
IOSR Journal of Mathematics (IOSR-JM)  

e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 12, Issue 1 Ver. IV (Jan. - Feb. 2016), PP 101-113 

www.iosrjournals.org  

DOI: 10.9790/5728-1214101113                                        www.iosrjournals.org                                    101 | Page 

 

Existence and Uniqueness Result for Boundary Value Problems 

Involving Capillarity Problems 
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1
, M.B. Okofu
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Abstract: In this paper, we study a nonlinear boundary value problem ( bvp ) which generalizes capillarity 

problem. An existence and uniqueness result is obtained using the knowledge of range for nonlinear operator. 

Ours extends the result in [12]. 

 

I. Introduction 

A research on the existence and uniqueness result for certain nonlinear boundary value problems of 

capillarity problem has a close relationship with practical problems. Some significant work has been done on 

this, see Wei et al [1, 5, 2, 4, 3, 7, 10, 6]. In 1995, Wei and He [2] used a perturbation result of ranges for m-

accretive mappings in Calvert and Gupta [1] to obtain a sufficient condition so that the zero boundary value 

problem, [1.1].  
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P   , where  p2 . In 2008, as a summary of the work done in [5, 2, 4, 3, 7, 10, 6], 

Wei et al used some new technique to work for the following problem with so-called generalized 

Laplacianp  operator: 

(1.2)     
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where 0  ),()( pLxc is a non-negative constant and   denotes the exterior normal derivatives of  . It 

was shown (7) that (1.2) has solutions in L
p
( ) under some conditions where 

,1,)1/(2 NpifqspNN   

  .1,/1  NforNpifpNNqand p  In Chen and Luo [8], the authors studied the 

eigenvalue problem for the following generalized capillarity equations. 

(1.3)  
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In their paper [10], Wei et al, borrowed the ideas dealing with the nonlinear elliptic boundary value problem 

with the generalized p-Laplacian operator to study the nonlinear generalized Capillarity equations with 

Neumann boundary conditions. They used the perturbation results of ranges for m-accretive mappings in [1] 

again to study.      

[1.4]  
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Motivated by [10, 12], we study the following boundary value problem:   
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(1.5)  
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This equation generalized the Capillarity problem considered in [10]. We replaced the nonlinear term 

g(x, u(x)) by the term g(x, u(x), u (x)) which is rather general. In this paper, we will use some perturbation 

results of the ranges for maximal monotone operators by Pascali and Shurlan [10] to prove that (1.5) has a 

unique solution in W
1,p

( ) and later show that this unique solution is the zero of a suitably defined maximal 

monotone operator. 

 

II. Preliminaries 
We now list some basic knowledge we need. Let X be a real Banach space with a strictly convex dual 

space X
*
. Using “   ” and “w-lim” to denote strong and weak convergence respectively. For any subset G of X, 

let intG denote its interior and G its closure. Let “X     Y” denote that space X is embedded compactly in space 

Y and “X   Y” denote that space X is embedded continuously in space Y. A mapping, T: D(T) = X X
*
 is said 

to be hemi continuous on X if ,)(lim 0 TxtyxTw t    for any x,y   X Let J denote the duality mapping 

from X into 2
x
, defined by  

(2.1)     Xxxffxfxxfxf   ,,.,:)(           

where (….) denotes the generalized duality paring between X and X* Let A: X  2
x
 be a given multi-valued 

mapping. A is boundedly-inversely compact if for any pair of bounded subsets G and G
/
 of X, the subset 

 '1 GAG   is relatively compact in X. 

 The mapping A: X  2
x
 is said to be accretive if      ,0, 2121  uuJ for any 

.2,1;)(  iAuiandADui i  

 The accretive mapping A is said be m-accretive if   ,1 XAR    for some 0 . 

Let B: X  2
X*

 be a given multi-valued mapping, the graph of B, G(B) is defined by G(B) = 

     *2:.,,, XXBBuwBDwu   is said to be monotone [11] if G(B) is a monotone subset of 

X x X
*
 in the sense that  

(2.2)      .2,1);(,,0, 2121  iBGwuanyforwwuu ii  

The monotone operator B is said to be maximal monotone if G(B) is maximal among all monotone subsets of X 

x X
*
 in the sense of inclusion the mapping B is said to be strictly monotone if the equality in (2.2) implies that 

.21 uu   The mapping B is said to be coercive if 

  nnnnnnnn xthatsuchBGxxallforxxx lim)(],[||)||/),((lim **
. 

Definition 2.1. The duality mapping 
*2: XXJ  is said to be satisfying condition (1) if there exists a 

function   ,0: X  such that  

(2.3)   ,  uJJu  for all u, X . 

Definition 2.2. Let A: X 2
X
 be an accretive mapping and 

*: XXJ  be a duality mapping. We say that 

A satisfies condition (*) if, for any )()( ADaandARf  and ),(ADa  there exists a constant C(a, 

F) such that  

(2.4)    .),(),,()(, AuADuanyforfaCauJf    

Lemma 2.3. (Li and Guo) Let   be a bounded conical domain in R
N
. Then we have the following results; 

(1) If   pmWthenNmp ,
        pm

B WthenmpNNpqandNmpifC ,,/;    

      qpmq LWqforthenpandNmpifL ,,1,1,;  
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(2)   pmWthenNmpIf ,
       ,/0; mpNNpqoandNmpifC B   then 

 pmW ,
      ;01, qqLq   

Lemman 2.4. (Pascali and Sburlan [11]) if B: X 2
X*

 is an everywhere defined, monotone and hemi 

continuous operator, then B is maximal monotone. 

Lemman 2.5. (Pascali and Sburlan [11]) if B: X 2
X* 

is maximal monotone and coercive, then R(B) = X
* 

Lemman 2.6. (Pascali and Sburlan [11]) if : X  (- , ) is a proper, convex and lower semi continuous 

function, then   is maximal monotone from X to X
*
. 

Lemman 2.7. [11]. If B1 and B2 are two maximal monotone operators in X such that (int D (B1)) D(B2)  , 

then B1 + B is maximal monotone. 

Lemman 2.8. (Calvert and Gupta [1]). Let X = L
P   and

 
  be a bounded in .N  For 2 p< +  , the 

duality mapping JP: L
P
     'PL defined by  

 Pp

p

p

p LuforuuuuJ ,sgn
21

 ,satisfies 

condition (2.4); for 2N/(N + 1) < p < 2 and N  1, the duality mapping JP: L
P    

/PL  defined by 

      1'11),4.2(,,sgn
1
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III. Main Result 
3.1 Notations and Assumptions of (1.5). We assume in this paper, that 

     pifpNNpqmqqandNpifqmqqpNN /,...2,11,...,;2,11,1/2

.1, NwhereN  We use 
,,121 .'||.,...,'.,','. pm andqqqp to denote the norms in 

        qmqqp LLLL ,....,,, 21
 and W

1,P    respectively. Let (1/p) + (1/p
/
) = 1, (1/q1) + (1/q

/
1) = 1, 

(1/q2) + (1/q
/
2) = 1,…, (1/qm) + (1/q

/
m) = 1  

In (1.5),   is a bounded conical domain of a Euclidean space 
N with its boundary ]).4[..(,1 fcC   

Let .  denote the Euclidean norm in 
N , .,.  the Euclidean inner-product and    the exterior normal 

derivative of .  is a nonnegative constant. 

Lemman 3.1 Defining the mapping Bp, q1, q2, …qm: W
1,p      pW ,1

by 
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...  

for any   pWu ,1,  . Then Bp,q1,q2,…qm
 
is everywhere defined, strictly monotone, hemi continuous and 

coercive. 

The proof of the above lemma will be done in four steps.  

Proof. Step 1: Bp,q1,q2…,qm
 
is everywhere defined. 

From lemma 2.3, we know that W
1p   

 
CB   , when p > N. Also, W

1,p    
 
L

q1   , W
1,p     L

q2
    

,…, W
1,p

      L
qm   , when p .N  

 Thus, for all     ,,1,,122,,,111

,1 ,...,||||,, pmqmpqpq

p kkkWu   

 where k1, k2 ,…, km are positive constants. 

For   pWu ,1,  , we have  
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Where k
/
1, k

/
2, … k

/
m are positive constants. Thus Bp, q1, q2, …qm is everywhere defined.   

Step 2: Bp,q1,q2,…,qm is strictly monotone  

For  ,, ,1  pWu   we have  

 uBu qmqqp ,...,2,1,,  

   qmqqpB ,...,2,1,  
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 Since .0t  And, h’(t) = 0 if and only if t = 0. Then h(t) is strictly monotone. Thus we can say that 

Bp,q1,q2…,qm is strictly monotone  

Step 3: Bp,q1,q2,…qm is hemi continuous  

Need to show here that, for any  

     0...,,],1,0[,, ,...2,1,2,1,

,1  uBtuqmBwtandWwvu qmqqpqqp

p  as t  0. 

 By Lebesgue’s dominated convergence theorem, it follows that     
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Therefore Bp,q1,q2,…qm is hemi continuous  

Step 4: Bp,q1,q2,…qm is coercive  

For  ,,1  pWu Lemma 2.4 implies that 
,,1 p

u is equivalent to 

     ,,1/1 pudxmeasu  and hence we have the following result: 
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as ,,,1 pu  which implies that qmqqpB ,...,2,1, is coercive 

This completes the proof. 

Definition 3. 2. Define a mapping Ap: L
P     Lp2

  as follows: 

D(Ap) =       uuBfthatsuchLfanexistthereLu pqmqqp

pp  ,...,2,1,,  

 for     uuBfthatsuchLfuAletADu pqmqqp

p

pp  ,...,2,1,,),(  

Definition 3.3.: The mapping  

    .2: accretivemisLA Lpp

p  
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Proof. (1) Ap is accretive  

       (a) Case 1: 

 If p   2, the duality mapping Jp: L
p’    is defined by 

p

p

p

p uuuuJ
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   pLu .It then suffices to prove that for any  
pi ADu   and ,2,1,  iuA ipi   
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To do this, we are left to prove that both  
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 G =   2,...,2,1,1,...,1,1,
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The last inequality is available since Xk is monotone and Xk(0) = 0 

(b) Case 2 

      If 2N/( N+ 1) < p < 2, the duality mapping Jp: Lp   Lp
/ 
 (Ω) is defined by  

Jp(u) = sgnu,
1p

u  
   

      for   pLu . It then suffices to prove that for any 2,1,)( ,  iuandADu ipipi     
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To do this, we define the function Xn : R  R by 
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Then Xn is monotone, Lipschitz with Xn(0) = 0 and X
/
n is continuous except at finitely many points on R. So 

       .0, 2121  uuuuX ppn
   

Then, for .2,1)( ,  iipipi uAandADu  We have  
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The lp is maximal monotone [7]. 

 Secondly, for any 0 , let the mapping     *,1,1 2:  pWpWT be defined by  

     )(,...,2,1, uuBIuT pqmqqpp   , 

for   pWu ,1
. Then similar to that in [7], by lemmas 2.4, 2.6, 2.7 and 2.5 we see that T is maximal 

monotone and coercive, so that      0,
*,1   anyforWTR p

 

Therefore, for any  , pLf  there exists   ,,1  pWu  such that  

(3.3)     uuBuuTf pqmqqp   ,...2,1,  

From the definition of Ap. it follows that     .0,   allforLpAIR p This completes the proof. 

Lemma 3.4. The mapping Ap:    ,2  pp LL has a compact resolvent for 2N/(N + 1) < p < 2 and 

.1N   

Proof. Since Ap is m = accretive, we need to show that if  0  fuAu p   and if  f  is bounded in 

L
p   , then  u  is relatively compact in L
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This completes the proof. 

Remark 3.5. Since    uau pp  , for any   pWu ,1
 and   

0C , we have uAf p  

implies that qmqqpBf ,...,2,1, in the sense of distributions. 

Proposition 3.6. For   pLf , if there exists   pLu  such that uAf p , then u is the unique 

solution of (1.7). 

Proof. First we show that  
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where  ppW ./1
 is the space of races of W  p,1

. Let the mapping     ': pp LLB  be defined by Bu 

= g(x), for any   pLu , where g(x) =   xux  a.e. on  . Clearly, B  where  

        





xdxux

u


  

is a proper, convex and lower-semi continuous function on  pL
           

Now define the mapping K: W
l,p     pL by 

      K for any   plW ,  

Then  

           plpl WWBKK ,,:  

is maximal monotone since both K, B are continuous. Finally, for any   plWu ,,  , we have  

       
        xdxux

xx

KuK
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        xdxuxxux 




 

               uBKuKKuKBKu    ,, . 

Hence we get that K * BK p and so K 
*
 BK .p Therefore, we have that  
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1

1
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Next we show that u is unique. 

If pp AfanduAf  , where )(, pADu  then  

(3.5)     qmqqpqmqqp BuBu ,...,2,1,,...,2,1,,0   

(3.6)        0,  uu pp   

qmqqpB ,...,2,1, being strictly monotone and p maximal monotone, implies that    xxu  . This completes 

the proof. 

Remark 3.7. If  .,0)(0 ,1  p

px WuallforuthenxanyforB .   

Proposition 3.8.     )(00 p

p

x ARfdxLfthenxanyforBIf    . 

Proof. In view of lemmas 2.4, 2.5 and 3.1 we note that      .,1

,...,2,1,


 p

qmqqp WBR  Note also that for any 

     ,0fdxwithLf p   the linear function     fudxWu p ,1
 is an element of    .,1 

pW  

So there exists a   pWu ,1
 such that  

    
dxuqmudxuqudxuqu 


222 ....21 

 







  

for any   pW ,1 . Therefore, uAf p  in view of Remark 3.12. This completes the proof. 

Definition 3.9. (see [1, 7]). For  tBtBletxRt xxt  )(,, 0
 be the element with least absolute value if 

    00,0 0  tortwheretandt xx  respectively, in case 

   ttletfinallytB xtxx

0lim,.0)(    (in the extended sense) for  tx x.  define measurable 

functions on  , in view of our assumptions on .x     

Proposition 3.10. Let   pLf  such that       

 

(3.7)   
       xdxfdxxdx 





  


 

 .pAIntRfThen   

Proof. Let   pLf  and satisfy (3.31), by proposition 3.5, there exists   pLnu  such that, for each 

  npn uAufn  1,1 . In the same reason as that in [1], we only need to prove that 
pnu  const for all 

.1n  

 Indeed suppose to the contrary that .1 
pnu  Let   Let

u

u

p

n
n . : R R be defined 

by (t) = RRtt
p

 :,   be its sub differential and for RRu  :,0   denote the Yosida-

approximation of  . Let RRu :  denote the indefinite integral of    p1
' with  0u = 0 so that 

   ''  
p

p . In view of [1] we have  
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(3.8)                   .0//1,
1




 xdxxxuun nnxn    

Now multiplying the equation   ),(/1 nunpn ubyuAunf   we get that  

(3.9)  

             .,,
1
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Then we get from (3.33) that  
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since    tt    for any ,0 andt  we see from that
pn ,1    c

pn   for 

0 where c is a constant which does not depend on orn and 1
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 From (3.36), we have 

that  

(3.10)     
1  p
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p

n

u

c
dxgrad    

for 1,0  n  Now, we know that       ,''   
p

  as  oneao .. . Letting 

0  we see from Fatou’s lemma and (3.37) that  
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From (3.38), we know that   .)tan(sgn
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 Next, we show that   pLinisk 0  from two aspects: 

(1) If cep sin,2  
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it follows that   pLink 0  

(2) If 
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is bounded in  .,1 pW  By lemma (1.3)   pW ,1

     BC   when N = 1 and 
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L  when .2N So 
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n Ling  Noticing that  12/2  ppp when 2N/(N + 1)     < p < 2, it 

follows that k = g almost everywhere on .  

Now, 
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It follows that 0g in  pL and then 0k  in L
p   . Assume, now, k > 0, we see from (3.36) that  

                 fxdxxu nnn
x

,/1
1

 




  

Choosing a subsequence so that   ,../  oneaxu n  we see letting n   so that 

    dxxfxdxB )( 


   which is a contradiction. 

Thus  .int pARf     

This completes the proof. 

Proposition 3.11.     .:1 resolventcompactahasandaccretivemisOmegaLLBA pp

p     

Proof. Using a theorem in Corduneanu, we know that Ap + B1: L
P
     'PL  is m-accretive. To show that 

Ap + B1: L
P
     'PL  has a compact resolvent, we only need to prove that if uBuAw p 1 with (w) 

being bounded in L
p   , then (u) is relatively compact in L

p   .  

Now, we discuss it from it from two aspects.  

(1) If ,2p since  

   uBu qmqqp

dxu
p

,...,2,1,,


  

          upuuAu p  ,,  

           .,,,),(
'

constuuwuuBuuAu
ppp   

It follows that (u) is bounded in   1
'

11,1 


















pp
whereW p

  Then (u) is relatively compact in L
p    

since  pW ,1
      L

p    
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(2) If   uBuAcepNN p 1sin,21/2    with    uand  being bounded in L
p   , we 

have w-B1u   Apu with w-B1u and u being bounded in L
p
(Ω) which gives that u is relatively compact in L

p
(Ω) 

since Ap is m-accretive by proposition (3.8) and has a compact resolvent by lemma (2.9)   

This completes the proof. 

Theorem: Let   pLf  be such that  

          
 dxxgxdxdxxfdxxgxdx )()()(    

Then, (1.4) has a unique solution in L
p   , where 2N/(N+1) < p < +   and N 1   

Proof. We want to use theorem (1.9) to finish our proof. From the propositions we use see that all of the 

conditions in theorem (1.9) are satisfied. It suffices to show that 

      211int BBARfthatensurewhichBRARf pp  . Thus proposition (2.11) tells us that 

(1.4) has a unique solution L
p   . 

Using the similar methods as those in [2,4,7], by dividing it into two cases and using propositions (2.13) and 

(2.15) respectively, we know that    ].[int 1BRARf p  This completes the proof. 

Remark: Compared to the work done in [1.7], not only the existence of the solution of (1.4) is obtained but also 

the uniqueness of the solution is obtained. Furthermore, our work extended the work of [12].           
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