Existence and Uniqueness Result for Boundary Value Problems Involving Capillarity Problems

C.L. Ejikeme ${ }^{1}$, M.B. Okofu ${ }^{2}$

Abstract

In this paper, we study a nonlinear boundary value problem ($b v p$) which generalizes capillarity problem. An existence and uniqueness result is obtained using the knowledge of range for nonlinear operator. Ours extends the result in [12].

I. Introduction

A research on the existence and uniqueness result for certain nonlinear boundary value problems of capillarity problem has a close relationship with practical problems. Some significant work has been done on this, see Wei et al [1, 5, 2, 4, 3, 7, 10, 6]. In 1995, Wei and He [2] used a perturbation result of ranges for maccretive mappings in Calvert and Gupta [1] to obtain a sufficient condition so that the zero boundary value problem, [1.1].
$-\nabla_{p} u+g(x, u(x))=f(x)$, a.e in Ω
$-\frac{\partial u}{\partial n}=0$, a.e in Γ,
has solutions in $L^{P}(\Omega)$, where $2 \leq p<+\infty$. In 2008, as a summary of the work done in $[5,2,4,3,7,10,6]$, Wei et al used some new technique to work for the following problem with so-called generalized p-Laplacian operator:

$$
\begin{gather*}
-\operatorname{div}\left[\left(c(x)+|\Delta u|^{2}\right)^{(p-2) / 2} \Delta u\right]+\in / u /^{q-2} u+g(x, u(x))=f(x) \text {, a.e in } \Omega \tag{1.2}\\
\left.-v\left(c(x)+|\Delta u|^{2}\right)^{\frac{(p-2)}{2}} \Delta u\right) \in \beta_{x}(u(x)) \text {, a.e in } \Gamma
\end{gather*}
$$

where $0 \leq c(x) \in L^{p}(\Omega), \in$ is a non-negative constant and v denotes the exterior normal derivatives of Γ. It was shown (7) that (1.2) has solutions in $\mathrm{L}^{\mathrm{p}}(\Omega)$ under some conditions where $2 N /(N+1)<p \leq s<+\infty, 1 \leq q<+\infty$ if $p \geq N$,
and $1 \leq q \leq N_{p} /(N-p)$ if $p<N$, for $N \geq 1$. In Chen and Luo [8], the authors studied the eigenvalue problem for the following generalized capillarity equations.

$$
u=0, \text { a.e. on } \partial \Omega
$$

In their paper [10], Wei et al, borrowed the ideas dealing with the nonlinear elliptic boundary value problem with the generalized p-Laplacian operator to study the nonlinear generalized Capillarity equations with Neumann boundary conditions. They used the perturbation results of ranges for m-accretive mappings in [1] again to study.
[1.4] $-\operatorname{div}\left[\left(1+\frac{|\nabla u|^{p}}{\sqrt{1+|\nabla u|^{2 p}}}\right)|\nabla u|^{(p-2)} \nabla u\right]+\lambda\left(|u|^{q-2} u+|u|^{r-2} u\right)+g(x, u(x))=f(x)$, a.e. in Ω

$$
\left.-\left.\left\langle v,\left(1+\frac{|\nabla u|^{p}}{\sqrt{1+|\nabla u|^{2 p}}}\right)\right| \nabla u\right|^{(p-2)} \nabla u\right\rangle \in \beta_{x}(u(x)) \text {, a.e on } \Gamma
$$

Motivated by $[10,12]$, we study the following boundary value problem:

$$
\begin{align*}
-d i v\left[\left(1+\frac{|\nabla u|^{p}}{\sqrt{1+|\nabla u|^{2 p}}}\right)|\nabla u|^{(p-2)} \nabla u\right] & +\lambda\left(|u|^{q 1-2} u+|u|^{q 2-2} u+\ldots|u|^{q m-2} u\right) \tag{1.5}\\
& +g(x, u(x), \nabla u(x))=f(x) \text {, a.e. in } \Omega \\
\left.-\left.\left\langle v\left(1+\frac{|\nabla u|^{p}}{\sqrt{1+|\nabla u|^{2 p}}}\right)\right| \nabla u\right|^{(p-2)} \nabla u\right\rangle & \in \beta_{x}(u(x)) \text {, a.e in } \Gamma
\end{align*}
$$

This equation generalized the Capillarity problem considered in [10]. We replaced the nonlinear term $\mathrm{g}(\mathrm{x}, \mathrm{u}(\mathrm{x}))$ by the term $\mathrm{g}(\mathrm{x}, \mathrm{u}(\mathrm{x}), \nabla u(\mathrm{x}))$ which is rather general. In this paper, we will use some perturbation results of the ranges for maximal monotone operators by Pascali and Shurlan [10] to prove that (1.5) has a unique solution in $\mathrm{W}^{1, \mathrm{p}}(\Omega)$ and later show that this unique solution is the zero of a suitably defined maximal monotone operator.

II. Preliminaries

We now list some basic knowledge we need. Let X be a real Banach space with a strictly convex dual space X ". Using " \hookrightarrow " and "w-lim" to denote strong and weak convergence respectively. For any subset G of X, let intG denote its interior and G its closure. Let " $X \hookrightarrow \hookrightarrow Y$ " denote that space X is embedded compactly in space Y and " $\mathrm{X} \hookrightarrow \mathrm{Y}$ " denote that space X is embedded continuously in space Y . A mapping, $\mathrm{T}: \mathrm{D}(\mathrm{T})=\mathrm{X} \rightarrow \mathrm{X}^{*}$ is said to be hemi continuous on X if $w-\lim _{t \rightarrow 0} T(x+t y)=T x$, for any $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ Let J denote the duality mapping from X into 2^{x}, defined by

$$
\begin{equation*}
f(x)=f \in x^{\bullet}:(x, f)=\|x\| \cdot\|f\|,\|f\|=\|x\|, x \in X \tag{2.1}
\end{equation*}
$$

where (\ldots.) denotes the generalized duality paring between X and X^{*} Let $\mathrm{A}: \mathrm{X} \rightarrow 2^{\mathrm{x}}$ be a given multi-valued mapping. A is boundedly-inversely compact if for any pair of bounded subsets G and G^{\prime} of X, the subset $G \cap A^{-1}\left(G^{\prime}\right)$ is relatively compact in X.

The mapping $\mathrm{A}: \mathrm{X} \rightarrow 2^{\mathrm{x}}$ is said to be accretive if $\left(\left(v_{1}-v_{2}\right), J\left(u_{1}-u_{2}\right)\right) \geq 0$, for any $u i \in D(A)$ and $v i \in A u_{i} ; i=1,2$.

The accretive mapping A is said be m -accretive if $R(1+\mu A)=X$, for some $\mu>0$.
Let $B: X \rightarrow 2^{X^{*}}$ be a given multi-valued mapping, the graph of $B, G(B)$ is defined by $G(B)=$ $\{[u, w] \mid \mu \in D(B), w \in B u\}, B: X \rightarrow 2^{X^{*}}$ is said to be monotone [11] if $\mathrm{G}(\mathrm{B})$ is a monotone subset of $\mathrm{X} \times \mathrm{X}^{*}$ in the sense that

$$
\begin{equation*}
\left(u_{1}-u_{2}, w_{1}-w_{2}\right) \geq 0, \text { for any }\left[u_{i}, w_{i}\right] \in G(B) ; i=1,2 \tag{2.2}
\end{equation*}
$$

The monotone operator B is said to be maximal monotone if $G(B)$ is maximal among all monotone subsets of X $\mathrm{x} \mathrm{X}^{*}$ in the sense of inclusion the mapping B is said to be strictly monotone if the equality in (2.2) implies that $u_{1}=u_{2}$. The mapping B is said to be coercive if
$\lim _{n \rightarrow+\infty}\left(\left(x_{n}, x_{n}^{*}\right) /\left\|x_{n}\right\|\right)=\infty$ for all $\left[x_{n}, x_{n}^{*}\right] \in G(B)$ such that $\lim _{n} \rightarrow+\infty\left\|x_{n}\right\|=+\infty$.
Definition 2.1. The duality mapping $J: X \rightarrow 2^{X^{*}}$ is said to be satisfying condition (1) if there exists a function $\eta: X \rightarrow[0,+\infty]$ such that

$$
\begin{equation*}
\|J u-J v\| \leq \eta(u-v), \text { for all } \mathrm{u}, v \in X \tag{2.3}
\end{equation*}
$$

Definition 2.2. Let A: $\mathrm{X} \rightarrow 2^{\mathrm{X}}$ be an accretive mapping and $J: X \rightarrow X^{*}$ be a duality mapping. We say that A satisfies condition (*) if, for any $f \in R(A)$ and $a \in D(A)$ and $a \in D(A)$, there exists a constant $\mathrm{C}(\mathrm{a}$, F) such that

$$
\begin{equation*}
(v-f, J(u-a)) \geq C(a, f), \text { for any } u \in D(A), v \in A u \tag{2.4}
\end{equation*}
$$

Lemma 2.3. (Li and Guo) Let Ω be a bounded conical domain in R^{N}. Then we have the following results;
(1) If $m p>N$ then $W^{m, p}(\Omega) \hookrightarrow \quad C_{B}(\Omega)$; if $m p<N$ and $q=N p /(N-m p)$, then $W^{m, p}(\Omega) \quad\llcorner$ $L^{q}(\Omega)$; if $m p=N$, and $p>1$, then for $1 \leq q<+\infty, W^{m, p}(\Omega) \rightarrow L^{q}(\Omega)$
(2) If $m p>N$ then $W^{m, p}(\Omega) \sqcup \quad\left\llcorner\quad C_{B}(\Omega)\right.$; if $0<m p \leq N$ and $q o=N p /(N-m p)$, then $W^{m, p}(\Omega) \longleftrightarrow L^{q}(\Omega), 1 \leq q<q 0 ;$
Lemman 2.4. (Pascali and Sburlan [11]) if B: $\mathrm{X} \rightarrow 2^{\mathrm{X}^{*}}$ is an everywhere defined, monotone and hemi continuous operator, then B is maximal monotone.
Lemman 2.5. (Pascali and Sburlan [11]) if B: $\mathrm{X} \rightarrow 2^{\mathrm{X}^{*}}$ is maximal monotone and coercive, then $\mathrm{R}(\mathrm{B})=\mathrm{X}^{*}$
Lemman 2.6. (Pascali and Sburlan [11]) if $\Phi: X \rightarrow(-\infty,+\infty)$ is a proper, convex and lower semi continuous function, then $\partial \Phi$ is maximal monotone from X to X^{*}.
Lemman 2.7. [11]. If B_{1} and B_{2} are two maximal monotone operators in X such that (int $D\left(B_{1}\right) \cap D\left(B_{2}\right) \neq \phi$, then $B_{1}+B$ is maximal monotone.
Lemman 2.8. (Calvert and Gupta [1]). Let $\mathrm{X}=\mathrm{L}^{\mathrm{P}}(\Omega)$ and Ω be a bounded in \mathfrak{R}^{N}. For $2 \leq \mathrm{p}<+\infty$, the duality mapping J_{p} : $\mathrm{L}^{\mathrm{P}}(\Omega) \rightarrow L^{P^{\prime}}(\Omega)$ defined by $J_{p} u=|u|^{p-1}$ sgn $u\|u\|_{p}^{2-p}$, for $u \in L^{P}(\Omega)$,satisfies condition (2.4); for $2 \mathrm{~N} /(\mathrm{N}+1)<\mathrm{p} \leq 2$ and $\mathrm{N} \geq 1$, the duality mapping $\mathrm{J}_{\mathrm{P}}: \mathrm{L}^{\mathrm{P}}(\Omega) \rightarrow L^{P^{\prime}}(\Omega)$ defined by $J_{p} u=|u|^{p-1} \operatorname{sgn} u$, for $u \in L^{p}(\Omega)$, satisfies condition (2.4), where $(1 / p)+\left(1 / p^{\prime}\right)=1$

III. Main Result

3.1 Notations and Assumptions of (1.5). We assume in this paper, that $2 N /(N+1)<p<+\infty, 1 \leq q 1, q 2 ; \ldots, q m<+\infty$ if $p \geq N$, and $1 \leq q 1, q 2, \ldots q m \leq N p /(N-p)$ if $p<$ N, where $N \geq 1$. We use $\|\cdot\| p^{\prime},\left\|q_{1}^{\prime},\right\| \cdot\left\|q_{2}^{\prime}, \ldots,\right\| \cdot \| q_{m}^{\prime}$ and $\|\cdot\|_{1, p, \Omega}$ to denote the norms in $L^{p}(\Omega), L^{q 1}(\Omega), L^{q 2}(\Omega), \ldots, L^{q m}(\Omega)$ and $\mathrm{W}^{1, \mathrm{P}}(\Omega)$ respectively. Let $(1 / \mathrm{p})+\left(1 / \mathrm{p}^{\prime}\right)=1,(1 / \mathrm{q} 1)+\left(1 / \mathrm{q}_{1}^{\prime}\right)=1$, $\left(1 / \mathrm{q}_{2}\right)+\left(1 / \mathrm{q}_{2}^{\prime}\right)=1, \ldots,(1 / \mathrm{qm})+\left(1 / \mathrm{q}_{\mathrm{m}}^{\prime}\right)=1$
In (1.5), Ω is a bounded conical domain of a Euclidean space \mathfrak{R}^{N} with its boundary $\Gamma \in C^{1}$, (c.f.[4]).
Let $\|$ denote the Euclidean norm in $\mathfrak{R}^{N},\langle\ldots .$,$\rangle the Euclidean inner-product and v$ the exterior normal derivative of $\Gamma . \lambda$ is a nonnegative constant.
Lemman 3.1 Defining the mapping $\mathrm{B}_{\mathrm{p}, \mathrm{q}, \mathrm{q}, \mathrm{q}, \ldots \mathrm{qm}}: \mathrm{W}^{1 \mathrm{p}}(\Omega) \rightarrow\left(W^{1, p}(\Omega)\right)^{*}$ by

$$
\begin{aligned}
& \left.\left(v, B_{p, q 1, q 2, \ldots q m} u\right)=\int_{\Omega} /\left(1+\left(\frac{|\nabla u|^{p}}{\sqrt{1+|\nabla u|^{2 p}}}\right)|\nabla u|^{p-2} \nabla u, \nabla u\right)\right) d x \\
& +\lambda \int_{\Omega}|u(x)|^{q 1-2} u(x) v(x) d x+\lambda \int_{\Omega}^{|u(x)| q 2-2 u(x) v(x) d x} \\
& +\ldots+\lambda \int_{\Omega}^{\mid u(x) q m-2 u(x) v(x) d x}
\end{aligned}
$$

for any $u, v \in W^{1, p}(\Omega)$. Then $\mathrm{B}_{\mathrm{p}, \mathrm{q} 1, \mathrm{q} 2, \ldots \mathrm{qm}}$ is everywhere defined, strictly monotone, hemi continuous and coercive.
The proof of the above lemma will be done in four steps.
Proof. Step 1: $\mathrm{B}_{\mathrm{p}, \mathrm{q} 1, \mathrm{q}_{2}, \ldots, \mathrm{qm}_{m}}$ is everywhere defined.
 $, \ldots, \mathrm{w}^{1, \mathrm{p}}(\Omega) \hookrightarrow \mathrm{L}^{\mathrm{qm}}(\Omega)$, when $\mathrm{p} \leq N$.

Thus, for all $u, v \in W^{1, p}(\Omega),\|v\|_{q 1} \leq k_{1}\|v\|_{1, p, \Omega,}\|v\|_{q 2} \leq k_{2}\|v\|_{1, p, \Omega}, \ldots,\|v\|_{q m} \leq k_{m}\|v\|_{1, p, \Omega}$ where $\mathrm{k}_{1}, \mathrm{k}_{2}, \ldots, \mathrm{k}_{\mathrm{m}}$ are positive constants.
For $u, v \in W^{1, p}(\Omega)$, we have
$\left|\left(v, B_{p, q 1, q 2, \ldots, q m} u\right)\right| \leq 2 \int_{\Omega}|\nabla u| p-1|\nabla v| d x+\lambda \int_{\Omega}^{|\mu| q 1-1|v| d x+\lambda} \int_{\Omega}^{|\mu| q 2-1|v| d x+\ldots+\lambda} \int_{\Omega}^{|\mu| q m-1|v| d x}$

$$
\begin{aligned}
& \leq 2\|\nabla u\|_{p}^{p / p^{\prime}}\|\nabla v\|_{p}+\lambda\|v\| q 1\|u\|_{q 1}^{q 1 / q^{\prime} 1}+\lambda\|v\|_{q 2}\|u\|_{q 2}^{q 2} / q^{\prime} 2 \\
& \leq \ldots+\lambda\|v\|_{q m}\|u\|_{q m}^{q m / q^{\prime} m} \\
& \leq 2\|u\|_{1, p, \Omega}^{p / p^{\prime}}\|v\|_{1, p, \Omega}+k_{1}^{\prime} \lambda\|v\|_{1, p, \Omega}\|u\|_{1, p, \Omega}^{q 1 / q^{\prime} 1}+k_{2}^{\prime} \lambda\|v\|_{1, p, \Omega}\|u\|_{1, p, \Omega}^{q 2 / q^{\prime} 2} \\
& +\ldots+k_{m}^{\prime} \lambda\|v\|_{1, p, \Omega}\|u\|_{\substack{q m / q^{\prime} m \\
1, p, \Omega}}
\end{aligned}
$$

Where $\mathrm{k}_{1}^{\prime}, \mathrm{k}_{2}^{\prime}, \ldots \mathrm{k}_{\mathrm{m}}^{\prime}$ are positive constants. Thus $\mathrm{B}_{\mathrm{p}, \mathrm{q} 1, \mathrm{q} 2}, \cdots \mathrm{qm}$ is everywhere defined.
Step 2: $\mathrm{B}_{\mathrm{p}, \mathrm{q} 1, \mathrm{q} 2, \ldots, \mathrm{qm}}$ is strictly monotone
For $u, v \in W^{1, p}(\Omega)$, we have
$\mid\left(u-v, B_{p, q 1, q 2, \ldots, q m} u\right.$

$$
\begin{aligned}
& \left.-B_{p, q 1, q 2, \ldots, q m} \cup\right] \mid \\
& \left.=\int_{\Omega} /\left(1+\frac{|\nabla u|^{p}}{\sqrt{1+|\nabla u|^{2 p}}}\right)|\nabla u|^{p-2} \nabla u-\left(1+\frac{|\nabla v|^{p}}{\sqrt{1+|\nabla v|^{2 p}}}\right)|\nabla v|^{p-2} \nabla v, \nabla u-\nabla v\right) d x \\
& +\lambda \int_{\Omega}\left(|\mu| q 1-22_{u}-|v|^{q 1-2} \nu\right)(u-v) d x+\lambda \int_{\Omega}{ }^{\left(\left.u\right|^{q 2-2} u-|v|^{q 2-2} v\right)(u-v) d x} \\
& +\ldots+\lambda \int_{\left.\Omega^{\left(\left.u\right|^{q m-2} u-|v|^{q m-2}\right.} v\right)(u-v) d x} \\
& =\int_{\Omega}\left\{\left(1+\frac{|\nabla u|^{p}}{\sqrt{1+|\nabla u|^{2 p}}}\right)|\nabla u|^{p}-\left(1+\frac{|\nabla u|^{p}}{\sqrt{1+|\nabla u|^{2 p}}}\right)|\nabla u|^{p-2} \nabla u \nabla u\right\} \\
& \left.-\left.\left(1+\frac{|\nabla u|^{p}}{\sqrt{1+|\nabla v|^{2 p}}}\right) \nabla u\right|^{p-2} \nabla u \nabla v+\left(1+\frac{|\nabla v|^{p}}{\sqrt{1+|\nabla v|^{2 p}}}\right)|\nabla v|^{p}\right\} d x \\
& +\ldots+\lambda \int_{\Omega}\left(|\mu| q m-2_{u}-|v|^{q m-2} v\right)(u-v) d x \\
& \geq \int_{\Omega}\left\{\left(1+\frac{|\nabla u|^{p}}{\sqrt{1+|\nabla u|^{2 p}}}\right)|\nabla u|^{p-1}-\left(1+\frac{|\nabla v|^{p}}{\sqrt{1+|\nabla v|^{2 p}}}\right)|\nabla v|^{p-1}\right\}(|\nabla u|-|\nabla u|) d x \\
& +\lambda \int \Omega^{\left(|u| q 1-1-|v|^{q 1-1}\right)}(|u|-|v|) d x+\lambda \int \Omega^{\left(|u|^{q 2-1}-|v|^{q-1}\right)(u| |-|v|) d x} \\
& \left.+\ldots+\lambda \int_{\Omega}\left(|u| q m-1_{u}-|v|^{q m-1}\right)(|u|)-|v|\right) d x
\end{aligned}
$$

If we let $h(t)=\left(1+\frac{t}{\sqrt{\left(1+t^{2}\right)}}\right) t^{(p-1) / p}$, for $t \geq 0$. Then

$$
\begin{equation*}
h^{\prime}(t)=\frac{t^{(p-1) / p}}{\left(1+t^{2}\right)^{3 / 2}}+t-^{(1 / p)}\left(1+\frac{t}{\sqrt{1+t^{2}}}\right) \frac{p-1}{p} \geq 0 \tag{3.1}
\end{equation*}
$$

Since $t \geq 0$. And, $h^{\prime}(\mathrm{t})=0$ if and only if $\mathrm{t}=0$. Then $\mathrm{h}(\mathrm{t})$ is strictly monotone. Thus we can say that $\mathrm{B}_{\mathrm{p}, \mathrm{q} 1, \mathrm{q} 2 \ldots, \mathrm{qm}}$ is strictly monotone
Step 3: $\mathrm{B}_{\mathrm{p}, \mathrm{q} 1, \mathrm{q} 2, \ldots \mathrm{qm}}$ is hemi continuous
Need to show here that, for any
$u, v, w \in W^{1, p}(\Omega)$ and $t \in[0,1],\left(w, B_{p, q 1, q 2} \cdots, q m(u+t v)-B_{p, q 1, q 2, \ldots q m} u\right) \rightarrow 0$ as $t \rightarrow 0$.
By Lebesgue's dominated convergence theorem, it follows that
$0 \leq_{t \rightarrow 0}^{\lim }\left|\left(w, B_{p, q 1, q 2, \ldots q m}(u+t v)-B_{p, q 1, q 2, \ldots q m} u\right)\right|$

$$
\begin{aligned}
& \leq \int_{\Omega_{t \rightarrow 0}}{ }^{\lim _{t}}\left(\left(w, B_{p, q 1, q 2, \ldots q m}(u+t v)-B_{p, q 1, q 2, \ldots q m} u\right) \mid\right. \\
& \leq \int_{\Omega}{ }^{\lim _{t \rightarrow 0}}\left|\left(1+\frac{|\nabla u+t \nabla v|^{p}}{\sqrt{1+|\nabla u+t \nabla v|^{2} p}}\right)\right| \nabla u+\left.t \nabla v\right|^{p-2}(\nabla u-t \nabla v \\
& -\left(1+\frac{|\nabla u|^{p}}{\sqrt{1+|\nabla u|^{2} p}}\right)|\nabla u|^{p-2} \nabla u| | \nabla w\left|d x+\lambda \int_{\Omega_{t-0}}^{\lim }\right| u+\left.t v\right|^{q 1} \\
& +\lambda \int_{\Omega_{t-0}}^{\lim ^{p}}|u+t v|^{q 2-2}(u+t v)-|u|^{q 2-2} \| w \mid d x+\ldots+\lambda \int_{\Omega_{t-0}}^{\lim _{n}} \\
& =0
\end{aligned}
$$

Therefore $\mathrm{B}_{\mathrm{p}, \mathrm{q}, \mathrm{q}, \mathrm{q}, \ldots \mathrm{qm}}$ is hemi continuous
Step 4: $\mathrm{B}_{\mathrm{p}, \mathrm{q} 1, \mathrm{q}, \ldots, \mathrm{qm}}$ is coercive
For $\quad u \in W^{1, p}(\Omega)$, Lemma 2.4 implies that $\quad\|u\|_{1, p, \Omega} \rightarrow \infty$ is equivalent to $\left\|u-(1 / \operatorname{meas}(\Omega)) \int_{\Omega} u d x\right\|_{1, p, \Omega} \rightarrow \infty$ and hence we have the following result:

$$
\begin{aligned}
\frac{\left(u, B_{p, q 1, q 2, \ldots q m} u\right)}{\|u\|_{1, p, \Omega}} & =\frac{\left.\int_{\Omega}\left(1+(|\nabla|)^{p} / \sqrt{1+|\nabla u|^{2 p}}\right)\right)|\nabla u|^{p} d x}{\|u\|_{1, p, \Omega}}+\frac{\int_{\Omega}|u|^{q 1} d x}{\|u\|_{1, p, \Omega}} \\
& +\lambda \frac{\int_{\Omega}|u|^{q 2} d x}{\|u\|_{1, p, \Omega}}+\ldots+\lambda \frac{\int_{\Omega}|u|^{q m} d x}{\|u\|_{1, p, \Omega}} \\
& =\frac{\int_{\Omega}\left(|\nabla u|^{p}+\sqrt{1+|\nabla u|^{2 p}}\right) d x-\int_{\Omega}\left(\sqrt{1 /|\nabla u|^{2 p}}\right) d x}{\|u\|_{1, p, \Omega}} \\
& +\lambda \frac{\int_{\Omega}|u|^{q 1} d x}{\|u\|_{1, p, \Omega}}+\lambda \frac{\int_{\Omega}|u|^{q 2} d x}{\|u\|_{1, p, \Omega}}+\ldots+\lambda \frac{\int_{\Omega}|u|^{q m} d x}{\|u\|_{1, p, \Omega}} \\
& \geq \frac{2 \int_{\Omega}|\nabla u|^{p} d x-\int_{\Omega}\left(1 / \sqrt{1+|\nabla u|^{2 p}}\right) d x}{\|u\|_{1, p, \Omega}}+\lambda \frac{\int_{\Omega}|u|^{q 1} d x}{\|u\|_{1, p, \Omega}} \\
& +\lambda \frac{\int_{\Omega}|u|^{q 2} d x}{\|u\|_{1, p, \Omega}}+\ldots+\lambda \frac{\int_{\Omega}|u|^{q m} d x}{\|u\|_{1, p, \Omega}} \rightarrow+\infty,
\end{aligned}
$$

as $\|u\|_{1, p, \Omega} \rightarrow+\infty$, which implies that $B_{p, q 1, q 2, \ldots, q m}$ is coercive
This completes the proof.
Definition 3. 2. Define a mapping $\mathrm{A}_{\mathrm{p}}: \mathrm{L}^{\mathrm{P}}(\Omega) \rightarrow 2^{L_{p}(\Omega)}$ as follows:
$\mathrm{D}\left(\mathrm{A}_{p}\right)=\left\{u \in L^{p}(\Omega) \mid\right.$ there exist an $f \in L^{p}(\Omega)$, such that $\left.f \in B_{p, q 1, q 2 \ldots, q m} u+\partial \Phi_{p}(u)\right\}$ for $u \in D\left(A_{p}\right)$, let $A_{p} u=\left\{f \in L^{p}(\Omega)\right.$, such that $\left.f \in B_{p, q 1, q 2, \ldots q m} u+\partial \Phi_{p}(u)\right\}$
Definition 3.3.: The mapping
$A_{p}: L^{p}(\Omega) \rightarrow 2^{L p(\Omega)}$ is m-accretive.

Proof. (1) A_{p} is accretive
(a) Case 1:

If $\mathrm{p} \geq 2$, the duality mapping $\mathrm{J}_{\mathrm{p}}: \mathrm{L}^{\mathrm{p}^{\prime}}(\Omega)$ is defined ${ }_{\text {by }} J_{p} u=|u|^{p-1} \operatorname{sgn} u\|u\|_{p}^{2-p}$ for
$u \in L^{p}(\Omega)$.It then suffices to prove that for any $u_{i} \in D\left(A_{p}\right)$ and $v_{i} \in A_{p} u_{i} i=1,2$,

$$
\left(v_{1}-v_{2}, J_{p}\left(u_{1}-v_{2}\right)\right) \geq 0
$$

To do this, we are left to prove that both

$$
\begin{aligned}
& \left(\left|u_{1}-u_{2}\right|^{p-1} \operatorname{sgn}\left(u_{1}-u_{2}\right) \| u_{1}-\left.u_{2}\right|_{p} ^{2-p}, B_{p, q 1, q 2, \ldots, q m} u_{1}-B_{p, q 1, q 2, \ldots, q m} u_{2}\right) \geq 0 \\
& \left.\quad\left(\left|u_{1}-u_{2}\right|^{p-1} \operatorname{sgn}\left(u_{1}-u_{2}\right)\right) \mid u_{1}-u_{2} \|_{p}^{2-p}, \partial \Phi_{p}\left(u_{1}\right)-\partial \Phi_{p}\left(u_{2}\right)\right) \geq 0,
\end{aligned}
$$

are available.
Now, take for a constant $\mathrm{k}>0, X_{k}: R \rightarrow R$ is defined by $X_{k}(t)=\mid t \Lambda k \vee(-k)^{p-1} \operatorname{sgn} t \|$ Then X_{k} is monotone, Lipschitz with $X_{k}(0)=0$ and X_{k} is continuous except at finitely many points on R.
This gives that

$$
\begin{aligned}
\left(\left|u_{1}-u_{2}\right|^{p-1} \operatorname{sgn}\left(u_{1}-u_{2}\right)\right. & \| u_{1} \\
& \left.-u_{2} \|_{p}^{2-p}, \partial \Phi_{p}\left(u_{1}\right)-\partial \Phi_{p}\left(u_{2}\right)\right) \\
& ={ }_{k \rightarrow+\infty}^{\lim }\left\|u_{1}-u_{2}\right\|_{p}^{2-p}\left(X_{k}\left(u_{1}-u_{2}\right), \partial \Phi_{p}\left(u_{1}\right)-\partial \Phi_{p}\left(u_{2}\right)\right) \\
& \geq 0,
\end{aligned}
$$

Also
$G=\left\|u_{1}-u_{2}\right\|_{p}^{2-p}$

$$
\begin{aligned}
& \mathrm{x} \\
& \left.\mathrm{x} \quad X^{\prime} \kappa\left(u_{1}-u_{2}\right) d x+\left.\lambda\left\|u_{1}-u_{2}\right\|_{p}^{\lim } \int_{\Omega}\left\langle\left(\left\lvert\,+\frac{\left|\nabla u_{1}\right|^{p}}{\sqrt{1+\left|\nabla u_{1}\right|^{2 p}}}\right.\right)\right| \nabla u_{1}\right|^{p-2} \nabla u_{1}-\left(1+\frac{\left|\nabla u_{2}\right|^{p}}{\sqrt{1+\left|\nabla u_{2}\right|^{2 p}}}\right) \|\left.\nabla u_{2}\right|^{p-2} \nabla u_{2}-\left.\nabla u_{2}\right|^{q 1-2} u_{2}\right)\left|u_{1}-u_{2}-\nabla u_{2}\right|^{p-1} \operatorname{sgn}\left(u_{1}-u_{2}\right) d x \\
& +\lambda\left\|u_{1}-u_{2}\right\|_{p}^{2-p} \int_{\Omega}^{\left(\left|u_{1}\right|^{q-2} u_{1}-\left|u_{2}\right|^{q-2} u_{2}\right) u_{1}-\left.u_{2}\right|^{p-1} \operatorname{sgn}\left(u_{1}-u_{2}\right) d x} \\
& +\ldots+\lambda\left\|u_{1}-u_{2}\right\|_{p}^{2-p} \int_{\Omega}^{\left(\left|u_{1}\right|^{q m-2} u_{1}-\left|u_{2}\right|^{q m-2} u_{2}\right) u_{1}-\left.u_{2}\right|^{p-1} \operatorname{sgn}\left(u_{1}-u_{2}\right) d x \geq 0}
\end{aligned}
$$

where

$$
\mathrm{G}=\left(\left|u_{1}-u_{2}\right|^{p-1} \operatorname{sgn}\left(u_{1}-u_{2}\right)\left\|u_{1}-u_{2}\right\|_{p}^{2-p}, B_{p, q 1, q 1, \ldots, q m} u_{1}-B_{p, q 1, q 2, \ldots, q m} u_{2}\right)
$$

The last inequality is available since X_{k} is monotone and $X_{k}(0)=0$
(b) Case 2

If $2 N /(N+1)<p<2$, the duality mapping $\mathrm{J}_{\mathrm{p}}: \mathrm{L}_{\mathrm{p}}(\Omega) \rightarrow \mathrm{L}_{\mathrm{p}}{ }^{\prime}(\Omega)$ is defined by
$\mathrm{J}_{\mathrm{p}}(\mathrm{u})=|u|^{p-1} \mathrm{sgnu}$,
for $u \in L^{p}(\Omega)$. It then suffices to prove that for any $u_{i} \in D\left(A_{p}\right)$ and $v_{i,} \in \mathrm{~A}_{p} u_{i}, i=1,2$
$\left(v_{1}-v_{2}, J_{p}\left(u_{1}-u_{2}\right)\right) \geq 0$
To do this, we define the function $X_{n}: R \rightarrow R$ by

$$
X_{n}(t)=\left\{\begin{array}{c}
|t|^{p-1} \operatorname{sgn} t, i f|t| \geq \frac{1}{n} \tag{3.2}\\
\left(\frac{1}{n}\right)^{p-2} t, i f|t| \leq \frac{1}{n}
\end{array}\right.
$$

Then X_{n} is monotone, Lipschitz with $X_{n}(0)=0$ and X_{n}^{\prime} is continuous except at finitely many points on R. So $\left(X_{n}\left(u_{1}-u_{2}\right), \partial \Phi_{p}\left(u_{1}\right)-\partial \Phi_{p}\left(u_{2}\right)\right) \geq 0$.
Then, for $u_{i} \in D\left(A_{p}\right)$ and $v_{i} \in A_{p} u_{i, i}=1,2$. We have

$$
\begin{aligned}
\left(v_{1}-v_{2}, J_{p}\left(u_{1}-u_{2}\right)\right) & =\left(\left|u_{1}-u_{2}\right|^{p-1} \operatorname{sgn}\left(u_{1}-u_{2}\right), B_{p, q 1, q 2, \ldots q m} u_{1}-B_{p, q 1, q 2, \ldots . q_{m}} u_{2}\right) \\
& +\left(\left|u_{1}-u_{2}\right|^{p-1} \operatorname{sgn}\left(u_{1}-u_{2}\right), \partial \Phi_{p}\left(u_{1}\right)-\partial \Phi_{p}\left(u_{2}\right)\right) \\
& =\left(\left|u_{1}-u_{2}\right|^{p-1} \operatorname{sgn}\left(u_{1}-u_{2}\right), B_{p, q 1, q 2, \ldots q m} u_{1}-B_{p, q 1, q 2, \ldots, q m} u_{2}\right) \\
& +\lim _{n \rightarrow \infty}\left(x_{n}\left(u_{1}-u_{2}\right), \partial \Phi_{p}\left(u_{1}\right)-\partial \Phi_{p}\left(u_{2}\right)\right) \geq 0
\end{aligned}
$$

Step 2 R $\left(l+\mu A_{p}\right)=L^{p}(\Omega)$, for every $\mu>0$.
We
$l_{p}: W^{1, p}(\Omega) \rightarrow\left(W^{1, p}(\Omega)\right)^{*}$ by $l_{p} u=u$ and $\left(v, I_{p} u\right)\left(W^{1, p}(\Omega)\right)^{*} \times\left(W^{1, p}(\Omega)-(v, u) v(\Omega)\right.$
for $u, v \in W^{1, p}(\Omega)$, where $\langle., .\rangle_{L^{2}(\Omega)}$ denotes the inner product of $\mathrm{L}^{\mathrm{p}}(\Omega)$. The 1_{p} is maximal monotone [7].
Secondly, for any $\mu>0$, let the mapping $T_{\mu}: W^{1, p}(\Omega) \rightarrow 2^{(W 1, p(\Omega))^{*}}$ be defined by

$$
T \mu u=I_{p} \mu+\mu B_{p, q 1, q 2, \ldots q m} u \mu \partial \Phi_{p}(u),
$$

for $u \in W^{1, p}(\Omega)$. Then similar to that in [7], by lemmas 2.4, 2.6, 2.7 and 2.5 we see that T_{μ} is maximal monotone and coercive, so that $R\left(T_{\mu}\right)=\left(W^{1, p}(\Omega)\right)^{*}$, for any $\mu>0$
Therefore, for any $f \in L^{p}(\Omega)$, there exists $u \in W^{1, p}(\Omega)$, such that

$$
\begin{equation*}
f=T_{\mu} u=u+\mu B_{p, q 1, q 2, \ldots q m} u \mu \partial \Phi_{p}(u) \tag{3.3}
\end{equation*}
$$

From the definition of A_{p}. it follows that $R\left(I+\mu A_{p}\right)=L p(\Omega)$, for all $\mu>0$. This completes the proof.
Lemma 3.4. The mapping $\mathrm{A}_{\mathrm{p}}: L^{p}(\Omega) \rightarrow 2 L^{p}(\Omega)$, has a compact resolvent for $2 \mathrm{~N} /(\mathrm{N}+1)<\mathrm{p}<2$ and $N \geq 1$.
Proof. Since A_{p} is $\mathrm{m}=$ accretive, we need to show that if $u+\mu A_{p} u=f(\mu>0)$ and if $\{f\}$ is bounded in $\mathrm{L}^{\mathrm{p}}(\Omega)$, then $\{u\}$ is relatively compact in $\mathrm{L}^{\mathrm{p}}(\Omega)$. Now defined functions $X_{n}, \varsigma_{n}: R \rightarrow R$ by

$$
X_{n}(t)=\left\{\begin{array}{l}
|t|^{p-1} \operatorname{sgn} t, \text { if }|t| \geq \frac{1}{n}, \\
\left(\frac{1}{n}\right)^{p-2} t, \text { if }|t| \leq \frac{1}{n}
\end{array}\right.
$$

$\zeta_{n}(t)=\left\{\begin{array}{l}|t|^{t-(2 / p)} \operatorname{sgn} t, \text { if }|t| \geq \frac{1}{n}, \\ \left(\frac{1}{n}\right)^{1-(2 / p)} t, \text { if }|t| \leq \frac{1}{n}\end{array}\right.$
Noticing that $X^{\prime} n(t)=(p-1) \times\left(p^{\prime} / 2\right)^{p} \times\left(\zeta^{\prime} n(t)\right)^{p}$, for $|t| \geq 1 / n$, where $\left.(1 / p)+1 / p^{\prime}\right)=1$ and $\mathrm{X}_{\mathrm{n}}(\mathrm{t})=\left(\zeta_{n}(t)\right)^{p}$, for $|t| \leq 1 / n$. We know that $\left(X_{n}(u), \partial \Phi_{p}(u)\right) \geq 0$ for $u \in W^{1, p}(\Omega)$ since X_{n} is monotone, Lipschitz with $X_{\mathrm{n}}(0) 0$ and $X^{\prime} \mathrm{n}$ is continuous except at finitely many points on R .

$$
\begin{aligned}
\left.|U|^{P-1} \operatorname{sgn} u, A_{p} u\right) & =\lim _{n \rightarrow \infty}\left(X_{n}(u), A_{p} u\right)_{n \rightarrow \infty}^{\lim }\left(X_{n}(u), B_{p, q 1, q 2, \ldots, q m} u\right) \\
& =\lim _{n \rightarrow} \int_{\Omega}\left(1+\frac{|\nabla u|^{p}}{\sqrt{1+|\nabla u|^{2 p}}}\right)|\nabla u|^{p} X_{n}^{\prime}(u) d x+\lambda_{n \rightarrow \infty}^{\lim } \int_{\Omega}^{|u| q 1-2} u X n(u) d x \\
& +\lambda_{n \rightarrow \infty}^{\lim } \int_{\Omega}^{|u| q 2-2} u X n(u) d x+\ldots+\lambda_{n \rightarrow \infty}^{\lim } \int_{\Omega}^{|u| q m-2} u X n(u) d x
\end{aligned}
$$

$$
\begin{aligned}
& \geq \lim _{n \rightarrow} \int_{\omega}|\nabla u|^{p} X^{\prime} n(u) d x \\
& \geq \text { const. }\left.{ }_{n \rightarrow \infty} \int_{\Omega}|\operatorname{grad}|(\varsigma(u))\right|^{p} d x \\
& \geq \text { const. } \int_{\Omega}^{\mid g r a d}\left(|u|^{2-(2 / p)} \operatorname{sgn} u\right)^{p} d x
\end{aligned}
$$

From $f=u+\mu A_{p} u$, we have;

$$
\begin{aligned}
\|f\|_{p}\left\||u|^{2-(2 / p)} \operatorname{Sgn} u\right\| \begin{array}{c}
p^{2} / 2(p-1) p^{\prime} \\
p^{2} / 2(p-1)
\end{array} & \geq\left(|u|^{p-1} \operatorname{sgn} u, f\right)=\left(|u|^{p-1} \operatorname{sgn} u, u\right)+\mu\left(|u|^{p-1} \operatorname{sgn} u, A_{p} u\right) \\
& \geq\left\||u|^{2-(2 / p)} \operatorname{Sgn} u\right\|_{p^{2} / 2(p-1)}^{p^{2 / 2}(p-1) p^{\prime}}+\mu . c o n s t .\left\|\operatorname{grad}|u|^{2-(2 / p)} \operatorname{Sgn} u\right\| \begin{array}{l}
p p^{\prime}
\end{array}
\end{aligned}
$$

Which gives that

$$
\begin{aligned}
\left\||u|^{2-(2 / p)} \operatorname{Sgn} u\right\|_{p}^{p / 2(p-1)} & \leq\left\|\left.u\right|^{2-(2 / p)} \operatorname{Sgn} u\right\|_{p^{2} / 2(p-1)}^{p / 2(p-1)}\|f\|_{p} \\
& \leq \text { const. }
\end{aligned}
$$

in view of the fact that $p<\frac{p^{2}}{2(p-1)}$ when $2 \mathrm{~N}(\mathrm{~N}+1)<\mathrm{p}<2$ for $N \geq 1$. Again we have that,

$$
\left\|\operatorname{grad}\left(|u|^{2-(2 / p)} \operatorname{sgn} u\right)\right\|_{p} \leq \text { const } .
$$

Hence, $\{f\}$ bounded in $L^{\mathrm{p}}(\Omega)$ implies that $\left\{\left.u\right|^{2-(2 / p)} \operatorname{sgn} u\right\}$ is bounded in $W^{1, p}(\Omega)$

$$
\text { We notice that } W^{1, p}(\Omega) \hookrightarrow \hookrightarrow L^{p^{2} / 2(p-1)}(\Omega) \text { when } \mathrm{N} \geq 2 \text { and } W^{1, p}(\Omega) \hookrightarrow \hookrightarrow C_{B}(\Omega) \text { when } \mathrm{N}=1 \text { by }
$$ lemma (3.1), therefore $\left\{\left.u\right|^{2-(2 / p)} \operatorname{sgn} u\right\}$ is relatively compact in $L^{p^{2} / 2(p-1)}(\Omega)$. This gives that $\{u\}$ is relatively compact in $\mathrm{L}^{\mathrm{p}}(\Omega)$ since the Nemytskii mapping $u \in L^{p / 2(p-1)}(\Omega) \rightarrow|u|^{p^{2 / 2(p-1)}}$ sgn $u \in L^{p}(\Omega)$ is continuous.

This completes the proof.
Remark 3.5. Since $\Phi_{p}(u+a)=\Phi_{p}(u)$, for any $u \in W^{1, p}(\Omega)$ and $\alpha \in C_{0}^{\infty}(\Omega)$, we have $f \in A_{p} u$ implies that $f=B_{p, q 1, q 2, \ldots, q m}$ in the sense of distributions.
Proposition 3.6. For $f \in L^{p}(\Omega)$, if there exists $u \in L^{p}(\Omega)$ such that $f \in A_{p} u$, then u is the unique solution of (1.7).
Proof. First we show that
$-\operatorname{div}\left[\left(1+\frac{|\nabla u|^{p}}{\sqrt{1+|\nabla u|^{2 p}}}\right)|\nabla u|^{(p-2)} \nabla u\right]+\lambda\left(|u|^{q 1-2} u+|u|^{q 2-2} u+\ldots+|u|^{q m-2} u\right)=f(x)$, a.e. x in $\Omega \quad$ is
available.
$f \in A_{p} u$ implies that $f=B_{p, q 1, q 2, \ldots, q m} u+\partial \Phi_{p}(u)$. For all $\varphi \in C_{0}^{\infty}(\Omega)$, by remark (3.12), we have;

$$
\begin{aligned}
&(\varphi, f)=\left(\varphi, B_{p, q 1, q 2, \ldots, q m} u+\partial \Phi_{p}(u)\right) \\
&=\left(\varphi, B_{p, q 1, q 2, \ldots, q m} u\right)=\int_{\Omega}\left\langle\left.\left(1+\frac{|\nabla u|^{p}}{\sqrt{1+|\nabla u|^{2 p}}}\right) \nabla \nabla\right|^{(p-2)} \nabla u, \nabla \varphi\right\rangle d x \\
&+\lambda \int_{\Omega}{ }^{|u| q 1-2 u \varphi d x}+\lambda \int_{\Omega}{ }^{|u| q 2-2 u \varphi d x+\ldots+} \lambda \int_{\Omega}{ }^{|u| q m-2 u \varphi d x}
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\Omega}-d i v\left[\left(1+\frac{|\nabla u|^{p}}{\sqrt{1+|\nabla u|^{2 p}}}\right)|\nabla u|^{(p-2)} \nabla u\right] \varphi d x \\
& +\lambda \int_{\Omega}{ }^{|u| q 1-2 u \varphi d x}+\lambda \int_{\Omega^{|u| q 2-2 u \varphi d x+\ldots+}} \lambda \int_{\Omega}^{|u| q m-2 u \varphi d x}
\end{aligned}
$$

which implies that (3.25) is true.
Secondly, we show that

$$
\begin{equation*}
-\left\langle v,\left(1+\frac{|\nabla u|^{p}}{\left.\left.{\sqrt{1+|\nabla u|^{2 p}}}_{2}\right)|\nabla u|^{(p-2)} \nabla u,\right\rangle \in \beta_{x}(u(x)) \text {, a.e } x \in \Gamma ; ~}\right.\right. \tag{3.4}
\end{equation*}
$$

This will be proved under the condition that $\left|\beta_{x}(u)\right| \leq a|u|^{p / p^{\prime}}+b(x)$, where $b(x) \in L^{p^{\prime}}(\Gamma)$ and $a \in R$.
From (3.25), $f \in A_{p} u$ implies that

$$
f(x)=-d i v\left[\left(1+\frac{|\nabla u|^{p}}{\sqrt{1+|\nabla u|^{2 p}}}\right)|\nabla u|^{(p-2)} \nabla u\right]+\lambda|u|^{q 1-2} u+\lambda|u|^{q 2-2} u+\ldots+\lambda|u|^{q m-2} u \in L^{p}(\Omega) .
$$

Using Green's Formula, we have that for any $v \in W^{1, p}(\Omega)$,

$$
\begin{aligned}
& \int_{\Gamma}\left(v,\left(1+\frac{|\nabla u|^{p}}{\sqrt{1+|\nabla u|^{2 p}}}\right)|\nabla u|^{(p-2)} \nabla u,\right\rangle_{\Gamma} d \Gamma(x) \\
&=\int_{\Omega} \operatorname{div}\left[\left.\left(1+\frac{|\nabla u|^{p}}{\sqrt{1+|\nabla u|^{2 p}}}\right) \nabla \Delta\right|^{(p-2)} \nabla u\right] v d(x) \\
&\left.+\left.\int_{\Omega}\left\langle\left(1+\frac{|\nabla u|^{p}}{\sqrt{1+|\nabla u|^{2 p}}}\right)\right| \nabla u\right|^{(p-2)} \nabla u, \nabla v\right) d(x)
\end{aligned}
$$

Then

$$
\left.-\left.\left\langle v,\left(1+|\nabla u|^{p} / \sqrt{1+|\nabla u|^{2 p}}\right)\right| \nabla u\right|^{(p-2)} \nabla u,\right\rangle \in W^{(1 / p) p^{\prime}}(\Gamma)=\left(W^{1 / p \cdot p^{\prime}}(\Gamma)\right)^{*}
$$

where $W^{1 / p . p}(\Gamma)$ is the space of races of $\mathrm{W}^{1, p}(\Omega)$. Let the mapping $B: L^{p}(\Gamma) \rightarrow L^{p^{\prime}}(\Gamma)$ be defined by Bu $=\mathrm{g}(\mathrm{x})$, for any $u \in L^{p}(\Gamma)$, where $\mathrm{g}(\mathrm{x})=\beta_{x}(u(x))$ a.e. on Γ. Clearly, $B=\partial \psi$ where

$$
\psi(u)=\int \Gamma^{\varphi x(u(x)) d \Gamma(x)}
$$

is a proper, convex and lower-semi continuous function on $L^{p}(\Gamma)$
Now define the mapping $\mathrm{K}: \mathrm{W}^{1, \mathrm{p}}(\Omega) \rightarrow L^{p}(\Gamma)$ by

$$
K(v)=v / \Gamma \text { for any } v \in W^{l, p}(\Omega)
$$

Then

$$
K^{*} B K: W^{l, p}(\Omega) \rightarrow\left(W^{l, p}(\Omega)\right)^{*}
$$

is maximal monotone since both K, B are continuous. Finally, for any $u, v \in W^{l, p}(\Omega)$, we have

$$
\psi(K v)-\psi(K u)=\int_{\Gamma}^{\left\lfloor\varphi_{x}(v / \Gamma(x))-\varphi_{x}(u \mid \Gamma(x))\right) d \Gamma(x)}
$$

$$
\begin{aligned}
& \geq \int_{\Gamma}^{\left.\beta_{x}(u \mid \Gamma(x)(v) \Gamma(x))-u \mid \Gamma(x)\right) d \Gamma(x)} \\
& =(B K u, K v-K u)=\left(K^{*} B K u, v-u\right) .
\end{aligned}
$$

Hence we get that $\mathrm{K} * \mathrm{BK} \subset \partial \Phi_{p}$ and so $\mathrm{K} * \mathrm{BK}=\partial \Phi_{p}$. Therefore, we have that

$$
\left.-\left.\left\langle v\left(1+\frac{|\nabla u|^{p}}{\sqrt{1+|\nabla u|^{2 p}}}\right)\right| \nabla u\right|^{(p-2)} \nabla u,\right\rangle \in \beta_{x}(u(x)), \text { a.e } \in \Gamma
$$

Next we show that u is unique.
If $f \in A_{p} u$ and $f \in A_{p} v$, where $u, v \in D\left(A_{p}\right)$ then

$$
\begin{align*}
& 0 \leq\left(u-v, B_{p, q 1, q 2, \ldots, q m} u-B_{p, q 1, q 2, \ldots, q m} v\right) \tag{3.5}\\
& =\left(u-v, \partial \Phi_{p}(v)-\partial \Phi_{p}(u)\right) \leq 0 \tag{3.6}
\end{align*}
$$

$B_{p, q 1, q 2, \ldots, q m}$ being strictly monotone and $\partial \Phi_{p}$ maximal monotone, implies that $u(x)=v(x)$. This completes the proof.
Remark 3.7. If $B_{x}=0$ for any $x \in \Gamma$ then $\partial \Phi_{p}(u) \equiv 0$, for all $u \in W^{1, p}(\Omega)$. .
Proposition 3.8. If $B_{x} \equiv 0$ for any $x \in \Gamma$ then $\left.\left\{f \in L^{p}(\Omega) \mid\right\} \int_{\Omega} f d x=0\right\} \subset R\left(A_{p}\right)$.
Proof. In view of lemmas 2.4, 2.5 and 3.1 we note that $R\left(B_{p, q 1, q 2, \ldots, q m}\right)=\left(W^{1, p}(\Omega)\right)^{*}$. Note also that for any $f \in L^{p}(\omega)$ with $\int_{\Omega} f d x=0$, the linear function $u \in W^{1, p}(\omega) \rightarrow \int_{\Omega} f u d x$ is an element of $\left(W^{1, p}(\Omega)\right)^{*}$. So there exists a $u \in W^{1, p}(\Omega)$ such that

$$
+\lambda \int_{\Omega}|u| q 1^{-2} u v d x+\lambda \int_{\Omega}^{|u| q 2^{-2} u v d x+\ldots+\lambda} \int_{\Omega}^{|u| q m^{-2} u v d x}
$$

for any $v \in W^{1, p}(\Omega)$. Therefore, $f=A_{p} u$ in view of Remark 3.12. This completes the proof.
Definition 3.9. (see [1, 7]). For $t \in R_{t}, x \in \Gamma$, let $B_{x}^{0}(t) \in B_{x}(t)$ be the element with least absolute value if $\beta_{x}(t) \neq 0$ and $\beta_{x}^{0}(t)= \pm \infty$, where $t>0$ or $t<0$ respectively, in
case $B_{x}(t)=\emptyset$. finally, let $\beta_{x}(t)=\lim _{t \rightarrow \infty} \beta_{x}^{0}(t)$ (in the extended sense) for $x \in \Gamma . \beta_{x}(t)$ define measurable functions on Γ, in view of our assumptions on β_{x}.
Proposition 3.10. Let $f \in L^{p}(\Omega)$ such that

$$
\begin{equation*}
\int_{\Gamma}{ }^{\beta-(x) d \Gamma(x)}<\int_{\Omega}{ }^{f d x}<\int_{\Omega}^{\beta+(x) d \Gamma(x)} \tag{3.7}
\end{equation*}
$$

Then $f \in \operatorname{IntR}\left(A_{p}\right)$.
Proof. Let $f \in L^{p}(\Omega)$ and satisfy (3.31), by proposition 3.5, there exists $\mathrm{u}_{\mathrm{n}} \in L^{p}(\Omega)$ such that, for each $n \geq 1, f=(1 / v) u_{n}+A_{p} u_{n}$. In the same reason as that in [1], we only need to prove that $\left\|u_{n}\right\|_{p}<$ const for all $n \geq 1$.

Indeed suppose to the contrary that $1 \leq\left\|u_{n}\right\|_{p} \rightarrow \infty$. Let $v_{n}=\frac{u_{n}}{\|u\|_{p}}$. Let $\psi: \mathrm{R} \rightarrow \mathrm{R}$ be defined by $\psi(\mathrm{t})=|t|=|t|^{p}, \partial \psi: R \rightarrow R$ be its sub differential and for $\mu>0, \partial \psi_{u}: R \rightarrow R$ denote the Yosidaapproximation of $\partial \psi$. Let $\theta_{u}: R \rightarrow R$ denote the indefinite integral of $\left[(\partial \psi \mu)^{\prime}\right]^{1 / p}$ with $\theta_{u}(0)=0$ so that $\left(\theta^{\prime}{ }_{p}\right)^{p}=\left(\partial \psi_{\mu}\right)^{\prime}$. In view of [1] we have

$$
\begin{equation*}
\left(\partial \psi_{\mu}(v n), \partial \Phi\left(u_{n}\right)\right) \geq \int_{\Gamma} \beta_{x}\left((1+\mu \partial \psi)^{-1}\left(u_{n} / \Gamma(x)\right)\right) x \partial \psi_{\mu}\left(v_{n} / \Gamma(x)\right) d \Gamma(x) \geq 0 . \tag{3.8}
\end{equation*}
$$

Now multiplying the equation $f=(1 / n) u_{n}+A_{p} u_{n}$ by $\partial \psi_{u}\left(u_{n}\right)$, we get that

$$
\begin{equation*}
\left(\partial \psi_{u}\left(v_{n}\right), f\right)=\left(\partial \psi_{u}\left(v_{n}\right), \frac{1}{n} u_{n}\right)+\left(\partial \psi_{\mu}\left(v_{n}\right), B_{p, q 1, q 2 \ldots, q m} u_{n}\right)+\left(\partial \psi_{\mu}\left(v_{n}\right), \partial \phi_{p}\left(\mu_{n}\right)\right) . \tag{3.9}
\end{equation*}
$$

Since $\partial \psi_{\mu}(0)=0$, it follows that $\left(\partial \psi_{\mu}\left(v_{n}\right), u_{n}\right) \geq 0$. Also we have that

$$
\left(\partial \psi_{\mu}\left(v_{n}\right), B_{p, q 1, q 2, \ldots, q m} u_{n}\right)
$$

$$
\begin{aligned}
& \int_{\Omega}\left(\left(1+\frac{\left|\nabla u_{n}\right|^{p}}{\sqrt{1+\left|\nabla u_{n}\right|^{2 p}}}\right)\left|\nabla u_{n}\right|^{(p-2)} \nabla u_{n}, \nabla v_{n},\right\rangle\left(\partial \psi_{\mu}\right)^{\prime}\left(v_{n}\right) d x \\
&+\lambda \int_{\Omega}^{\left|u_{n}\right| q 1-2_{u_{n}} \partial \psi \mu\left(v_{n}\right) d x+\lambda} \int_{\Omega}^{\left|u_{n}\right| q 2-2 u_{n} \partial \psi \mu\left(v_{n}\right) d x} \\
&+\ldots+\lambda \int_{\Omega}^{\left(u_{n}\right) q m-2 u_{n} \partial v \mu\left(v_{n}\right) d x \geq} \int_{\Omega} \frac{|\nabla u|^{p}}{\left\|u_{n}\right\|_{p}}(\partial \psi u)^{\prime}\left(v_{n}\right) d x \\
&=\left\|u_{n}\right\|_{p}^{p-1} \int_{\Omega} \mid \operatorname{grad}\left(\left.\theta_{\mu}\left(v_{n}\right)\right|^{p} d x\right.
\end{aligned}
$$

Then we get from (3.33) that

$$
\begin{aligned}
&\left\|u_{n}\right\|_{p}^{p-1} \int_{\Omega}\left|\operatorname{grad}\left(\theta_{\mu}\left(v_{n}\right)\right)\right|^{p} d x+\int_{\Gamma} \beta_{x}\left((1+\mu \partial \psi)^{-1}\left(u_{n}|\Gamma(x)|\right)\right) \times \partial \psi_{v}\left(v_{n} / \Gamma(x)\right) d \Gamma(x) \\
& \leq\left(\partial \psi_{\mu}\left(v_{n}\right), f\right)
\end{aligned}
$$

since $\left|\partial \psi_{\mu}(t) \leq|\partial \psi(t)|\right.$ for any $t \in \mathfrak{R}$ and $\mu>0$, we see from $\left\|v_{n}\right\|_{p}=1$, that $\quad\left\|\partial \psi_{\mu}\left(v_{n}\right)\right\|_{p} \leq c$ for $\mu>0$ where c is a constant which does not depend on n or μ and $\left(\frac{1}{p}\right)+\left(\frac{1}{p^{t}}\right)=1$ From (3.36), we have that

$$
\begin{equation*}
\int_{\Omega}\left|\operatorname{grad}\left(\theta_{\mu}\left(v_{n}\right)\right)\right|^{p} d x \leq \frac{c}{\left\|u_{n}\right\|_{p}^{p-1}} \tag{3.10}
\end{equation*}
$$

for $\mu>0, n \geq 1$ Now, we know that $\left(\theta_{\mu}^{\prime}\right)^{p}=\left(\partial \psi_{\mu}\right) \rightarrow(\partial \psi)^{\prime}, \quad$ as $\quad \mu \rightarrow o$ a.e. on \mathfrak{R}. Letting $\mu \rightarrow 0$ we see from Fatou's lemma and (3.37) that

$$
\begin{equation*}
\int_{\Omega}\left|\operatorname{grad}\left(\left|v_{n}\right|^{2}-\left(\frac{2}{p}\right) \operatorname{sgn} v_{n}\right)\right|^{p} d x \leq \frac{c}{\left\|u_{n}\right\|_{p}^{p-1}} \tag{3.11}
\end{equation*}
$$

From (3.38), we know that $\left|v_{n}\right|^{2-\left(\frac{2}{p}\right)} \operatorname{sgn} v_{n} \rightarrow k$ (a cons $\tan t$) in $L^{p}(\Omega)$ as $n \rightarrow+\infty$.
Next, we show that $k \neq 0$ is in $L^{p}(\Omega)$ from two aspects:
(1) If $p \geq 2, \sin c e$

$$
\left\|\left|v_{n}\right|^{2-\left(\frac{2}{p}\right)} \operatorname{sgn} v_{n}\right\|^{p}=\left\|v_{n}\right\|_{2 p-2}^{2-\left(\frac{2}{p}\right)} \geq\left\|v_{n}\right\|^{2-\left(\frac{2}{p}\right)}=1
$$

it follows that $k \neq 0$ in $L^{p}(\Omega)$
(2) If

$$
2 N /(N+1)<p<2,\left\|\left.v_{n}\right|^{2-\left(\frac{2}{p}\right)} \operatorname{sgn} v_{n}\right\|_{p}=\left\|v_{n}\right\|_{2 p-2}^{2-\left(\frac{2}{p}\right)} \geq\left\|v_{n}\right\|_{p}^{2-\left(\frac{2}{p}\right)}=1
$$

Then $\left(\left|v_{n}\right|^{2-\left(\frac{2}{p}\right)} \operatorname{sgn} v_{n}\right)$ is bounded in $W^{1, p}(\Omega)$. By lemma (1.3) $W^{1, p}(\Omega) \hookrightarrow \hookrightarrow C_{B}(\Omega)$ when $\mathrm{N}=1$ and $W^{1, p}(\Omega) \hookrightarrow \hookrightarrow L^{p 2 / 2(p-1)}(\Omega)$ when $N \geq 2$. So $\left(\left|v_{n}\right|^{2-\left(\frac{2}{p}\right)} \operatorname{Sgn} v_{n}\right)$ is relatively compact in $L^{p^{2 / 2(p-1)}}(\Omega)$. Then there exists a subsequence of $\quad\left(\left|v_{n}\right|^{2-\left(\frac{2}{p}\right)} \operatorname{sgn} v_{n}\right), \quad$ satisfying $\left(\left|v_{n}\right|^{2-\left(\frac{2}{p}\right)} \operatorname{sgn} v_{n}\right) \rightarrow g$ in $L^{p 2 / 2(p-1)}(\Omega)$. Noticing that $p \leq p^{2} / 2(p-1)$ when $2 \mathrm{~N} /(\mathrm{N}+1)<\mathrm{p}<2$, it follows that $\mathrm{k}=\mathrm{g}$ almost everywhere on Ω.
Now,

$$
\begin{aligned}
& 1=\left\|v_{n}\right\|_{p}^{p}=\int_{\Omega} \|\left.\left. v_{n}\right|^{2-\left(\frac{2}{p}\right)} \operatorname{sgn} v_{n}\right|_{p^{2} / 2(p-1) d x} \\
& \leq \text { const } \int_{\Omega} \|\left.\left. v_{n}\right|^{2-\left(\frac{2}{p}\right)} \operatorname{sgn}_{\operatorname{sgn}_{n}-g}\right|^{p / 2(p-1) d x} \\
& + \text { const }\|g\|_{p^{2 / 2(p-1)}}^{p^{2 /(p-1)}}
\end{aligned}
$$

It follows that $g \neq 0$ in $L^{p}(\Omega)$ and then $k \neq 0$ in $\mathrm{L}^{\mathrm{p}}(\Omega)$. Assume, now, $\mathrm{k}>0$, we see from (3.36) that

$$
\int_{\Gamma} \beta_{x}\left((1+\mu \partial \psi)^{-1}\left(u_{n} / \Gamma(x)\right) \times \partial \psi_{\mu}\left(v_{n} \mid \Gamma(x)\right) d \Gamma(x) \leq\left(\partial \psi_{\mu}\right)\left(v_{n}\right), f\right)
$$

Choosing a subsequence so that $u_{n} / \Gamma(x) \rightarrow+\infty$ a.e. on Γ, we see letting $n \rightarrow+\infty$ so that $\int_{\Gamma} B+(x) d \Gamma(x) \leq \int_{\Omega} f(x) d x$ which is a contradiction.
Thus $f \in \operatorname{int} R\left(A_{p}\right)$.
This completes the proof.
Proposition 3.11. $A_{p}+B_{1}: L^{p}(\Omega) \rightarrow L^{p}($ Omega $)$ is m-accretive and has a compact resolvent.
Proof. Using a theorem in Corduneanu, we know that $\mathrm{A}_{\mathrm{p}}+\mathrm{B}_{1}: \mathrm{L}^{\mathrm{P}}(\Omega) \rightarrow L^{P^{\prime}}(\Omega)$ is m-accretive. To show that $\mathrm{A}_{\mathrm{p}}+\mathrm{B}_{1}: \mathrm{L}^{\mathrm{P}}(\Omega) \rightarrow L^{P^{\prime}}(\Omega)$ has a compact resolvent, we only need to prove that if $w \in A_{p} u+B_{1} u$ with (w) being bounded in $L^{p}(\Omega)$, then (u) is relatively compact in $L^{p}(\Omega)$.
Now, we discuss it from it from two aspects.
(1) If $p \geq 2$, since

$$
\begin{aligned}
\int_{\Omega}^{|\nabla u|^{p} d x} & \leq\left(u, B_{p, q 1, q 2, \ldots, q m} u\right) \\
& =\left(u, A_{p} u\right)-(u, \partial \Phi p(u)) \\
& \leq\left(u, A_{p} u\right)+(u, B, u)=(u, w) \leq\|u\|_{p}\|u\|_{p^{\prime}} \leq \text { const } .
\end{aligned}
$$

It follows that (u) is bounded in $W^{1, p}(\Omega)$ where $\left(\frac{1}{p}\right)+\left(\frac{1}{p^{\prime}}\right)=1$ Then (u) is relatively compact in $L^{p}(\Omega)$ since $W^{1, p}(\Omega) \hookrightarrow \hookrightarrow \mathrm{L}^{\mathrm{p}}(\Omega)$
(2) If $2 N /(N+1)<p<2$, sin ce $\omega \in A_{p} u+B_{1} u$ with (ω) and (u) being bounded in $L^{\mathrm{p}}(\Omega)$, we have $w-B_{1} u \in A_{p} u$ with $w-B_{1} u$ and u being bounded in $L^{p}(\Omega)$ which gives that u is relatively compact in $L^{p}(\Omega)$ since A_{p} is m-accretive by proposition (3.8) and has a compact resolvent by lemma (2.9)
This completes the proof.
Theorem: Let $f \in L^{p}(\Omega)$ be such that

$$
\int_{\Gamma} \beta-(x) d \Gamma(x)+\int_{\Omega} g-(x) d x<\int_{\Omega} f(x) d x<\int_{\Gamma} \beta+(x) d \Gamma(x)+\int_{\Omega} g+(x) d x
$$

Then, (1.4) has a unique solution in $L^{p}(\Omega)$, where $2 N /(N+1)<p<+\infty$ and $N \geq 1$
Proof. We want to use theorem (1.9) to finish our proof. From the propositions we use see that all of the conditions in theorem (1.9) are satisfied. It suffices to show that $f \in \operatorname{int}\left[R\left(A_{p}\right)+R\left(B_{1}\right)\right]$ which ensure that $f \in R\left(A_{p}+B_{1}+B_{2}\right)$. Thus proposition (2.11) tells us that (1.4) has a unique solution $\mathrm{L}^{\mathrm{p}}(\Omega)$.

Using the similar methods as those in [2,4,7], by dividing it into two cases and using propositions (2.13) and (2.15) respectively, we know that $f \in \operatorname{int}\left[R\left(A_{p}\right)+R\left(B_{1}\right)\right]$. This completes the proof.

Remark: Compared to the work done in [1.7], not only the existence of the solution of (1.4) is obtained but also the uniqueness of the solution is obtained. Furthermore, our work extended the work of [12].

References

[1]. B.D. Calvert and C.P. Gupta; "Nonlinear elliptic boundary value problems in L^{P} spaces and sums of ranges of accretive operators". Nonlinear Analysis, vol. 2, no. 1, pp 1-26.1978.
[2]. L. Wei and Z. He; "The Applications of sums of ranges of accretive operators to nonlinear equations involving the p-Laplacian operator". Nonlinear Analysis: Theory, Methods and Applications, vol.24, no.2, pp 185-193, 1995.
[3]. L. Wei; "Existence of solutions of nonlinear elliptic boundary value problems". Mathematics in Practice and Theory, vol.31, no. 3 pp 360-364, 2001 (Chinese).
[4]. L. Wei and Z. Hen; "The Applications of Theories of accretive operators to nonlinear elliptic boundary value problems in L^{P} spaces". Nonlinear Analysis: Theory, Methods and Applications. Vol. 46, no. 2, pp 199-211, 2001.
[5]. L. Wei and H.Y. Zhou; "Existence of solutions of a family of nonlinear boundary value problems in L^{2} spaces", Applied Mathematics, a journal of Chinese universities, vol.20, no.2, pp 175-182, 2005.
[6]. L. Wei and H.Y. Zhou; "The existence of solutions of nonlinear boundary value problems involving the p-Laplacian operators in L^{s} spaces", Journal of Systems science and complexity, vol. 18, no. 4, pp 511-521, 2005.
[7]. L. Wei and R.P. Agrawal, "Existence of solutions to nonlinear Neumann boundary value problems with generalized p-Laplacian operator". Computers and Mathematics with Applications, vol. 56, no.2, pp 530-541, 2008.
[8]. Z.C. Chen and T. Luo ; "The eigenvalue problem of p-Laplacian-like equations. Acta Mathematica Sinica, vol. 46, no. 4, pp 631638, 2003(Chinese).
[9]. L.K. Li and Y.T. Guo; " The Theory of Sobolov Spaces". Shanghai Science and Technology Press, Shanghai, China 1981.
[10]. L. Wei, L. Duan and H. Zhou; "Study of the existence and uniqueness of solution of generalized capillarity problem". Abstract and Applied Analysis, vol. 2012, Article ID 154307, 18 pages.
[11]. D. Pascali and S. Sburlan; "Nonlinear Mappings of Monotone Type", Martinus Nijhoff, The Hagne, The Netherlands, 1978.
[12]. L. Wei, L. Duan and H. Zhou; "Solution of nonlinear elliptic boundary value problems and its iterative construction", Abstract and Applied Analysis, vol.2012, Article ID 210325, 14 pages.

