cut of a fuzzy set A .

Definition 2.3. A fuzzy subset A of the real line  with membership function   A
μ x such that

    A
μ x : 0, 1 is called a fuzzy number if A is normal, A is fuzzy convex,   A

μ x is upper semi-

continuous and  Supp A is bounded, where      A
Supp A cl x : μ x 0   and ‘cl’ is the closure

operator.

It is known that for a normalized tfn A (a, b, c, d; 1) , there exists four numbers a, b, c, d and two

functions        A A
L x ,  R x : 0, 1 , where   A

L x and   A
R x are non-decreasing and non-

increasing functions respectively.  And its membership function is defined as follows:

     A A
μ x L x =(x-a)/(b-a) for a x b;  1 for b x c;       A

 R x =(x-d)/(c-d) for c x d 

and 0 otherwise.  The functions   A
L x and   A

R x are also called the left and right side of the fuzzy

number A respectively [9]. In this paper, we assume that   A x dx < +




 and it is known that the

α - cut of a fuzzy number is       α
A

A x μ x α ,  for α 0, 1    and  
 

0 α
α 0, 1

A = cl A


 
  
 
 ,

according to the definition of a fuzzy number, it is seen at once that every α - cut of a fuzzy number is a

closed interval.  Hence, for a fuzzy number A , we have         L UA α A α ,  A α    where

     L A
A α inf x :  μ x α   and      U A

A α sup x :  μ x α   .  The left and right sides

of the fuzzy number A are strictly monotone, obviously, LA and UA are inverse functions of   A
L x and

  A
R x respectively.  Another important type of fuzzy number was introduced in [6] as follows:

Let a, b, c, d such that a < b c < d .  A fuzzy number A defined as     A
μ x :  0, 1 ,
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n n

A

x - a d - xμ x for a x b; 1 for b x c;  for c x d;
b - a d - c
            
   

0 otherwise where n > 0 is

denoted by   nA a, b, c, d .  And  
n

x - a
L x

b - a
   
 

;  
n

d - x
R x

d - c
   
 

can also be termed as left and

right spread of the tfn. [Dubois and Prade in 1981].

If   nA a, b, c, d , then[1-4],

            n n
α L UA A α ,  A α a + b - a α,  d - d - c α ;  α 0, 1        .

When n = 1 and b = c , we get a triangular fuzzy number.  The conditions r = 1, a = b and c = d imply

the closed interval and in the case r = 1, a = b = c = d = t (some constant), we can get a crisp number ‘t’.

Since a trapezoidal fuzzy number is completely characterized by n = 1 and four real numbers a b c d   ,

it is often denoted as   A a, b, c, d .  And the family of trapezoidal fuzzy numbers will be denoted by

 TF  .  Now, for n = 1 we have a normal trapezoidal fuzzy number   A a, b, c, d and the

corresponding α - cut is defined by
      αA a + α b - a ,  d - α d - c ;  α 0, 1 (2.4)       .  And we need the following results which

can be found in [11, 13].

Result 2.1. Let   D = a, b ,  a b and a, b  , the set of all closed, bounded intervals on the real line

.
Result 2.2. Let  A = a, b and  B = c, d be in D. Then A = B if a = c and b = d .

III. Latin Square Design (LSD)
A Latin square is an arrangement of the letters (varieties) in a square in such a way that each letter

occurs once and only once in each row and each column.  A Latin square of nth order is an arrangement of the
symbols or letters in squares such that each symbol occurs once and only once in each row and column.  There
will be ‘n’ rows, ‘n’ columns and ‘n’ varieties, every symbol appearing ‘n’ times in a Latin square. In other
words, we consider an agricultural experiment in which n2 plots are taken and arranged in the form of an n n
square such that the plots in each row will be homogeneous as far as possible with respect to one factor of
classification, say soil fertility and plots in each column will be homogeneous as far as possible with respect to
another factor of classification, say seed quality. Then ‘n’ treatments are given to these plots such that each
treatment occurs only once in each row and only once in each column.  The various possible arrangements
obtained in this manner are known as Latin squares of order ‘n’.  This design of experiment is called the Latin
Square Design (LSD).

IV. ANOVA For Three Factors Of Classification

Let the  2N n variate values  ijx representing the yield of paddy, be classified according to three

factors.  Let the rows, columns and letters stand for the three factors, say soil fertility, seed quality and treatment
respectively.  We wish to test the null hypothesis that the rows, columns and letters are homogenous viz., there
is no difference in the yield of paddy between the rows (due to soil fertility), between the columns (due to seed

quality) and between the letters (due to treatments).  Let ijx be the variate value corresponding to the ith row, jth

column and kth letter.  Let ij2

1
x= x

n  , i ij
j

1
x = x

n
  , j ij

i

1
x = x

n
  and kx be the mean of the values

of ijx corresponding to the kth treatment.  Now,
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       i j k i j kij ijx x x x x x x x x x x x 2x .               Therefore,

         2 2 2 2 2

i j k i j kij ij
i j k i j

x x n x x n x x n x x x x x x 2x                  

By expanding this calculation, all the product terms vanish [16, 17], so we have 1 2 3 4Q = Q + Q + Q + Q .

Also, we can prove that 1 2 3 4Q /(n-1), Q /(n-1), Q /(n-1), Q /(n-1)(n-2) and 2Q/(n -1) are unbiased

estimates of the population variance 2σ with degrees of freedom (n-1) , (n-1) , (n-1) , (n-1)(n-2) and
2(n -1) respectively.  If the sample population is assumed to be normal, all these estimates are independent.

Therefore, each of 1 4[Q /(n-1)] / [Q /(n-1)(n-2)] , 2 4[Q /(n-1)] / [Q /(n-1)(n-2)] and

3 4[Q /(n-1)] / [Q /(n-1)(n-2)] follows a F-distribution with ((n-1), (n-1)(n-2)) degrees of freedom.  Then

the F-tests are applied and the significance of difference between rows, columns and treatments is analysed.

And the descriptions of 1 2 3 4Q, Q , Q , Q  and Q are given below.

2 2 2
ijQ = x (T /n ) where ijT = x ; 2 2 2

1 iQ =(1/n) T (T /n ) where
n

i ij
j=1

T = x ;

2 2 2
2 jQ =(1/n) T (T /n ) where

n

j ij
i=1

T = x ; 2 2 2
3 kQ =(1/n) T (T /n ) where Tk is the sum of all

ijx s receiving the kth treatment and 4 1 2 3Q = Q (Q + Q + Q ) .  Also, i j k
i j k

T= T T T    .

The ANOVA table for three factors of classification

Latin square is useful when one wishes to remove from an analysis of data the effect of a factor which
we are not interested in, but which is known to be significant.  Latin square designs are used in industrial,
laboratory field, green house, educational, medical, marketing and sociological experimentation in addition to
agricultural problems. Some advantages of the LSD over other designs are (i) it controls more of the variation
than the completely randomized block design [16] with a two way stratification (ii) The analysis is simple (iii)
Even with missing data, the analysis remains relatively simple.  The assumption made in LSD model is that the
interactions between treatments, row and column groupings are non-existent.

V. Three-Factor ANOVA Test With tfns. Using Alpha Cut Interval Method
The fuzzy test of hypotheses of three-factor ANOVA model in which the sample data are trapezoidal

fuzzy numbers is given here.  Using the relation, we transform the fuzzy ANOVA model to interval ANOVA
model.  Having the upper limit of the fuzzy interval, we construct upper level crisp ANOVA model and using
the lower limit of the fuzzy interval, we construct the lower level crisp ANOVA model.  Thus, in this approach,
two crisp ANOVA models are designated in terms of upper and lower levels.  Finally, we analyse the lower and

Source of
Variation
(S.V.)

Sum of
Squares
(S.S.)

Degree of
Freedom (d.f.) Mean Square (M.S.) Variance Ratio (F)

Between
Rows 1Q (n-1) 1 1M  = Q /(n-1)

1

1
R

4

M
F

M


 
  
 

Between
Columns 2Q (n-1) 2 2M  = Q /(n-1)

1

2
C

4

M
F

M


 
  
 

Between
Treatments 3Q (n-1) 3 3M  = Q /(n-1)

1

3
T

4

M
F

M


 
  
 

Residual 4Q (n-1)(n-2) 4 4M  = Q /(n-1)(n-2) --

Total Q 2(n -1) -- --
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upper level models using crisp two-factor ANOVA technique.  For lower level model, from α-cut intervals of

tfns. we have,  ij ij ija  + α b - a where 0 i n; 0 j n    and for upper level model,  ij ij ijd  - α d - c
where 0 i n; 0 j n    .The required formulae are given below:

5.1 Lower level model: ij ij ij ijx =[a + α(b - a )] ; 2 2
ij ij ij ijx [a + α(b - a )]  ;

ij ij ij ijT= x [a + α(b - a )]  ;
n

i ij ij ij
j=1

T [a + α(b - a )] ;
n

j ij ij ij
i=1

T [a + α(b - a )] ; kT = the

sum of all ij ij ij[a + α(b - a )] receiving the kth treatment, i j k
i j k

T = T T T    .  And

L 2 2 2
ijQ x (T /n )  ; L 2 2 2

1 iQ (1/n) T (T /n )  ; L 2 2 2
2 jQ (1/n) T (T /n )  ;

L 2 2 2
3 kQ (1/n) T (T /n )  and L L L L L

4 1 2 3Q Q - (Q + Q + Q ) α, α [0, 1]. 

5.2 Upper level model: ij ij ij ijx =[d - α(d - c )] ; 2 2
ij ij ij ijx [d - α(d - c )]  ;

ij ij ij ijT= x [d - α(d - c )]  ;
n

i ij ij ij
j=1

T [d - α(d - c )] ;
n

j ij ij ij
i=1

T [d - α(d - c )] ; kT = the sum

of all ij ij ij[d - α(d - c )] receiving the kth treatment, i j k
i j k

T = T T T    .  Similarly,

U 2 2 2
ijQ x (T /n )  ; U 2 2 2

1 iQ (1/n) T (T /n )  ; U 2 2 2
2 jQ (1/n) T (T /n )  ;

U 2 2 2
3 kQ (1/n) T (T /n )  and U U U U U

4 1 2 3Q Q - (Q + Q + Q ) α, α [0, 1]. 

The null hypothesis    
0 1 2 nH : μ μ μ    against the alternative hypothesis    

A 1 2 nH : μ μ μ .   
       

0 A1 2 n 1 2 nH : μ μ μ  against H : μ μ μ .                                    
L U L U L U L U
0 0 1 1 2 2 t n

L U L U L U L U
A A 1 1 2 2 t n

H , H  : μ ,  μ μ ,  μ μ ,  μ  against

    H , H  : μ ,  μ μ ,  μ μ ,  μ

                  
                 

Between Rows:
The null hypothesis for lower level model:

L L L L
0 1 1 nH : μ μ μ    against the alternative hypothesis L L L L

A 1 1 nH : μ μ μ .   
The null hypothesis for upper level model:

U U U U
0 1 1 nH : μ μ μ    against the alternative hypothesis U U U U

A 1 1 nH : μ μ μ .   

Between Columns:
The null hypothesis for lower level model:

L L L L
0 1 1 nH : μ μ μ    against the alternative hypothesis L L L L

A 1 1 nH : μ μ μ .   
The null hypothesis for upper level model:

U U U U
0 1 1 nH : μ μ μ    against the alternative hypothesis U U U U

A 1 1 nH : μ μ μ .   

Between Treatments:
The null hypothesis for lower level model:

L L L L
0 1 1 nH : μ μ μ    against the alternative hypothesis L L L L

A 1 1 nH : μ μ μ .   
The null hypothesis for upper level model:

U U U U
0 1 1 nH : μ μ μ    against the alternative hypothesis U U U U

A 1 1 nH : μ μ μ .   
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Decision Rules
Lower Level Model:

(i) If L
Row tF F at ‘r’ level of significance with ((n-1), (n-1)(n-2)) degrees of freedom, then the null

hypothesis L
0H is accepted for certain value of  α 0,1 , otherwise the alternative hypothesis L

AH is

accepted.

(ii) If L
Col. tF F at ‘r’ level of significance with ((n-1), (n-1)(n-2)) degrees of freedom, then the null

hypothesis L
0H is accepted for certain value of  α 0,1 , otherwise the alternative hypothesis L

AH is

accepted.

(iii) If L
Treat. tF F at ‘r’ level of significance with ((n-1), (n-1)(n-2)) degrees of freedom, then the null

hypothesis L
0H is accepted for certain value of  α 0,1 , otherwise the alternative hypothesis L

AH is

accepted.

Upper Level Model:

(i) If U
Row tF F at ‘r’ level of significance with ((n-1), (n-1)(n-2)) degrees of freedom, then the null

hypothesis U
0H is accepted for certain value of  α 0,1 , otherwise the alternative hypothesis U

AH is

accepted.

(ii) If U
Col. tF F at ‘r’ level of significance with ((n-1), (n-1)(n-2)) degrees of freedom, then the null

hypothesis U
0H is accepted for certain value of  α 0,1 , otherwise the alternative hypothesis U

AH is

accepted.

(iii) If U
Treat. tF F at ‘r’ level of significance with ((n-1), (n-1)(n-2)) degrees of freedom, then the null

hypothesis L
0H is accepted for certain value of  α 0,1 , otherwise the alternative hypothesis U

AH is

accepted.
Example-1

The following observed data are the yields (in kgs.) of paddy where iA ,  i=1, 2, 3, 4 denote the different

methods of cultivation.  Due to some imprecise observations, the data recorded are in terms of trapezoidal fuzzy
numbers.  We examine whether the different methods of cultivation have given significantly different yields.

Example-2
The following is the effectiveness of three teaching methods A1, A2, and A3 from the achievement scores given
below tabulated age and aptitude wise.  The collected data are in terms of trapezoidal fuzzy numbers due to
some vague observations. We perform the variance analysis taking A1, A2 and A3 into account to test whether
there is a significant difference among the 3 teaching methods.

Three-Way ANOVA Test Using Alpha Cut Interval Method
Example 5.3. Let us Consider Example-1, the interval form of given tfns. using α-cut method is given
below:

A3(22,23,25,27) A2(20,22,23,25) A1(15,17,18,20) A4(17,19,20,22)
A1(16,18,19,21) A4(15,16,18,19) A3(19,21,23,24) A2(15,17,18,20)
A2(17,19,20,22) A1(10,12,14,15) A4(14,16,17,19) A3(18,20,21,24)
A4(13,15,16,17) A3(15,17,19,20) A2(19,21,22,24) A1(10,13,15,16)

Aptitude
Age

Young Middle Old
Low A1(77,79,82,85) A2(82,85,87,88) A3(77,80,82,85)
Medium A2(87,90,92,95) A3(78,81,82,85) A1(76,79,81,84)
High A3(86,87,90,94) A1(80,83,84,87) A2(85,88,89,92)

A3[22+, 27-2] A2[20+2, 25-2] A1[15+2, 20-2] A4[17+2, 22-2]
A1[16+2, 21-2] A4[15+, 19-] A3[19+2, 24-] A2[15+2, 20-2]
A2[17+2, 22-2] A1[10+2, 15-] A4[14+2, 19-2] A3[18+2, 24-3]
A4[13+2, 17-] A3[15+2, 20-] A2[19+2, 24-2] A1[10+3, 16-]
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The upper level model and lower level model [16, 17] can be constructed using the descriptions (5.1
and 5.2). Here we have noted only the three-way ANOVA calculated results by omitting repeated tables
and surplus explanations.

For lower level model: L 2Q (47α -354α+2639) /16 , (n-1)=3 ; L 2
1Q (11α -146α+699) /16 ,

(n-1)=3 ; L 2
2Q (11α -34α+227) /16 , (n-1)=3 ; L 2

3Q (11α -146α+1371) /16 , (n-1)=3 and
L 2
4Q (7α -14α+171) / 8 , (n-1)(n-2)=6 .

Between rows:
L 2

L 1
R L 2

4

M 11α -146α+699
F

M 7α -14α+171
  ; 0 α 1  .  Now, from F-tables, t(5%)F (3,6) 4.76 .  Here

L
R t(5%)F F , α,α [0,1].    The null hypothesis L

0H is accepted at 5% level of significance. The

difference between rows is not significant.

Between columns:
L 2

L 2
C L 2

4

M 11α -34α+227
F

M 7α -14α+171
  ; 0 α 1  .  Now, from F-tables, t(5%)F (3,6) 4.76.

Here L
C t(5%)F F , α,α [0,1].    The null hypothesis L

0H is accepted at 5% level of significance. The

difference between columns is not significant.

Between treatments:
L 2

L 3
T L 2

4

M 11α -146α+1371
F

M 7α -14α+171
  ; 0 α 1  .  Now, from F-tables,

t(5%)F (3,6) 4.76. Here L
T t(5%)F F , α,α [0,1].    The null hypothesis L

0H is rejected at 5% level of

significance. The difference between treatments is significant.There is a significant difference
among the methods of cultivation.

For upper level model: U 2Q (87α -566α+2703) /16 , (n-1)=3 ; U 2
1Q (27α -158α+659) /16 ,

(n-1)=3 ; U 2
2Q (19α -62α+187) /16 , (n-1)=3 ; U 2

3Q (11α -206α+1451) /16 , (n-1)=3 and
U 2
4Q (15α -70α+203) / 8 , (n-1)(n-2)=6 .

Between rows:
U 2

U 1
R U 2

4

M 27α -158α+659
F

M 15α -70α+203
  ; 0 α 1  .  Now, from F-tables, t(5%)F (3,6) 4.76 .  Here

U
R t(5%)F F , α,α [0,1].    The null hypothesis U

0H is accepted at 5% level of significance. The

difference between rows is not significant.

Between columns:
U 2

U 4
C U 2

2

M 15α -70α+203
F

M 19α -62α+187
  ; 0 α 1  .  Now, from F-tables, t(5%)F (6,3) 8.94.

Here U
C t(5%)F F , α,α [0,1].    The null hypothesis U

0H is accepted at 5% level of significance. The

difference between columns is not significant.

Between treatments:
U 2

U 3
T U 2

4

M 11α -206α+1451
F

M 15α -70α+203
  ; 0 α 1  .  Now, from F-tables,

t(5%)F (3,6) 4.76. Here U
T t(5%)F F , α,α [0,1].    The null hypothesis U

0H is rejected at 5% level of

significance. The difference between treatments is significant.There is a significant difference
among the methods of cultivation.

Hence, from the decisions obtained from both lower and upper level models, we conclude that there is
a significance difference among the methods of cultivation.

Example 5.4. Let us consider example-2, the interval form of given tfns. using α-cut method is given below:
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For lower level model: L 2Q (36α -114α+1304) / 9 , (n-1)=2 ; L 2
1Q (6α -60α+350) / 9 , (n-1)=2 ;

L 2
2Q (18α -132α+248) / 9 , (n-1)=2 ; L 2

3Q (6α +78α+674) / 9 , (n-1)=2 and L 2
4Q (6α +32) / 9

, (n-1)(n-2)=2.

Between rows:
L 2

L 1
R L 2

4

M 6α -60α+350
F

M 6α +32
  ; 0 α 1  .  Now, from F-tables, t(5%)F (2, 2) 19.00 .  Here

L
R t(5%)F F , α,α [0,1].    The null hypothesis L

0H is accepted at 5% level of significance. The

difference between rows is not significant.

Between columns:
L 2

L 2
C L 2

4

M 18α -132α+248
F

M 6α +32
  ; 0 α 1  .  Now, from F-tables, t(5%)F (2, 2) 19.00.

Here L
C t(5%)F F , α,α [0,1].    The null hypothesis L

0H is accepted at 5% level of significance. The

difference between columns is not significant.

Between treatments:
L 2

L 3
T L 2

4

M 6α +78α+674
F

M 6α +32
  ; 0 α 1  .  Now, from F-tables, t(5%)F (2, 2) 19.00.

Here L
T t(5%)F F , α,α [0,1].    The null hypothesis L

0H is rejected at 5% level of significance. The

difference between treatments is significant.There is a significant difference among the three teaching
methods.

For upper level model: U 2Q (44α -114α+1296) / 9 , (n-1)=2 ; U 2
1Q (14α -132α+342) / 9 ,

(n-1)=2 ; U 2
2Q (14α -114α+366) / 9 , (n-1)=2 ; U 2

3Q (14α +126α+546) / 9 , (n-1)=2 and
U 2
4Q (2α +6α+42) / 9 , (n-1)(n-2)=2 .

Between rows:
U 2

U 1
R U 2

4

M 14α -132α+342
F

M 2α +6α+42
  ; 0 α 1  .  Now, from F-tables, t(5%)F (2, 2) 19.00 .

Here U
R t(5%)F F , α,α [0,1].    The null hypothesis U

0H is accepted at 5% level of significance. The

difference between rows is not significant.

Between columns:
U 2

U 2
C U 2

4

M 14α -114α+366
F

M 2α +6α+42
  ; 0 α 1  .  Now, from F-tables, t(5%)F (2, 2) 19.00.

Here U
C t(5%)F F , α,α [0,1].    The null hypothesis U

0H is accepted at 5% level of significance. The

difference between columns is not significant.

Between treatments:
U 2

U 3
T U 2

4

M 14α +126α+546
F

M 2α +6α+42
  ; 0 α 1  .  Now, from F-tables,

t(5%)F (2, 2) 19.00. Here U
T t(5%)F < F , α,α [0,1].   The null hypothesis U

0H is accepted at 5% level of

significance. The difference between treatments is not significant.The difference among the three
teaching methods is not significant.
Here, the obtained decisions through lower and upper level models do not provide parallel discussion.  In lower
level model, between treatments, the null hypothesis is rejected and in the upper level model, between
treatments, the null hypothesis is accepted.  Hence we cannot conclude a solid decision from those oscillatory
decisions between lower and upper level models between treatments.  Therefore, α-cut interval method fails to
provide unique results in upper and lower level models [16, 17] when it is experimented through LSD (3-factor
ANOVA test).

Aptitude
Age

Young Middle Old
Low [77+2, 85-3] [82+3, 88-] [77+3, 85-3]
Medium [87+3, 95-3] [78+3, 85-3] [76+3, 84-3]
High [86+, 94-4] [80+3, 87-3] [85+3, 92-3]
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To overcome this issue, we provide a new technique in LSD when the test is performed under fuzzy
environments.  More generally, the CRD, RBD and LSD are independent of origin which implies that the
arithmetic operations such as addition/subtraction/multiplication or division by non-zero quantity can be
performed among the observed data uniformly for all entries in order to simplify the large numerical
calculations while the observed data are numerically large.  This indicates that ANOVA test stands on the
magnitude ratio among each data of the sample observations.  The core idea in this paper is, when the test is
conducted using natural and vague observations such as fuzzy numbers for instance, we may use ranking grades
for all observed fuzzy numbers by using unique method without damaging the magnitude ratios among the
fuzzy samples. In fact, the ranking grades of all fuzzy numbers using fuzzy analytic method are crisp in nature
and we perform the LSD test as usual and better decisions can be obtained.

VI. Wang’s Centroid Point And Ranking Method
Wang et al. [25] found that the centroid formulae proposed by Cheng are incorrect and have led to

some misapplications such as by Chu and Tsao.  They presented the correct method for centroid formulae for a

generalized fuzzy number   A= a, b, c, d; w as

           
0 0

1 dc - ab w c - b
x , y a + b + c + d , 1

3 d + c - a + b 3 d + c - a + b

                                 
- - - (6.1)

And the ranking function associated with A is   2 2
0 0R A x  + y (6.2) 

For a normalized tfn., we put w = 1 in equations (6.1) so we have,

           
0 0

1 dc - ab 1 c - b
x , y a + b + c + d , 1

3 d + c - a + b 3 d + c - a + b

                                 
- - - (6.3)

And the ranking function associated with A is   2 2
0 0R A x  + y (6.4)  .

Let  
i jA  and A be two fuzzy numbers,    i j(i) R A R A then  

i jA A    i j(ii) R A < R A then

 
i jA A and    i j(iii) R A =R A then  

i jA A .

Example 6.1. Let we consider example 1, using the above relations (6.3) and (6.4), we obtain the ranks of tfns.
which are tabulated below:

The ANOVA Table Values Of tfns. Using Wang’s Centroid Point:

Here, Q=155.12 ; 1Q  =38.5624 , n-1=3 ; 2Q  =11.674 , n-1=3 ; 3Q  =83.5525 , n-1=3 ;

4Q  =21.3307, (n-1)(n-2)=6 and variance ratio of  F can be calculated as per the description of the ANOVA

table noted in section-4.  Now, RowF 3.61 , t (5%)F (3,6) = 4.76 .  And Row t(5%)F < F . The null hypothesis


0H is accepted at 5% level of significance.  The difference between rows is not significant. Col.F 1.09 ,

t (5%)F (3,6) = 4.76 .And Col. t(5%)F < F . The null hypothesis  0H is accepted at 5% level of significance.

The difference between columns is not significant. Treat.F 7.82 , t (5%)F (3,6) = 4.76 .And Treat. t(5%)F > F .

The null hypothesis  0H is rejected at 5% level of significance. The difference between treatments is
significant.There is a significant difference among the methods of cultivation.

 iR A ;  i = 1, 2, 3, 4.

A3(24.2895) A2(22.5034) A1(17.5043) A4(19.5039)
A1(18.5041) A4(17.0058) A3(21.7185) A2(17.5043)
A2(19.5039) A1(12.7215) A4(16.5046) A3(20.8130)
A4(15.2053) A3(17.7195) A2(21.5035) A1(13.4231)
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Example 6.2. Let we consider example 2, using the above relations (6.3) and (6.4), we obtain the ranks of tfns.
which are tabulated below:

The ANOVA Table Values Of tfns. Using Wang’s Centroid Point:
Here, Q=138.9865 ; 1Q  =34.1185 , n-1=2 ; 2Q  =27.9829 , n-1=2 ; 3Q  =72.5893 , n-1=2 ;

4Q  =4.2958, (n-1)(n-2)=2 and variance ratio of  F can be calculated as per the description of the ANOVA

table noted in section-4.  Now, RowF 7.9423 , t (5%)F (2,2) = 19.00 .  And Row t(5%)F < F . The null

hypothesis  0H is accepted at 5% level of significance.  The difference between rows is not significant.

Col.F 6.5140 , t (5%)F (2,2) = 19.00 .And Col. t(5%)F < F . The null hypothesis  0H is accepted at 5% level

of significance. The difference between columns is not significant. Treat.F 16.8978 ,

t (5%)F (2,2) =19.00 .And Treat. t(5%)F < F . The null hypothesis  0H is accepted at 5% level of significance.

 The difference between treatments is not significant.The difference among the three teaching methods
is not significant.

VII. Rezvani’s Ranking Function Of tfns.
The centroid of a trapezoid is considered as the balancing point of the trapezoid.  Divide the trapezoid

into three plane figures.  These three plane figures are a triangle (APB), a rectangle (BPQC) and a triangle

(CQD) respectively.  Let the centroids of the three plane figures be 1 2 3G , G  and G respectively.  The incenter

of these centroids 1 2 3G , G  and G is taken as the point of reference to define the ranking of generalized

trapezoidal fuzzy numbers.  The reason for selecting this point as a point of reference is that each centroid point
are balancing points of each individual plane figure and the incenter of these centroid points is much more
balancing point for a generalized trapezoidal fuzzy number.  Therefore, this point would be a better reference
point than the centroid point of the trapezoid.

Consider a generalized trapezoidal fuzzy number   A= a, b, c, d; w .  The centroids of the three plane figures

are:

1 2 3

a+2b w b+c w 2c+d w
G , ,  G ,  and G , (7.1)

3 3 2 2 3 3
               
     

Equation of the line 1 3G G is
w

y =
3

and 2G does not lie on the line 1 3G G .  Therefore, 1 2 3G , G  and G

are non-collinear and they form a triangle.  We define the incenter  0 0I x , y of the triangle with vertices

1 2 3G , G  and G of the generalized fuzzy number   A= a, b, c, d; w as [20]

Aptitude
 iR A ;  i = 1, 2, 3.

Young Middle Old
Low A1(80.78899) A2(85.41768) A3(81.00099)
Medium A2(91.00088) A3(81.50086) A1(80.001)
High A3(89.36464) A1(83.50084) A2(88.50079)
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  0 0A

a+2b b+c 2c+d w w wα β γ α β γ
3 2 3 3 2 3

I x , y ,  (7.2)
α + β + γ α + β + γ

                                         
 
  

     2 2 22 2c - 3b + 2d w 2c + d - a - 2b 3c - 2a - b w
where α ,β ,γ

6 3 6

 
  

And ranking function of the trapezoidal fuzzy number   A= a, b, c, d; w which maps the set of all fuzzy

numbers to a set of all real numbers i.e. R: A      is defined as   2 2
0 0R A x  + y (7.3)   

which is the Euclidean distance from the incenter of the centroids.  For a normalized TFN, we put w = 1 in
equations (1), (2) and (3) so we have,

1 2 3

a+2b 1 b+c 1 2c+d 1
G , ,  G ,  and G , (7.4)

3 3 2 2 3 3
               
     

  0 0A

a+2b b+c 2c+d 1 1 1α β γ α β γ
3 2 3 3 2 3

I x , y ,  (7.5)
α + β + γ α + β + γ

                                          
 
  

     2 2 2
c - 3b + 2d 1 2c + d - a - 2b 3c - 2a - b 1

where α ,β  and γ
6 3 6

 
  

And ranking function of the trapezoidal fuzzy number   A= a, b, c, d; 1 is defined as

  2 2
0 0R A x  + y (7.6)    .

Three-Way ANOVA Test Using Rezvani’s Ranking Function
We now analyse the three-way ANOVA test by assigning rank for each normalized trapezoidal fuzzy numbers
and based on the ranking grades the decisions are observed.
Example 7.1. Let us Consider Example 1, using the above relations (7.4), (7.5) and (7.6), we get the ranks of

each tfns.  iA as below:

The ANOVA Table Values Of tfns. Using Rezvani’s Centroid Point:
Here, Q=141.412 ; 1Q  =34.0609 , n-1=3 ; 2Q  =10.6819 , n-1=3 ; 3Q  =77.5438 , n-1=3 ;

4Q  =19.1256 , (n-1)(n-2)=6 and variance ratio of  F can be calculated as per the description of the ANOVA

table noted in section-4.  Now, RowF 3.56 , t (5%)F (3,6) = 4.76 . And Row t(5%)F < F . The null hypothesis


0H is accepted at 5% level of significance.  The difference between rows is not significant. Col.F 1.12 ,

t (5%)F (3,6) = 4.76 .And Col. t(5%)F < F . The null hypothesis  0H is accepted at 5% level of significance.

The difference between columns is not significant. Treat.F 8.10 , t (5%)F (3,6) = 4.76 .And Treat. t(5%)F > F .

 iR A ;  i = 1, 2, 3, 4.

A3(24.0046) A2(22.5038) A1(17.5049) A4(19.5044)
A1(18.5047) A4(17.0051) A3(22.0029) A2(17.5049)
A2(19.5044) A1(13.0056) A4(16.5052) A3(20.5055)
A4(15.5033) A3(18.0038) A2(21.504) A1(14.0045)
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The null hypothesis  0H is rejected at 5% level of significance. The difference between treatments is
significant.There is a significant difference among the methods of cultivation.
Example 7.2. Let us consider example 2, using the above relations (7.4), (7.5) and (7.6), we get the ranks of

each tfns.  iA as below:

The ANOVA Table Values Of tfns. Using Rezvani’s Centroid Point:
Here, Q=134.9991; 1Q  =28.677 , n-1=2 ; 2Q  =21.5099 , n-1=2 ; 3Q  =80.1468 , n-1=2 ;

4Q  =4.6654, (n-1)(n-2)=2 and variance ratio of  F can be calculated as per the description of the ANOVA

table noted in section-4.  Now, RowF 6.1467 , t (5%)F (2,2) = 19.00 .  And Row t(5%)F < F . The null

hypothesis  0H is accepted at 5% level of significance.  The difference between rows is not significant.

Col.F 4.6105 , t (5%)F (2,2) = 19.00 .And Col. t(5%)F < F . The null hypothesis  0H is accepted at 5% level

of significance. The difference between columns is not significant. Treat.F 17.1790 ,

t (5%)F (2,2) =19.00 .And Treat. t(5%)F < F . The null hypothesis  0H is accepted at 5% level of significance.

 The difference between treatments is not significant.The difference among the three teaching methods
is not significant.

VIII. Graded Mean Integration Representation (GMIR)

Let   A= a, b, c, d; w be a generalized trapezoidal fuzzy number, then the GMIR [19] of A is defined by

     -1 -1w w

0 0

L h R h
P A h dh /  hdh

2

 
  

 
  .

Theorem 8.1. Let   A= a, b, c, d; 1 be a TFN with normal shape function, where a, b, c, d are real numbers

such that a < b c < d .  Then the graded mean integration representation (GMIR) of A is

     a + d n
P A b - a - d + c

2 2n + 1
  .

Proof : For a trapezoidal fuzzy number   nA= a, b, c, d; 1 , we have  
n

x - a
L x

b - a
   
 

and

 
n

d - x
R x

d - c
   
 

Then,    
n

1-1 n
x - a

h = L h a + b - a h
b - a
    
 

;

   
n

1-1 n
d - x

h = R h d - d - c h
d - c
    
 

       
     

1 1
1 1

n n

0 0

1
P A h a + b - a h d - d - c h dh / hdh

2

a + d1 n 1             = b - a - d + c / 22 2 2n + 1

       
  

     

  

Aptitude
 iR A ;  i = 1, 2, 3.

Young Middle Old
Low A1(80.5015) A2(85.9993) A3(81.0011)
Medium A2(91.001) A3(81.5011) A1(80.0011)
High A3(88.5023) A1(83.501) A2(88.501)
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     a + d n
Thus, P A b - a - d + c

2 2n + 1
  Hence the proof.

Result 8.1. If n =1 in the above theorem, we have   a + 2b + 2c + d
P A

6


Three-way ANOVA using GMIR of tfns.
Example 8.1. Let us consider example 1, using the result-8.1 from above theorem-8.1, we get the GMIR of

each tfns.  iA which are tabulated below:

The ANOVA Table Values Of tfns. Using GMIR:

Here, Q=149.1048 ; 1Q  =36.62 , n-1=3 ; 2Q  =11.28 , n-1=3 ; 3Q  =80.90 , n-1=3 ; 4Q  =20.31 ,

(n-1)(n-2)=6 and variance ratio of  F can be calculated as per the description of the ANOVA table noted in

section-4.  Now, RowF 3.60 , t (5%)F (3,6) = 4.76 .  And Row t(5%)F < F . The null hypothesis  0H is

accepted at 5% level of significance.  The difference between rows is not significant. Col.F 1.11 ,

t (5%)F (3,6) = 4.76 .And Col. t(5%)F < F . The null hypothesis  0H is accepted at 5% level of significance.

The difference between columns is not significant. Treat.F 7.96 , t (5%)F (3,6) = 4.76 .And Treat. t(5%)F > F .

The null hypothesis  0H is rejected at 5% level of significance. The difference between treatments is
significant.There is a significant difference among the methods of cultivation.

Example 8.2. Let us consider example 2, using the result-8.1 from above theorem-8.1, we get the GMIR of

each tfns.  iA which are tabulated below:

The ANOVA Table Values Of tfns. Using GMIR:

Here, Q=137.0430 ; 1Q  =31.7466 , n-1=2 ; 2Q  =25.1174 , n-1=2 ; 3Q  =75.7284 , n-1=2 ;

4Q  =4.4506, (n-1)(n-2)=2 and variance ratio of  F can be calculated as per the description of the ANOVA

table noted in section-4.  Now, RowF 7.1331 , t (5%)F (2,2) = 19.00 .  And Row t(5%)F < F . The null

hypothesis  0H is accepted at 5% level of significance.  The difference between rows is not significant.

Col.F 5.6436 , t (5%)F (2,2) = 19.00 .And Col. t(5%)F < F . The null hypothesis  0H is accepted at 5% level

of significance. The difference between columns is not significant. Treat.F 17.0153 ,

t (5%)F (2,2) =19.00 .And Treat. t(5%)F < F . The null hypothesis  0H is accepted at 5% level of significance.

 The difference between treatments is not significant.The difference among the three teaching methods
is not significant.

 iP A ;  i = 1, 2, 3, 4.

A3(24.1667) A2(22.5) A1(17.5) A4(19.5)
A1(18.5) A4(17) A3(21.8333) A2(17.5)
A2(19.5) A1(12.8333) A4(16.5) A3(20.6667)

A4(15.3333) A3(17.8333) A2(21.5) A1(13.6667)

Aptitude
 iP A ;  i = 1, 2, 3.

Young Middle Old
Low A1(80.6667) A2(85.6667) A3(81)
Medium A2(91) A3(81.5) A1(80)
High A3(89) A1(83.5) A2(88.5)
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IX. Three-Way ANOVA Model Using Membership Function

Proposition 9.1. (a) If   A a, b, c, d; w is a generalized trapezoidal fuzzy number and ‘k’ be a scalar with

k 0, y = kA then  y = kA is a fuzzy number with  ka, kb, kc, kd; w . (b) If   A a, b, c, d; w is a

generalized trapezoidal fuzzy number and ‘k’ be a scalar with k < 0, y = kA then  y = kA is a fuzzy number

with  kd, kc, kb, ka; w .

Proof: (a) When k 0 , with the transformation y = kA we can find the membership function of fuzzy set

 y = kA by α-cut method.  Now, the α-cut interval of A is       α L UA A α , A α    . That is

    α
α α

A a+ b - a ,d - d - c
w w

    
.  The lo α-cut of A is     L

α
A α a+ b - a

w
 and the upper level

α-cut of A is     U
α

A α d - d - c
w

 .  Hence,    α α
A a+ b - a ,d - d - c

w w
    

.

So,      α α
y = kA ka+ kb - ka ,  kd - kd - kc

w w
    

. So,  α
kb - ka y - ka.

w


y - kaα w ;ka y kb---(1)
kb - ka
     
 

and  α
kd - kc kd - y

w


y - kdα w ;kc y kd---(2)
kc - kd
     
 

From (1) and (2), we have the membership function of  y = kA as

follows:

  y

y - ka y - kdμ y w  for ka y kb;  w for kb y kc; w  for kc y kd;
kb - ka kc - kd

and 0, otherwise.---(3)

            
   

Similarly we can prove (b) if y = kA , k 0 then y=  kd, kc, kb, ka; w is a fuzzy number with

membership function,

  y

y - kd y - kaμ y w  for kd y kc;  w for kc y kb; w  for kb y ka;
kc - kd kb - ka

and 0, otherwise.---(4)

            
   

And for a normalized trapezoidal number, we put w = 1 in equations (3) and (4).

Calculation Of Membership Function Of tfns.

The membership grades for a normalized tfn.   y a, b, c, d; 1 is calculated by the relation [12]


 
 

b c d

y
a b cSupp y

y - a y - dμ y dy = dy + dy + dy (9.2)
b - a c - d
         
      

Example 9.1. Let us Consider Example 1, since for a normalized tfn. A ,   A
μ : X 0,1 , we transform the

tfns. in problem (1) by multiplying each members with “0.01” using proposition-9.1 and the membership grade
of 1st entry A3(0.22, 0.23, 0.25, 0.27; 1) will be


 

 
i

i

0.23 0.25 0.27

A
0.22 0.23 0.25Supp A

y - 0.22 y - 0.27μ y dy = dy + dy + dy =0.035 I
0.01 0.02
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Similarly we can calculate the membership grades of all other entries using 
 

 
i

i

A
Supp A

μ y dy = I for the given

tfns. which have been tabulated below.

The ANOVA Table Values Of tfns. Using Membership Grades:

Here, Q=0.00019375 ; 1Q  =0.00000625 , n-1=3 ; 2Q  =0.00003125 , n-1=3 ; 3Q  =0.00010625 ,

n-1=3 ; 4Q  =0.00005 , (n-1)(n-2)=6 and variance ratio of  F can be calculated as per the description of the

ANOVA table noted in section-4.  Now, RowF 3.98 , t (5%)F (6,3) = 8.94 .  And Row t(5%)F < F . The null

hypothesis  0H is accepted at 5% level of significance.  The difference between rows is not significant.

Col.F 1.26 , t (5%)F (3,6) = 4.76 .And Col. t(5%)F < F . The null hypothesis  0H is accepted at 5% level of

significance. The difference between columns is not significant. Treat.F 4.27 , t (5%)F (3,6) = 4.76 .And

Treat. t(5%)F < F . The null hypothesis  0H is accepted at 5% level of significance. The difference between

treatments is not significant.The difference between the methods of cultivation is not significant.

Example 9.2. Let us consider example 2, since for a normalized tfn. A ,   A
μ : X 0,1 , we transform the

tfns. in problem (2) by multiplying each members with “0.01” using proposition-9.1 and the calculated
membership grade are tabulated below:

The ANOVA Table Values Of tfns. Using Membership Grades:

Here, Q=0.00035 ; 1Q  =0.0000167 , n-1=2 ; 2Q  =0.000267 , n-1=2 ; 3Q  =0.00005 , n-1=2 ;

4Q  =0.0000167 (n-1)(n-2)=2 and variance ratio of  F can be calculated as per the description of the

ANOVA table noted in section-4.  Now, RowF 1 , t (5%)F (2,2) = 19.00 .  And Row t(5%)F < F . The null

hypothesis  0H is accepted at 5% level of significance.  The difference between rows is not significant.

Col.F 15.99 , t (5%)F (2,2) = 19.00 .And Col. t(5%)F < F . The null hypothesis  0H is accepted at 5% level of

significance. The difference between columns is not significant. Treat.F 2.99 , t (5%)F (2,2) =19.00 .And

Treat. t(5%)F < F . The null hypothesis  0H is accepted at 5% level of significance. The difference between

treatments is not significant.The difference among the three teaching methods is not significant.

X. LIOU And WANG’S Centroid Point Method
Liou and Wang [14] ranked fuzzy numbers with total integral value.  For a fuzzy number defined by definition
(2.3), the total integral value is defined as
       α

T R LI A αI A 1 - α I A (10.1)    


 

 
i

i

A
Supp A

μ y dy = I
A3(0.035) A2(0.03) A1(0.03) A4(0.03)
A1(0.03) A4(0.03) A3(0.035) A2(0.03)
A2(0.03) A1(0.035) A4(0.03) A3(0.035)

A4(0.025) A3(0.035) A2(0.03) A1(0.04)

Aptitude


 
 

i

i

A
Supp A

μ y dy = I
Young Middle Old

Low A1(0.055) A2(0.04) A3(0.05)
Medium A2(0.05) A3(0.04) A1(0.05)
High A3(0.055) A1(0.04) A2(0.04)



A Comparative Study Of LSD Under Fuzzy Environments Using Trapezoidal Fuzzy Numbers

DOI: 10.9790/5728-12125775 www.iosrjournals.org 72 | Page

    
 

    
 

d b

R LA A
c aSupp A Supp A

x-d x-a
I A R x dx= dx---(10.2)  & I A L x dx= dx ---(10.3)

c-d b-a
       
      

are the right and left integral values of A respectively and 0 α 1  .

(i)  α 0,1 is the index of optimism which represents the degree of optimism of a decision maker. (ii) If

α 0 , then the total value of integral represents a pessimistic decision maker’s view point which is equal to
left integral value.  (iii) If α 1 , then the total integral value represents an optimistic decision maker’s view
point and is equal to the right integral value.(iv)If α 0.5 then the total integral value represents a moderate
decision maker’s view point and is equal to the mean of right and left integral values.  For a decision maker,
the larger the value of α is, the higher is the degree of optimism.

The ANOVA Test Using LIOU And WANG’S Centroid Point Method:
Example 10.1. Let us consider example 1, using the above equations (10.1), (10.2) and (10.3), we get the
centroid point of first member as follows:

     
23 27

3 3L R

22 25

x - 27
I A x - 22 dx 1/ 2;    I A dx 1

2
         α

3TTherefore I A (1+α) / 2 .

Similarly we can find  α
iTI A ;  for i = 1, 2, 3, 4. and the calculated values are tabulated below:

The ANOVA Table Values Of tfns. Using LIOU And WANG’S Centroid Point Method:

Here, 2Q=(144α -104α+47)/64 ; 2
1Q =(56α -40α+11)/64 , n-1=3 ; 2

2Q =(8α +11)/64 , n-1=3 ;
2

3Q =(24α -24α+11)/64 , n-1=3 ; 2
4Q =(28α -20α+7)/32 , (n-1)(n-2)=6 and variance ratio of  F can be

calculated as per the description of the ANOVA table noted in section-4.  Now,
2

Row 2

56α -40α+11
F ;  0 α 1

28α -20α+7
   , t (5%)F (3,6) = 4.76 .  And Row t(5%)F < F α, α [0,1]  . The null

hypothesis  0H is accepted at 5% level of significance.  The difference between rows is not significant.
2

Col. 2

8α +11
F ;0 α 1

28α -20α+7
   , t (5%)F (3,6) = 4.76 . And Col. t(5%)F < F α, α [0,1]  . The null

hypothesis  0H is accepted at 5% level of significance. The difference between columns is not significant.
2

Treat. 2

24α -24α+11
F ;0 α 1

28α -20α+7
   , t (5%)F (3,6) = 4.76 . And Treat. t(5%)F < F α, α [0,1].   The null

hypothesis  0H is accepted at 5% level of significance. The difference between treatments is not significant.
The difference between the methods of cultivation is not significant.
Example 10.2. Let us consider example 2, using the above equations (10.1), (10.2) and (10.3), we get the
centroid points of tfns. as follows:

 α
iTI A ;  i=1, 2, 3, 4.

A3(1+)/2 A2(1) A1(1) A4(1)
A1(1) A4(1/2) A3(2-)/2 A2(1)
A2(1) A1(2-)/2 A4(1) A3(2+)/2

A4(2-)/2 A3(2-)/2 A2(1) A1(3-2)/2

Aptitude
 α

iTI A ;  i=1, 2, 3.

Young Middle Old
Low A1(2+)/2 A2(3-4)/2 A3(3/2)
Medium A2(3/2) A3(3/2) A1(3/2)
High A3(1+3)/2 A1(3/2) A2(3/2)
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The ANOVA Table Values Of tfns. Using LIOU And WANG’S Centroid Point Method:

Here, 2Q=(13α -7α+2)/2 ;
2

1Q  =(9α -3α+1)/6 , n-1=2 ;
2

2Q  =(16α -12α+3)/6 , n-1=2 ;
2

3Q  =(13α -7α+1)/6 , n-1=2 ;
2

4Q  =(α +α+1)/6, (n-1)(n-2)=2 and variance ratio of  F can be calculated

as per the description of the ANOVA table noted in section-4.  Now,
2

Row 2

9α -3α+1
F ;0 α 1

α +α+1
   ,

t (5%)F (2,2) = 19.00 .  And Row t(5%)F < F , α, α [0,1]  . The null hypothesis  0H is accepted at 5% level

of significance.  The difference between rows is not significant.
2

Col. 2

16α -12α+3
F ;0 α 1

α +α+1
   ,

t (5%)F (2,2) = 19.00 . And Col. t(5%)F < F , α, α [0,1]  . The null hypothesis  0H is accepted at 5% level of

significance. The difference between columns is not significant.
2

Treat. 2

13α -7α+1
F ;0 α 1

α +α+1
   ,

t (5%)F (2,2) =19.00 . And Treat. t(5%)F < F , α, α [0,1].   The null hypothesis  0H is accepted at 5% level

of significance. The difference between treatments is not significant.The difference among the three
teaching methods is not significant.

XI. The Proposed Method

As per the description in Salim Rezvani’s ranking method, we presented a different kind of centroid point and

ranking function of tfns. The incenter   0 0A
I x , y of the triangle [Fig. 1] with vertices 1 2 3G , G  and G of

the generalized tfn.   A= a, b, c, d; w is given by,

  0 0A

a+2b b+c 2c+d w w wα β γ α β γ
3 2 3 3 2 3

I x , y ,  (11.1)
α + β + γ α + β + γ

                                         
 
  

where

     2 2 22 2c - 3b + 2d w 2c + d - a - 2b 3c - 2a - b w
α ,β  ,γ (11.2)

6 3 6

 
     

And the ranking function of the generalized tfn.   A= a, b, c, d; w which maps the set of all fuzzy numbers

to a set of real numbers is defined as   0 0R A x y (11.3)     .  For a normalized tfn., we put w = 1 in

equations (11.1) and (11.2) so we have,

  0 0A

a+2b b+c 2c+d 1 1 1α β γ α β γ
3 2 3 3 2 3

I x , y ,  (11.4)
α + β + γ α + β + γ

                                          
 
  

where

     2 2 2
c - 3b + 2d 1 2c + d - a - 2b 3c - 2a - b 1

α ,β  and γ (11.5)
6 3 6

 
     

And for   A= a, b, c, d; 1 ,   0 0R A x y (11.6)    
The Proposed Method For Three-Way ANOVA Test
Example 11.1. Let us consider Example 1, using the above relations (11.4), (11.5) and (11.6), we get the ranks

of each tfns.  iA which are tabulated below:
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The ANOVA Table Values Of tfns. Using Proposed Method:

Here, Q=24.53 ; 1Q =5.91, n-1=3 ; 2Q =1.85 , n-1=3 ; 3Q =13.46 , n-1=3 ; 4Q =3.32 , (n-1)(n-2)=6 and

variance ratio of  F can be calculated as per the description of the ANOVA table noted in section-4.  Now,

RowF 3.58 , t (5%)F (3,6) = 4.76 .  And Row t(5%)F < F . The null hypothesis  0H is accepted at 5% level of

significance.  The difference between rows is not significant. Col.F 1.13 , t (5%)F (3,6) = 4.76 . And

Col. t(5%)F < F . The null hypothesis  0H is accepted at 5% level of significance. The difference between

columns is not significant. Treat.F 8.16 , t (5%)F (3,6) = 4.76. And Treat. t(5%)F > F  The null hypothesis  0H
is rejected at 5% level of significance. The difference between treatments is significant.The difference
between the methods of cultivation is significant.
Example 11.2. Let us consider Example 2, using the above relations (11.4), (11.5) and (11.6), we get the ranks

of each tfns.  iA which are tabulated below:

The ANOVA Table Values Of tfns. Using Proposed Method:

Here, Q=23.4122 ; 1Q  =4.9520 , n-1=2 ; 2Q  =3.7702 , n-1=2 ; 3Q  =13.8733 , n-1=2 ;

4Q  =0.8168, (n-1)(n-2)=2 and variance ratio of  F can be calculated as per the description of the ANOVA

table noted in section-4.  Now, RowF 6.0627 , t (5%)F (2,2) = 19.00 .  And Row t(5%)F < F . The null

hypothesis  0H is accepted at 5% level of significance.  The difference between rows is not significant.

Col.F 4.6158 , t (5%)F (2,2) = 19.00 .And Col. t(5%)F < F . The null hypothesis  0H is accepted at 5% level

of significance. The difference between columns is not significant. Treat.F 16.9851 ,

t (5%)F (2,2) =19.00 .And Treat. t(5%)F < F . The null hypothesis  0H is accepted at 5% level of significance.

 The difference between treatments is not significant.The difference among the three teaching methods
is not significant.

XII. Conclusion
The decisions obtained from various methods are tabulated below for the null hypothesis.

 iR A ;  i = 1, 2, 3, 4.

A3(9.99422) A2(9.36553) A1(7.2843) A4(8.11679)
A1(7.70055) A4(7.07784) A3(9.16054) A2(7.2843)
A2(8.11679) A1(5.41287) A4(6.86806) A3(8.53549)
A4(6.44827) A3(7.49491) A2(8.94928) A1(5.8296)

Aptitude
 iR A ;  i = 1, 2, 3.

Young Middle Old
Low A1(33.533) A2(35.8141) A3(33.7383)
Medium A2(37.9035) A3(33.9375) A1(33.3218)
High A3(36.8657) A1(34.7703) A2(36.8524)

S.V.

Acceptance of null hypotheses  0H
 cut method Wang Rezvani GMIR M.F. L & W Proposed

Eg.1 Eg.2
Eg.1 Eg.2 Eg.1 Eg.2 Eg.1 Eg.2 Eg.1 Eg.2 Eg.1 Eg.2

Eg.
1

Eg.
2L U L U

Between
Rows

               

Between
Columns

               

Between
Treat.
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Here, using α -cut interval method, the decision for acceptance of null hypothesis is parallel from
lower level (L) and upper level (U) models. However, for example-2 the acceptance of null hypothesis oscillates
between lower and upper level models so, α -cut method fails to provide a strong decision in LSD.  The
membership function and Liou & Wang’s method (L&W) do not provide reliable results as they accept the null
hypotheses for all cases.  Moreover from the proposed method, the observed decisions for example-1 and
example-2 provide parallel conclusions which are similar to ranking grades of Wang, Rezvani and GMIR.
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