n - Power Quasi Normal Operators on the Hilbert Space

¹Dr. T.Veluchamy, ²K.M.Manikandan,

Former Principal, Dr. SNS Rajalakshmi College of Arts and Science, Coimbatore, India.

å

Assistant Professor & HOD, Department of Mathematics, Dr. SNS Rajalakshmi College of Arts and Science, Coimbatore, India.

Abstract: Let L(H) be the algebra of all bounded linear operators on a complex Hilbert space H. An operator $T \in L(H)$ is called n power quasi normal operator if T^n commutes with T^*T that is, $T^nT^*T = T^*TT^n$ and it is denuded by [nQN]. In this paper we investigate some properties of n-power quasinormal operators. Also, the necessary and sufficient condition for a Binormal operator to be 2 power quasi normal operator is obtained. Mathematics Subject Classification: 47B20

Keywords: Self adjoint operator, *n* - power quasi normal operator, unitary and binormal operator.

I. Introduction:

Let H be a complex Hilbert space. Let L (H) be the algebra of all bounded linear operators defined in H. Let T be an operator in L(H). The operator T is called normal if it satisfies the following condition $T^*T = TT^*$, i.e., T commutes with T^* . The class of quasi – normal operators was first introduced and studied by A. brown in [1] in 1953. The operator T is quasi normal if T^*T commutes with T, i.e. $T(T^*T) = (T^*T)T$ and it is denoted by [QN]. A.A.S. Jibril [2], in 2008 introduced the class of n – power normal operators as a generalization of normal operators. The operator T is called n – power normal if T^n commutes with T^* , i.e. $T^nT^* = T^*T^n$ and is denoted by [nN]. In the year 2011, Ould Ahmed Mahmoud Sid Ahmed introduced n – power quasi normal operators [3] as a generalization of quasi normal operators. The operator T is called n power quasi normal if T^n commutes with T^*T , i.e. $T^n(T^*T) = (T^*T)T^n$ and it is denoted by [nQN]. Further we know that T is called self adjoint if $T^* = T$, unitary if $T^*T = T^*T = I$ and binormal if T^*T commutes with T^* . In this paper we prove some new theorems based on the theorems discussed in quasi P – normal operators [4]. T is quasi P – normal if T^*T commutes with $T + T^*$, i.e. $T^*T(T + T^*) = (T + T^*)T^*T$.

In [5], Arun Bala assumed the following terminologies: Let T = R+iS, where $R = Re T = \frac{T+T^*}{2}$ and $S = imT = \frac{T-T^*}{2i}$ are the real and imaginary parts of *T*.

II. n – power quasi normal operators

Theorem: 1. If T is a n power quasi normal operator and λ is any scalar which is real, then λ T is also a n-power quasi normal operator.

Proof:

Since T is a n power quasi normal operator we have $T^nT^*T = T^*TT^n$ ------(1) If $\boldsymbol{\lambda}$ is any scalar, which is real then $(\lambda T)^* = \bar{\lambda}T^* = \lambda T^*$ also we have $[(\lambda T)^*]^n = (\lambda T^*)^n = \lambda^n T^{*n}$ Using the above results in (1) $(\lambda T)^n (\lambda T)^* (\lambda T) = \lambda^n T^n \lambda T^* \lambda T = \lambda^{n+2} T^n T^* T$ ------ (2) $(\lambda T)^* (\lambda T) (\lambda T)^n = \lambda T^* \lambda T \lambda^n T^n = \lambda^{n+2} T^* T T^n$ ------ (3) (1) (2) and (3) we see that λT is also a n power quasi normal operator

From (1), (2) and (3) we see that λT is also a n-power quasi normal operator.

Theorem: 2. If T is a n power quasi normal operator which is a self adjoint operator also, then T^* is also n-power quasi normal operator.

Proof:

Since *T* is a n power quasi normal operator, we have $T^nT^*T = T^*TT^n$ ------(1) Since *T* is a self adjoint we have $T^* = T$ -------(2) Replace T^* by *T* in (1) we get, $(T^*)^n(T^*)^*T^* = (T^*)^nTT^* = T^nT^*T$ ----- (3) and $(T^*)^*T^*(T^*)^n = TT^*(T^*)^n = T^*TT^n$ ------- (4) From (1), (3) and (4) we see that T^* is alos n-power quasi normal operator.

Theorem: 3. If T is self adjoint operator, then T is n power quasi normal operator.

Proof:

Since T is a self adjoint operator, therefore $T^* = T$ Now $T^n T^* T = T^n T T = T^{n+2}$ ----(1) $T^*TT^n = TTT^n = T^{2+n}$ -----(2) Hence $T^n T^* T = T^* T T^n$ Therefore T is n power quasi normal operator.

Theorem: 4. Let T be any operator on a Hilbert space H. Then

- $(T + T^*)$ is n power quasi normal. (i)
- (ii) TT^* is n power quasi normal.
- (iii) T^*T is n power quasi normal.
- $I + T^*T$, $I + TT^*$ are also n power quasi normal. (iv)

Proof:

Let $N = T + T^*$ (i)

Now $N^* = (T + T^*)^* = T^* + T = T + T^* = N$

 \therefore N is a self adjoint and from theorem 3, we know that every self adjoint operator is

n power quasi normal. $\therefore N = T + T^*$ is n power quasi normal.

- Similarly $(TT^*)^* = T^{**}T^* = TT^*$ $(T^*T)^* = T^*T^{**} = T^*T$ (ii)
- (iii)
- (iv) $(I + TT^*)^* = I^* + T^{**}T^* = I + TT^*$
- $(I + T^*T)^* = I^* + T^*T^{**} = I + T^*T$

So all the operators mentioned above are self adjoint and therefore all these operators are n power quasi normal operators.

Remark:

Since O and I are self adjoint operators and therefore O and I are n power quasi normal operators.

Theorem: 5. Let T be a n power quasi normal operator on a Hilbert space H. Let S be self adjoint operator for which T and S commute, then ST is also n power quasi normal operator. **Proof:**

Since S is self adjoint operator we have $S^* = S$. Since S and T commute we get ST = TS. Also, $(ST)^* = (TS)^*$ implies that $T^*S^* = S^*T^*$ and this implies $T^*S = ST^*$ Also, $(ST)^* = T^*S = ST^*$ Since T is a n power quasi normal operator we get $T^nT^*T = T^*TT^n$ From ST = TS and $S^* = S$, we can easily prove $(ST)^* = T^*S = ST^*$; $ST^n = T^nS$; $TS^{n} = S^{n}T; T^{n}S^{*} = S^{*}T^{n}; S^{n}T^{*} = T^{*}S^{n}; S^{n}S^{*}S = SS^{*}S^{n} and (ST)^{n} = S^{n}T^{n}$ Now $(ST)^n(ST)^*(ST) = S^nT^nT^*S^*ST$ $= S^n T^n T^* S^* TS$ $= S^n T^n T^* T S^* S$ $= S^n T^* T T^n S^* S$ $= S^n T^* T S^* T^n S$ $=S^nT^*TS^*ST^n$ $=T^*S^nTS^*ST^n$ $=T^*TS^nS^*ST^n$ $=T^*TSS^*S^nT^n$ $=T^*STS^*S^nT^n$ $= (ST)^*(TS)(ST)^n$ Hence ST \in [*nQN*]

Theorem: 6. If T is a self adjoint operator, then T^{-1} is also a n power quasi normal operator. **Proof:**

Since T is self adjoint operator we have $T^* = T$, further we have $(T^{-1})^* = (T^*)^{-1} = T^{-1}$ [since $T^* = T^{-1}$]

$$(T^{-1})^* = T^{-1}$$
 [since $T = T$]
 $(T^{-1})^* = T^{-1}$ Implies that T^{-1} is self adjoint.

But in theorem (3) we have proved that every self adjoint operator is n power quasi normal operator. T^{-1} is self adjoint operator and therefore T^{-1} is n power quasi normal operator.

Proof verification:

Since T^{-1} is self adjoint, therefore $(T^{-1})^* = T^{-1}$ Now $(T^{-1})^n (T^{-1})^* (T^{-1}) = (T^{-1})^n (T^{-1}) (T^{-1}) = (T^{-1})^{n+2}$

$$(T^{-1})^* (T^{-1})(T^{-1})^n = (T^{-1})(T^{-1})(T^{-1})^n = (T^{-1})^{n+2}$$

Therefore, $T^{-1} \in [nQN]$

In the following theorem, we derive the condition for an invertible n power quasi normal operator to be self adjoint.

If T is isometry right invertible operator then, we can prove that $T^{-1} = T^*$. Remark:

Proof: Given T is isometry operator. Therefore, we get $T^*T = I$. Post multiply this by T^{-1} we can get the desired result.

Let T^{-1} be a n power quasi normal operator and if $T^{-1} = T^*$, then T^{-1} is self adjoint only if Theorem: 7. T is self adjoint.

Proof:

Given T^{-1} is n power quasi normal operator and therefore by definition, $(T^{-1})^n (T^{-1})^* T^{-1} = (T^{-1})^* T^{-1} (T^{-1})^n$

 $(T^{-1})^* = T^{-1}$ only if $(T^{-1})^n = (T^{-1})^*$ and $T^{-1} = (T^{-1})^n$ i.e., T^{-1} is self adjoint only if $T^{*^n} = T^{*^n}$ and $T^* = T^{*^n}$ since $T^{-1} = T^*$, i.e., T^{-1} is self adjoint only if $T^{*^n} = T$ and $T^* = T^{*^n}$ --(1)

But $T = T^{*^n}$ and $T^* = T^{*^n}$ is possible only when $T = T^*$ i.e., T is self adjoint ---(2) Using (2) in (1), we get, T^{-1} is self adjoint only if T is self adjoint.

Theorem: 8. Let T = R + iS be an operator on a Hilbert space H for which RS = SR then T is a 2 power quasi normal operator if $SR^3 = R^3S$ and $RS^3 = S^3R$ i.e., S^3 commutes with R and R^3 commutes with S. **Proof:**

Since T is an operator for which T = R+iS, so that, we get
$$T^* = R - iS$$

Now $T^*T = (R - iS)(R + iS) = (RR + SS) + i(RS - SR)$
 $=RR + SS = R^2 + S^2$
Also, $T^2 = (R + iS)(R + iS)$
 $= (RR - SS) + i(SR + RS)$
 $= (RR - SS) + i(SR + RS)$
 $= (RR - SS) + 2iSR$
 $T^2T^*T = [(RR - SS) + 2iSR](RR + SS)$
 $= [(R^2 - S^2) + i2SR](R^2 + S^2)$
 $= R^4 - S^4 + R^2S^2 - S^2R^2 + i2SR(R^2 + S^2)$
 $= R^4 - S^4 + RSS - SRSR + i2SR(R^2 + S^2)$
 $= R^4 - S^4 + RSS - SRSR + i2SR(R^2 + S^2)$
 $= R^4 - S^4 + i2SR(R^2 + S^2)$
 $= R^4 - S^4 + 2i(SR^2 + SRS^2)$
 $= R^4 - S^4 + 2i(SR^3 + RSS^2)$
 $= R^4 - S^4 + 2i(SR^3 + RS^3)$ ------(1)
Similarly, $T^*TT^2 = (R^2 + S^2)[(R^2 - S^2) + i(R^2 + S^2)2SR$
 $= R^4 - S^4 + 2i(R^3 + S^3R)$
 $= (R^4 - S^4 + 2i(R^3 S + S^2R)]$
 $= R^4 - S^4 + 2i[R^3S + S^2RS]$
 $= R^4 - S^4 + 2i[R^3S + S^2RS]$
 $= (R^4 - S^4) + 2i[R^3S + S^3R]$ ------(2)
Equations (1) and (2) are same if $R^3S = S^3R$ and $SR^3 = RS^3$

i.e., T is 2 power quasi normal if R^3 commutes with S and S^3 commutes with R.

In the following theorem, we derive the necessary and sufficient condition for a binormal operator to be 2 power quasi normal operator.

Theorem: 9 A self adjoint operator on a Hilbert's space H is binormal if and only if it is 2-power quasi normal.

Proof:

Given T is self-adjoint operator. $\therefore T^* = T$.

Now suppose that T is 2 power quasi normal we have $T^2T^*T = T^*TT^2$ $\Rightarrow TTT^*T = T^*TTT$ $\Rightarrow TT^*T^*T = T^*TTT^*$ $\Rightarrow TT^*T^*T - T^*TTT^* = 0$ $\Rightarrow [TT^*, T^*T] = 0 \quad \therefore \text{ T is binormal.}$ Conversely, let T be binormal. Therefore by definition we get, $TT^*T^*T = T^*TTT^*$ Since T is self adjoint $T = T^*$ $\Rightarrow TTT^*T = T^*TTT$ $\Rightarrow T^2T^*T = T^*TT^2$

Therefore, it is proved that $T \in 2$ power quasi normal operator.

Theorem 10. Let T be a self adjoint operator on a Hilbert space H and S be any operator on H, then S^*TS is a n power quasi normal.

Proof: Since T is self adjoint we get $T^* = T$

Consider $(S^*TS)^* = S^*T^*S = S^*TS$. Therefore S^*TS is self adjoint operator.

 \therefore By theorem (3), we have the desired result, i.e. if S^*TS is a self adjoint operator, then it is n power quasi normal operator. This result can be verified as follows.

Now, $(S^*TS)^n(S^*TS)^*(S^*TS) = (S^*TS)^n(S^*TS) = (S^*TS)^{n+2}$ ----(1) Similarly, $(S^*TS)^*(S^*TS)(S^*TS)^n = (S^*TS)^2(S^*TS)^n = (S^*TS)^{n+2}$ ----(2) Equations (1) and (2) are same. $\therefore S^*TS \in n$ power quasi normal.

References

- [1] A. Brown, On a class of operators, Proc. Amer. Math. Soc, 4 (1953), 723 728.
- [2] A.A.S. Jibril, on n power normal operators, The Journal of Science and engineering, Volume 33, Number 2A, (2008), 247 251.
- [3] Ould Ahmed Mahmoud Sid Ahmed, On the class of n power quasi normal operators on the Hilbert space, Bull. Of Math.Anal. Appl., Vol 3, 2 (2011), 213 – 228.
- [4] Dipshikha Bhattacharya And Narendra Prasad, Quasi-P Normal operators linear operators on Hilbert space for which T+T* And T*T commute, Ultra Scientist Vol. 24(2)A, 269-272 (2012).
- [5] Arun Bala, A note on Quasi normal operators, University of Delhi, 110007, 1976.