Existence and Uniqueness Result for Boundary Value Problems Involving Capillarity Problems

C.L. Ejikeme¹, M.B. Okofu²

Abstract: In this paper, we study a nonlinear boundary value problem (bvp) which generalizes capillarity problem. An existence and uniqueness result is obtained using the knowledge of range for nonlinear operator. Ours extends the result in [12].

I. Introduction

A research on the existence and uniqueness result for certain nonlinear boundary value problems of capillarity problem has a close relationship with practical problems. Some significant work has been done on this, see Wei et al [1, 5, 2, 4, 3, 7, 10, 6]. In 1995, Wei and He [2] used a perturbation result of ranges for m-accretive mappings in Calvert and Gupta [1] to obtain a sufficient condition so that the zero boundary value problem, [1.1].

$$-\nabla_{p}u + g(x,u(x)) = f(x), a.e \text{ in } \Omega$$
$$-\frac{\partial u}{\partial n} = 0, a.e \text{ in } \Gamma,$$

has solutions in $L^{P}(\Omega)$, where $2 \le p < +\infty$. In 2008, as a summary of the work done in [5, 2, 4, 3, 7, 10, 6], Wei et al used some new technique to work for the following problem with so-called generalized p-Laplacian operator:

(1.2)
$$-div[(c(x) + |\Delta u|^{2})^{(p-2)/2}\Delta u] + \in /u/^{q-2}u + g(x,u(x)) = f(x), a.e \text{ in } \Omega$$
$$-v(c(x) + |\Delta u|^{2})^{\frac{(p-2)}{2}}\Delta u) \in \beta_{x}(u(x)), a.e \text{ in } \Gamma$$

where $0 \le c(x) \in L^p(\Omega)$, \in is a non-negative constant and υ denotes the exterior normal derivatives of Γ . It was shown (7) that (1.2) has solutions in $L^p(\Omega)$ under some conditions where $2N/(N+1) , <math>1 \le q < +\infty$ if $p \ge N$,

and $1 \le q \le N_p / (N-p)$ if p < N, for $N \ge 1$. In Chen and Luo [8], the authors studied the eigenvalue problem for the following generalized capillarity equations.

(1.3)
$$-div\left[\left(1+\frac{\left|\Delta_{u}\right|^{p}}{\sqrt{1+\left|\Delta u\right|^{2p}}}\right)\Delta u\right] = \lambda\left[\left|u\right|^{q-2}u+\left|u\right|^{r-2}u\right], \text{ in } \Omega,$$
$$u=0, a.e. \text{ on } \partial\Omega$$

In their paper [10], Wei et al, borrowed the ideas dealing with the nonlinear elliptic boundary value problem with the generalized p-Laplacian operator to study the nonlinear generalized Capillarity equations with Neumann boundary conditions. They used the perturbation results of ranges for m-accretive mappings in [1] again to study.

$$[1.4] - div \left[\left(1 + \frac{|\nabla u|^{p}}{\sqrt{1 + |\nabla u|^{2p}}} \right) |\nabla u|^{(p-2)} \nabla u \right] + \lambda \left(|u|^{q-2} u + |u|^{r-2} u \right) + g(x, u(x)) = f(x), a.e. \text{ in } \Omega$$
$$- \left\langle \upsilon, \left(1 + \frac{|\nabla u|^{p}}{\sqrt{1 + |\nabla u|^{2p}}} \right) |\nabla u|^{(p-2)} \nabla u \right\rangle \in \beta_{x}(u(x)), a.e. \text{ on } \Gamma$$

Motivated by [10, 12], we study the following boundary value problem:

(1.5)
$$-div \left[\left(1 + \frac{|\nabla u|^{p}}{\sqrt{1 + |\nabla u|^{2p}}} \right) |\nabla u|^{(p-2)} \nabla u \right] + \lambda \left(|u|^{q_{1-2}} u + |u|^{q_{2-2}} u + ... |u|^{q_{m-2}} u \right) + g(x, u(x), \nabla u(x)) = f(x), a.e. in \Omega$$
$$- \left\langle v \left(1 + \frac{|\nabla u|^{p}}{\sqrt{1 + |\nabla u|^{2p}}} \right) |\nabla u|^{(p-2)} \nabla u \right\rangle \in \beta_{x}(u(x)), a.e. in \Gamma$$

This equation generalized the Capillarity problem considered in [10]. We replaced the nonlinear term g(x, u(x)) by the term $g(x, u(x), \nabla u(x))$ which is rather general. In this paper, we will use some perturbation results of the ranges for maximal monotone operators by Pascali and Shurlan [10] to prove that (1.5) has a unique solution in $W^{1,p}(\Omega)$ and later show that this unique solution is the zero of a suitably defined maximal monotone operator.

II. Preliminaries

We now list some basic knowledge we need. Let X be a real Banach space with a strictly convex dual space X^{*}. Using " \mapsto " and "w-lim" to denote strong and weak convergence respectively. For any subset G of X, let intG denote its interior and G its closure. Let "X \mapsto Y" denote that space X is embedded compactly in space Y and "X \mapsto Y" denote that space X is embedded continuously in space Y. A mapping, T: D(T) = X \rightarrow X^{*} is said to be hemi continuous on X if $w - \lim_{t\to 0} T(x + ty) = Tx$, for any x,y \in X Let J denote the duality mapping from X into 2^x, defined by

(2.1)
$$f(x) = f \in x^{\bullet} : (x, f) = ||x|| ||f||, ||f|| = ||x||, x \in X$$

where (....) denotes the generalized duality paring between X and X* Let A: $X \rightarrow 2^x$ be a given multi-valued mapping. A is boundedly-inversely compact if for any pair of bounded subsets G and G' of X, the subset $G \cap A^{-1}(G')$ is relatively compact in X.

The mapping A: $X \rightarrow 2^x$ is said to be accretive if $((\upsilon_1 - \upsilon_2), J(u_1 - u_2)) \ge 0$, for any $ui \in D(A)$ and $\upsilon i \in Au_i$; i = 1, 2.

The accretive mapping A is said be m-accretive if $R(1 + \mu A) = X$, for some $\mu > 0$.

Let B: $X \to 2^{X^*}$ be a given multi-valued mapping, the graph of B, G(B) is defined by G(B) = $\{[u, w] \mid \mu \in D(B), w \in Bu\}, B: X \to 2^{X^*}$ is said to be monotone [11] if G(B) is a monotone subset of X x X^{*} in the sense that

(2.2)
$$(u_1 - u_2, w_1 - w_2) \ge 0$$
, for any $[u_i, w_i] \in G(B); i = 1, 2.$

The monotone operator B is said to be maximal monotone if G(B) is maximal among all monotone subsets of X x X^* in the sense of inclusion the mapping B is said to be strictly monotone if the equality in (2.2) implies that $u_1 = u_2$. The mapping B is said to be coercive if

$$\lim_{n \to +\infty} \left((x_n, x_n^*) / \|x_n\| \right) = \infty \text{ for all } [x_n, x_n^*] \in G(B) \text{ such that } \lim_{n \to +\infty} \|x_n\| = +\infty.$$

Definition 2.1. The duality mapping $J: X \to 2^{X^*}$ is said to be satisfying condition (1) if there exists a function $\eta: X \to [0, +\infty]$ such that

(2.3)

B)
$$||Ju - Jv|| \le \eta(u - v)$$
, for all $u, v \in X$.

Definition 2.2. Let A: $X \to 2^X$ be an accretive mapping and $J : X \to X^*$ be a duality mapping. We say that A satisfies condition (*) if, for any $f \in R(A)$ and $a \in D(A)$ and $a \in D(A)$, there exists a constant C(a, F) such that

(2.4)
$$(\upsilon - f, J(u - a)) \ge C(a, f), \text{ for any } u \in D(A), \upsilon \in Au$$

Lemma 2.3. (Li and Guo) Let Ω be a bounded conical domain in \mathbb{R}^N . Then we have the following results; (1) If mp > N then $W^{m,p}(\Omega) \rightarrow C_p(\Omega)$; if mp < N and q = Np/(N-mp), then $W^{m,p}(\Omega) \rightarrow C_p(\Omega)$.

 $L^{q}(\Omega)$, if mp = N, and p > 1, then for $1 \le q < +\infty$, $W^{m,p}(\Omega) \to L^{q}(\Omega)$

(2) If mp > N then $W^{m,p}(\Omega) \to C_B(\Omega)$; if $0 < mp \le N$ and qo = Np/(N-mp), then $W^{m,p}(\Omega) \to L^q(\Omega), 1 \le q < q0$;

Lemman 2.4. (Pascali and Sburlan [11]) if B: $X \rightarrow 2^{X^*}$ is an everywhere defined, monotone and hemi continuous operator, then B is maximal monotone.

Lemman 2.5. (Pascali and Sburlan [11]) if B: $X \rightarrow 2^{X^*}$ is maximal monotone and coercive, then $R(B) = X^*$

Lemman 2.6. (Pascali and Sburlan [11]) if $\Phi: X \to (-\infty, +\infty)$ is a proper, convex and lower semi continuous function, then $\partial \Phi$ is maximal monotone from X to X^{*}.

Lemman 2.7. [11]. If B₁ and B₂ are two maximal monotone operators in X such that (int D (B₁)) \bigcap D(B₂) $\neq \phi$, then B₁ + B is maximal monotone.

Lemman 2.8. (Calvert and Gupta [1]). Let $X = L^{p}(\Omega)$ and Ω be a bounded in \Re^{N} . For $2 \le p < +\infty$, the duality mapping J_{P} : $L^{P}(\Omega) \rightarrow L^{P'}(\Omega)$ defined by $J_{p}u = |u|^{p-1} \operatorname{sgn} u ||u||_{p}^{2-p}$, for $u \in L^{P}(\Omega)$, satisfies condition (2.4); for $2N/(N + 1) and <math>N \ge 1$, the duality mapping J_{P} : $L^{P}(\Omega) \rightarrow L^{P'}(\Omega)$ defined by $J_{p}u = |u|^{p-1} \operatorname{sgn} u$, for $u \in L^{P}(\Omega)$, satisfies condition (2.4), where (1/p) + (1/p') = 1

III. Main Result

3.1 Notations and Assumptions of (1.5). We assume in this paper, that $2N/(N+1) if <math>p \ge N$, and $1 \le q1, q2, ..., qm \le Np/(N-p)$ if p < N, where $N \ge 1$. We use $\|.\|p', \|q'_1, \|.\|q'_2, ..., \|.\|q'_m$ and $\|.\|_{1,p,\Omega}$ to denote the norms in $L^p(\Omega), L^{q1}(\Omega), L^{q2}(\Omega), ..., L^{qm}(\Omega)$ and $W^{1,P}(\Omega)$ respectively. Let $(1/p) + (1/p') = 1, (1/q1) + (1/q'_1) = 1, (1/q_2) + (1/q'_2) = 1, ..., (1/q_m) + (1/q'_m) = 1$

In (1.5), Ω is a bounded conical domain of a Euclidean space \Re^N with its boundary $\Gamma \in C^1$, (c.f.[4]).

Let $|\cdot|$ denote the Euclidean norm in \mathfrak{R}^N , $\langle .,. \rangle$ the Euclidean inner-product and υ the exterior normal derivative of Γ . λ is a nonnegative constant.

Lemman 3.1 Defining the mapping $B_{p, q1, q2, \dots, qm}$: $W^{1, p}(\Omega) \rightarrow (W^{1, p}(\Omega))^*_{by}$

$$\left(\upsilon, B_{p,q1,q2,\dots,qm} u \right) = \int_{\Omega} \left\langle \left(1 + \left(\frac{|\nabla u|^p}{\sqrt{1 + |\nabla u|^{2p}}} \right) |\nabla u|^{p-2} \nabla u, \nabla u \right) \right\rangle dx + \lambda \int_{\Omega} |u(x)|^{q1-2} u(x) \upsilon(x) dx + \lambda \int_{\Omega} |u(x)|^{q2-2u(x)\upsilon(x)dx} + \dots + \lambda \int_{\Omega} |u(x)|^{qm-2u(x)\upsilon(x)dx} \right) \right\rangle dx$$

for any $u, v \in W^{1,p}(\Omega)$. Then $B_{p,q1,q2,\dots,qm}$ is everywhere defined, strictly monotone, hemi continuous and coercive.

The proof of the above lemma will be done in four steps.

Proof. Step 1: $B_{p,q1,q2...,qm}$ is everywhere defined.

From lemma 2.3, we know that $W^{1p}(\Omega) \hookrightarrow C_B(\Omega)$, when p > N. Also, $W^{1,p}(\Omega) \hookrightarrow L^{q1}(\Omega)$, $W^{1,p}(\Omega) \hookrightarrow L^{q2}(\Omega)$, ..., $W^{1,p}(\Omega) \hookrightarrow L^{qm}(\Omega)$, when $p \le N$. Thus, for all $u, \upsilon \in W^{1,p}(\Omega)$, $\|\upsilon\|_{q1} \le k_1 \|\upsilon\|_{1,p,\Omega} \|\upsilon\|_{q2} \le k_2 \|\upsilon\|_{1,p,\Omega}$,..., $\|\upsilon\|_{qm} \le k_m \|\upsilon\|_{1,p,\Omega}$, where $k_1, k_2, ..., k_m$ are positive constants.

For $u, \upsilon \in W^{1,p}(\Omega)$, we have

$$\left| \left(\upsilon, B_{p,q1,q2,\dots,qm} \ u \right) \le 2 \int_{\Omega} \Omega^{|\nabla u|p-1|\nabla v|dx+\lambda} \int_{\Omega} \Omega^{|\mu|q1-1|\nu|dx+\lambda} \int_{\Omega} \Omega^{|\mu|q2-1|\nu|dx+\dots+\lambda} \int_{\Omega} \Omega^{|\mu|qm-1|\nu|dx+\lambda} \int_{\Omega} \Omega^{|\mu|qm-1|\nu|dx+\lambda} \int_{\Omega} \Omega^{|\mu|q1-1|\nu|dx+\lambda} \int_$$

$$\leq 2 \left\| \nabla u \right\|_{p}^{p/p'} \left\| \nabla v \right\|_{p} + \lambda \|v\| q \|u\|_{q1}^{q1/q'1} + \lambda \|v\|_{q2} \|u\|_{q2}^{q2/q'2} + \dots + \lambda \|v\|_{qm} \|u\|_{qm}^{qm/q'm}$$

$$\leq 2 \|u\|_{1,p,\Omega}^{p/p'} \|v\|_{1,p,\Omega} + k'_{1} \lambda \|v\|_{1,p,\Omega} \|u\|_{1,p,\Omega}^{q1/q'1} + k'_{2} \lambda \|v\|_{1,p,\Omega} \|u\|_{1,p,\Omega}^{q2/q'2}$$

$$+ \dots + k'_{m} \lambda \|v\|_{1,p,\Omega} \|u\|_{1,p,\Omega}^{qm/q'm}$$

Where $k'_1, k'_2, \dots k'_m$ are positive constants. Thus $B_{p, q1, q2, \dots, qm}$ is everywhere defined. Step 2: $B_{p,q1,q2,...,qm}$ is strictly monotone

For $u, v \in W^{1,p}(\Omega)$, we have

(u

$$\begin{split} \| (u - v), \mathcal{B}_{p,q1,q2,...,qm} u \\ & -\mathcal{B}_{p,q1,q2,...,qm} v \Big] \Big| \\ &= \int_{\Omega} \left\langle \left(1 + \frac{|\nabla u|^{p}}{\sqrt{1 + |\nabla u|^{2p}}} \right) \nabla u |^{p-2} \nabla u - \left(1 + \frac{|\nabla v|^{p}}{\sqrt{1 + |\nabla v|^{2p}}} \right) |\nabla v|^{p-2} \nabla v, \nabla u - \nabla v \right\rangle dx \\ &+ \lambda \int_{\Omega} \Omega^{\left[\mu | q - 2_{u} - |v|^{q + 2_{u}} \right] (u - v) dx} \int_{\Omega} \Omega^{\left[\mu | q^{2-2_{u}} - |v|^{q^{2-2}} v \right] (u - v) dx} \\ &+ \dots + \lambda \int_{\Omega} \Omega^{\left[\mu | q - 2_{u} - |v|^{q + 2_{u}} \right] (u - v) dx} \\ &= \int_{\Omega} \left\{ \left(1 + \frac{|\nabla u|^{p}}{\sqrt{1 + |\nabla u|^{2p}}} \right) |\nabla u|^{p} - \left(1 + \frac{|\nabla u|^{p}}{\sqrt{1 + |\nabla u|^{2p}}} \right) |\nabla v|^{p-2} \nabla u \nabla u \right\} \\ &- \left(1 + \frac{|\nabla u|^{p}}{\sqrt{1 + |\nabla v|^{2p}}} \right) |\nabla u|^{p-2} \nabla u \nabla v + \left(1 + \frac{|\nabla v|^{p}}{\sqrt{1 + |\nabla v|^{2p}}} \right) |\nabla v|^{p} \right\} dx \\ &+ \dots + \lambda \int_{\Omega} \Omega^{\left(\mu | q - 2_{u} - |v|^{q + 2_{u}} v \right) (u - v) dx} \\ &\geq \int_{\Omega} \left\{ \left(1 + \frac{|\nabla u|^{p}}{\sqrt{1 + |\nabla v|^{2p}}} \right) |\nabla u|^{p-1} - \left(1 + \frac{|\nabla v|^{p}}{\sqrt{1 + |\nabla v|^{2p}}} \right) |\nabla v|^{p-1} \right\} (|\nabla u| - |\nabla u|) dx \\ &+ \lambda \int_{\Omega} \Omega^{\left(\mu | q - 2_{u} - |v|^{q + 2_{u}} v \right) (u - v) dx} \\ &\geq \int_{\Omega} \left\{ \left(1 + \frac{|\nabla u|^{p}}{\sqrt{1 + |\nabla u|^{2p}}} \right) |\nabla u|^{p-1} - \left(1 + \frac{|\nabla v|^{p}}{\sqrt{1 + |\nabla v|^{2p}}} \right) |\nabla v|^{p-1} \right\} (|\nabla u| - |\nabla u|) dx \\ &+ \lambda \int_{\Omega} \Omega^{\left(|u| q - 1_{u} - |v|^{q + 1} v \right) (u - |v|) dx} \\ &+ \dots + \lambda \int_{\Omega} \Omega^{\left(|u| q - 1_{u} - |v|^{q + 1} x \right)} \int_{\Omega} \Omega^{\left(|u|^{q + 2_{u} - 1} v \right) (v + \lambda - \lambda) \int_{\Omega} \Omega^{\left(|u| q - 1_{u} - |v|^{q + 1} x \right)} \int_{\Omega} \Omega^{\left(|u|^{q - 1_{u} - 1} v \right) (u - |v|) dx} \\ &+ \dots + \lambda \int_{\Omega} \Omega^{\left(|u| q - 1_{u} - |v|^{q + 1_{u} - |v|^{q + 1_{u}} v \right) (v + \lambda - \lambda) \int_{\Omega} \Omega^{\left(|u| q - 1_{u} - |v|^{q + 1_{u} - |v|^{q + 1_{u}} v \right)} dx} \\ &\text{If we let } h(t) = \left(1 + \frac{t}{\sqrt{(1 + t^{2})}} \right) t^{(p-1)/p}, \text{ for t is 0. Then} \\ (3.1) \qquad h'(t) = \frac{t^{(p-1)/p}}{(1 + t^{2})^{3/2}} + t^{(1/p)} \left(1 + \frac{t}{\sqrt{1 + t^{2}}} \right) \frac{p-1}{p} \ge 0, \end{aligned}$$

Since $t \ge 0$. And, h'(t) = 0 if and only if t = 0. Then h(t) is strictly monotone. Thus we can say that $B_{\text{p},\text{q}1,\text{q}2\dots,\text{q}m}$ is strictly monotone Step 3: $B_{p,q1,q2,...qm}$ is hemi continuous

Need to show here that, for any

$$u, v, w \in W^{1,p}(\Omega)$$
 and $t \in [0, 1], (w, B_{p,q1,q2}...,qm(u+t\upsilon) - B_{p,q1,q2,...qm}u) \rightarrow 0$ as $t \rightarrow 0$.
By Lebesgue's dominated convergence theorem, it follows that

 $0 \leq \int_{0}^{1m} |(w, B_{n,a_1,a_2,\dots,a_m}(u+tv) - B_{n,a_1,a_2,\dots,a_m}u)|$ $\leq \int_{\Omega_{t}}^{1} |w, B_{p,q1,q2,\dots,qm}(u+t\upsilon) - B_{p,q1,q2,\dots,qm}u|$ $\leq \int_{\Omega} \left\| 1 + \frac{\left|\nabla u + t\nabla \upsilon\right|^{p}}{\sqrt{1 + \left|\nabla u + t\nabla \upsilon\right|^{2} p}} \right\| \nabla u + t\nabla \upsilon \Big|^{p-2} \left(\nabla u - t\nabla \upsilon\right)^{p-2} \left($ $-\left(1+\frac{|\nabla u|^{p}}{\sqrt{1+|\nabla u|^{2}n}}\right)|\nabla u|^{p-2}\nabla u ||\nabla w|dx+\lambda \int_{\Omega_{t-0}}^{\lim} ||u+tv||^{q}$ $+\lambda \int \lim_{\Omega_{t-0}} \left\| u + tv \right\|^{q^{2-2}} \left(u + tv \right) - \left| u \right|^{q^{2-2}} \left\| w \right| dx + \dots + \lambda \int \lim_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|^{q^{2-2}} dx + \dots + \lambda \int_{\Omega_{t-0}} \left\| u \right\|$ Therefore B_{p,q1,q2,...qm} is hemi continuous Step 4: $B_{p,q1,q2,...qm}$ is coercive $u \in W^{1,p}(\Omega)$, Lemma 2.4 implies that $\|u\|_{1,\infty} \rightarrow \infty$ is For equivalent to $\|u - (1/meas(\Omega))\|_{\Omega} u dx\|_{1,p,\Omega} \to \infty$ and hence we have the following result: $\frac{\left(u, B_{p,q1,q2,\dots,qm}u\right)}{\left\|u\right\|_{1,p,\Omega}} = \frac{\int_{\Omega} \left(1 + \left(\left|\nabla\right|\right)^{p} / \sqrt{1 + \left|\nabla u\right|^{2p}}\right) \left(\left|\nabla u\right|^{p} dx\right) + \frac{\int_{\Omega} \left|u\right|^{q1} dx}{\left\|u\right\|_{1,p,\Omega}} + \frac{\int_{\Omega} \left|u\right|^{q1} dx}{\left\|u\right\|_{1,p,\Omega}}$ + $\lambda \frac{\int_{\Omega} |u|^{q^2} dx}{\|u\|} + \dots + \lambda \frac{\int_{\Omega} |u|^{q^m} dx}{\|u\|_{q^m}}$ $=\frac{\int_{\Omega}\left(\left|\nabla u\right|^{p}+\sqrt{1+\left|\nabla u\right|^{2p}}\right)dx-\int_{\Omega}\left(\sqrt{1/\left|\nabla u\right|^{2p}}\right)dx$ + $\lambda \frac{\int_{\Omega} |u|^{q_1} dx}{\|u\|} + \lambda \frac{\int_{\Omega} |u|^{q_2} dx}{\|u\|} + \dots + \lambda \frac{\int_{\Omega} |u|^{q_m} dx}{\|u\|}$ $\geq \frac{2\int_{\Omega} |\nabla u|^{p} dx - \int_{\Omega} \left(1/\sqrt{1 + |\nabla u|^{2p}}\right) dx}{\|u\|_{1,p,\Omega}} + \lambda \frac{\int_{\Omega} |u|^{q_{1}} dx}{\|u\|_{1,p,\Omega}}$ $+ \lambda \frac{\int_{\Omega} |u|^{q^2} dx}{\|u\|_{L^{\infty}\Omega}} + \dots + \lambda \frac{\int_{\Omega} |u|^{q^m} dx}{\|u\|_{L^{p,\Omega}\Omega}} \to +\infty,$ as $\|u\|_{1,p,\Omega} \to +\infty$, which implies that $B_{p,q1,q2,\dots,qm}$ is coercive

This completes the proof.

Definition 3. 2. Define a mapping $A_p: L^p(\Omega) \to 2^{Lp(\Omega)}$ as follows: $D(A_p) = \left\{ u \in L^p(\Omega) \mid \text{there exist an } f \in L^p(\Omega), \text{ such that } f \in B_{p,q1,q2,\dots,qm}u + \partial \Phi_p(u) \right\}$ for $u \in D(A_p)$, let $A_p u = \left\{ f \in L^p(\Omega), \text{ such that } f \in B_{p,q1,q2,\dots,qm}u + \partial \Phi_p(u) \right\}$ **Definition 3.3.:** The mapping $A_p: L^p(\Omega) \to 2^{Lp(\Omega)} \text{ is } m - \text{ accretive.}$

DOI: 10.9790/5728-1214101113

Proof. (1) A_p is accretive

(a) Case 1:

If $p \ge 2$, the duality mapping $J_p: L^{p'}(\Omega)$ is defined by $J_p u = |u|^{p-1} \operatorname{sgn} u ||u||_p^{2-p}$ for $u \in L^p(\Omega)$. It then suffices to prove that for any $u_i \in D(A_p)$ and $\upsilon_i \in A_p u_i$, $i = 1, 2, (\upsilon_1 - \upsilon_2, J_p(u_1 - \upsilon_2)) \ge 0$

To do this, we are left to prove that both

$$\left(\left| u_{1} - u_{2} \right|^{p-1} \operatorname{sgn} \left(u_{1} - u_{2} \right) \left| u_{1} - u_{2} \right|^{2-p}, B_{p,q1,q2,\dots,qm} u_{1} - B_{p,q1,q2,\dots,qm} u_{2} \right) \ge 0,$$

$$\left(\left| u_{1} - u_{2} \right|^{p-1} \operatorname{sgn} \left(u_{1} - u_{2} \right) \right) \left| u_{1} - u_{2} \right|^{2-p}, \partial \Phi_{p} \left(u_{1} \right) - \partial \Phi_{p} \left(u_{2} \right) \right) \ge 0,$$

are available.

Now, take for a constant k > 0, $X_k: R \to R$ is defined by $X_k(t) = |t \Lambda k \vee (-k)^{p-1} \operatorname{sgn} t||$ Then X_k is monotone, Lipschitz with $X_k(0) = 0$ and X_k is continuous except at finitely many points on R. This gives that

$$\begin{aligned} \left\| u_{1} - u_{2} \right\|_{p}^{p-1} \operatorname{sgn}(u_{1} - u_{2}) \| u_{1} \\ &- u_{2} \|_{p}^{2-p}, \partial \Phi_{p}(u_{1}) - \partial \Phi_{p}(u_{2})) \\ &= \lim_{k \to +\infty} \| u_{1} - u_{2} \|_{p}^{2-p} \left(X_{k}(u_{1} - u_{2}), \partial \Phi_{p}(u_{1}) - \partial \Phi_{p}(u_{2}) \right) \\ &\geq 0, \end{aligned}$$

Also

$$\begin{aligned} G &= \left\| u_{1} - u_{2} \right\|_{p}^{2-p} \\ & \times \qquad \lim_{k \to +8} \int_{\Omega} \left\langle \left(1 + \frac{\left| \nabla u_{1} \right|^{p}}{\sqrt{1 + \left| \nabla u_{1} \right|^{2p}}} \right) \left| \nabla u_{1} \right|^{p-2} \nabla u_{1} - \left(1 + \frac{\left| \nabla u_{2} \right|^{p}}{\sqrt{1 + \left| \nabla u_{2} \right|^{2p}}} \right) \left| \nabla u_{2} \right|^{p-2} \nabla u_{2}, \nabla u_{1} - \nabla u_{2} \right\rangle \\ & \times \quad X' \kappa (u_{1} - u_{2}) dx + \lambda \left\| u_{1} - u_{2} \right\|_{p}^{2-p} \int_{\Omega} \left(\left| u_{1} \right|^{q-2} u_{1} - \left| u_{2} \right|^{q-2} u_{2} \right) u_{1} - \left| u_{2} \right|^{q-1} sgn(u_{1} - u_{2}) dx \\ & + \lambda \left\| u_{1} - u_{2} \right\|_{p}^{2-p} \int_{\Omega} \left(\left| u_{1} \right|^{q-2} u_{1} - \left| u_{2} \right|^{q-1} sgn(u_{1} - u_{2}) dx \\ & + \ldots + \lambda \left\| u_{1} - u_{2} \right\|_{p}^{2-p} \int_{\Omega} \left(\left| u_{1} \right|^{q-2} u_{1} - \left| u_{2} \right|^{q-2} u_{2} \right) u_{1} - u_{2} \right|^{p-1} sgn(u_{1} - u_{2}) dx \\ & + \ldots + \lambda \left\| u_{1} - u_{2} \right\|_{p}^{2-p} \int_{\Omega} \left(\left| u_{1} \right|^{q-2} u_{1} - \left| u_{2} \right|^{q-2} u_{2} \right) u_{1} - u_{2} \right|^{p-1} sgn(u_{1} - u_{2}) dx \\ & + \ldots + \lambda \left\| u_{1} - u_{2} \right\|_{p}^{2-p} \int_{\Omega} \left(\left| u_{1} \right|^{q-2} u_{1} - \left| u_{2} \right|^{q-2} u_{2} \right) u_{1} - u_{2} \right|^{p-1} sgn(u_{1} - u_{2}) dx \\ & + \ldots + \lambda \left\| u_{1} - u_{2} \right\|_{p}^{2-p} \int_{\Omega} \left(\left| u_{1} \right|^{q-2} u_{1} - \left| u_{2} \right|^{q-2} u_{2} \right) u_{1} - u_{2} \right|^{p-1} sgn(u_{1} - u_{2}) dx \\ & + \ldots + \lambda \left\| u_{1} - u_{2} \right\|_{p}^{2-p} \int_{\Omega} \left(\left| u_{1} \right|^{q-2} u_{1} - \left| u_{2} \right|^{q-2} u_{2} \right) u_{1} - \left| u_{2} \right|^{q-2} sgn(u_{1} - u_{2}) dx \\ & + \ldots + \lambda \left\| u_{1} - u_{2} \right\|_{p}^{2-p} \int_{\Omega} \left(\left| u_{1} \right|^{q-2} u_{1} - \left| u_{2} \right|^{q-2} u_{2} \right) u_{1} - \left| u_{2} \right|^{q-2} sgn(u_{1} - u_{2}) dx \\ & + \ldots + \lambda \left\| u_{1} - u_{2} \right\|_{p}^{2-p} \int_{\Omega} \left(\left| u_{1} \right|^{q-2} u_{1} - \left| u_{2} \right|^{q-2} u_{1} - \left| u_{2} \right|^{q-2} u_{2} \right|^{q-2} u_{1} - \left| u_{2}$$

where

$$G = \left(|u_1 - u_2|^{p-1} \operatorname{sgn}(u_1 - u_2)| |u_1 - u_2||_p^{2-p}, B_{p,q1,q1,\dots,qm} u_1 - B_{p,q1,q2,\dots,qm} u_2 \right)$$

The last inequality is available since X_k is monotone and $X_k(0) = 0$ (b) Case 2

If 2N/(N+ 1) J_p: L_p(\Omega) \rightarrow L_p^{\prime}(\Omega) is defined by $J_p(u) = |u|^{p-1} sgnu$,

for $u \in L^{p}(\Omega)$. It then suffices to prove that for any $u_{i} \in D(A_{p})$ and $\upsilon_{i} \in A_{p} u_{i}, i = 1, 2$ $(\upsilon_{1} - \upsilon_{2}, J_{p}(u_{1} - u_{2})) \ge 0$

To do this, we define the function $X_n : R \rightarrow R$ by

(3.2)
$$X_{n}(t) = \begin{cases} |t|^{p-1} \operatorname{sgn} t, \, if \, |t| \ge \frac{1}{n} \\ \left(\frac{1}{n}\right)^{p-2} t, \, if \, |t| \le \frac{1}{n} \end{cases}$$

Then X_n is monotone, Lipschitz with $X_n(0) = 0$ and X'_n is continuous except at finitely many points on R. So $(X_n(u_1-u_2), \partial \Phi_p(u_1)-\partial \Phi_p(u_2)) \ge 0.$

Then, for
$$u_i \in D(A_p)$$
 and $\upsilon_i \in A_p u_{i,i} = 1, 2$. We have
 $(\upsilon_1 - \upsilon_2, J_p(u_1 - u_2)) = (|u_1 - u_2|^{p-1} \operatorname{sgn}(u_1 - u_2), B_{p,q1,q2,\dots,qm}u_1 - B_{p,q1,q2,\dots,qm}u_2)$
 $+ (|u_1 - u_2|^{p-1} \operatorname{sgn}(u_1 - u_2), \partial \Phi_p(u_1) - \partial \Phi_p(u_2))$
 $= (|u_1 - u_2|^{p-1} \operatorname{sgn}(u_1 - u_2), B_{p,q1,q2,\dots,qm}u_1 - B_{p,q1,q2,\dots,qm}u_2)$
 $+ \lim_{n \to \infty} (x_n(u_1 - u_2), \partial \Phi_p(u_1) - \partial \Phi_p(u_2)) \ge 0$

Step 2 R $(l + \mu A_p) = L^p(\Omega)$, for every $\mu > 0$. We first

 $l_{p}: W^{1,p}(\Omega) \to (W^{1,p}(\Omega))^{*} \text{ by } l_{p}u = u \text{ and } (v, I_{p}u)(W^{1,p}(\Omega))^{*} \times (W^{1,p}(\Omega) - (v,u)v(\Omega))$ for $u, v \in W^{1,p}(\Omega)$, where $\langle ., . \rangle_{L^{2}(\Omega)}$ denotes the inner product of $L^{p}(\Omega)$. The l_{p} is maximal monotone [7].

Secondly, for any $\mu > 0$, let the mapping $T_{\mu}: W^{1,p}(\Omega) \to 2^{(W1,p(\Omega))^*}$ be defined by

 $T\mu u = I_p \mu + \mu B_{p,q1,q2,\dots,qm} u \mu \partial \Phi_p(u),$

for $u \in W^{1,p}(\Omega)$. Then similar to that in [7], by lemmas 2.4, 2.6, 2.7 and 2.5 we see that T_{μ} is maximal monotone and coercive, so that $R(T_{\mu}) = (W^{1,p}(\Omega))^*$, for any $\mu > 0$ Therefore, for any $f \in L^p(\Omega)$, there exists $u \in W^{1,p}(\Omega)$, such that (3.3) $f = T_{\mu} \ u = u + \mu B_{p,q1,q2,\dots,qm} \ u\mu \partial \Phi_p(u)$ From the definition of A_p . it follows that $R(I + \mu A_p) = Lp(\Omega)$, for all $\mu > 0$. This completes the proof.

Lemma 3.4. The mapping A_p : $L^p(\Omega) \rightarrow 2L^p(\Omega)$, has a compact resolvent for $2N/(N + 1) and <math>N \ge 1$.

Proof. Since A_p is m = accretive, we need to show that if $u + \mu A_p u = f(\mu > 0)$ and if $\{f\}$ is bounded in $L^p(\Omega)$, then $\{u\}$ is relatively compact in $L^p(\Omega)$. Now defined functions $X_n, \varsigma_n: R \to R$ by

$$X_{n}(t) = \begin{cases} |t|^{p-1} \operatorname{sgn} t, \text{ if } |t| \ge \frac{1}{n}, \\ \left(\frac{1}{n}\right)^{p-2} t, \text{ if } |t| \le \frac{1}{n} \end{cases}$$
$$\zeta_{n}(t) = \begin{cases} |t|^{2-(2/p)} \operatorname{sgn} t, \text{ if } |t| \ge \frac{1}{n}, \\ \left(\frac{1}{n}\right)^{1-(2/p)} t, \text{ if } |t| \le \frac{1}{n}, \end{cases}$$

Noticing that $X'n(t) = (p-1) \times (p'/2)^p \times (\zeta'n(t))^p$, for $|t| \ge 1/n$, where (1/p) + 1/p') = 1 and $X_n(t) = (\zeta_n(t))^p$, for $|t| \le 1/n$. We know that $(X_n(u), \partial \Phi_p(u)) \ge 0$ for $u \in W^{1,p}(\Omega)$ since X_n is monotone, Lipschitz with $X_n(0) 0$ and X'n is continuous except at finitely many points on R. $(|U|^{P-1} \operatorname{sgn} u, A_p u) = \lim_{n \to \infty} (X_n(u), A_p u) \ge \lim_{n \to \infty} (X_n(u), B_{p,q1,q2,\dots,qm} u)$ $= \lim_{n \to \infty} (1 + \frac{|\nabla u|^p}{2}) |\nabla u|^p X'(u) dx + \lambda^{\lim_{n \to \infty} 1} \int_{0}^{|u|q1-2} u X_n(u) dx$

$$= \lim_{n \to J} \int_{\Omega} \left[1 + \frac{1}{\sqrt{1 + |\nabla u|^{2p}}} \right] |\nabla u|^{2p} X_{n}^{*}(u) dx + \lambda_{n \to \infty}^{\min} \int_{\Omega} uXn(u) dx + \lambda_{n \to \infty}^{\min} \int_{\Omega} uXn(u) dx + \dots + \lambda_{n \to \infty}^{\lim} \int_{\Omega} uXn(u) dx + \dots + \lambda_{n \to \infty}^{\lim} \int_{\Omega} uXn(u) dx$$

mapping

$$\geq \lim_{n \to \int_{\infty}^{\infty} |\nabla u|^{p} X'n(u) dx$$

$$\geq const. \lim_{n \to \infty} \int_{\Omega} |grad|(\zeta(u))|^{p} dx$$

$$\geq const. \int_{\Omega}^{\alpha} |grad|(u)^{2-(2/p)} \operatorname{sgn} u)^{p} dx$$

From $f = u + \mu A_n u$, we have;

$$\begin{split} \left\|f\right\|_{p} \left\|u\right|^{2-(2/p)} Sgn \ u\right\|_{p^{2}/2(p-1)p^{\prime}}^{p^{2}/2(p-1)p^{\prime}} & \geq \left(u\right|^{p-1} sgn \ u, f\right) = \left(u\right|^{p-1} sgn \ u, u\right) + \mu \left(u\right|^{p-1} sgn \ u, A_{p}u\right) \\ & \geq \left\|u\right|^{2-(2/p)} Sgn \ u\right\|_{p^{2/2}(p-1)p^{\prime}}^{p^{2/2}(p-1)p^{\prime}} + \mu.const.\left\|grad|u\right|^{2-(2/p)} Sgn \ u\right\|_{p^{\prime}}^{p} \\ & \leq \left\|u\right|^{2-(2/p)} Sgn \ u^{2/2} \left(u^{2/p}\right) + \mu.const.\left\|grad|u\right|^{2-(2/p)} Sgn \ u^{2/2} \left(u^{2/p}\right) + \mu.const.\left\|grad|u\right|^{2-(2/p)} Sgn \ u^{2/2} \left(u^{2/p}\right) + \mu.const.\left\|grad|u\right|^{2-(2/p)} Sgn \ u^{2/p} \left(u^{$$

Which gives that

$$\|u\|^{2-(2/p)} Sgn u\|_{p}^{p/2(p-1)} \leq \|u\|^{2-(2/p)} Sgn u\|_{p^{2}/2(p-1)}^{p/2(p-1)} \|f\|_{p} \leq const.$$

in view of the fact that $p < \frac{p^2}{2(p-1)}$ when 2N (N+1) N \ge 1. Again we have that, $\left\| grad \left(u \right)^{2-(2/p)} \operatorname{sgn} u \right) \right\|_p \le const.$

Hence, $\{f\}$ bounded in $L^{p}(\Omega)$ implies that $\{u|^{2-(2/p)} \operatorname{sgn} u\}$ is bounded in $W^{1,p}(\Omega)$

We notice that $W^{1,p}(\Omega) \to L^{p^2/2(p-1)}(\Omega)$ when $N \ge 2$ and $W^{1,p}(\Omega) \to C_B(\Omega)$ when N = 1 by lemma (3.1), therefore $\{u|^{2-(2/p)} \operatorname{sgn} u\}$ is relatively compact in $L^{p^2/2(p-1)}(\Omega)$. This gives that $\{u\}$ is relatively compact in $L^p(\Omega)$ since the Nemytskii mapping $u \in L^{p/2(p-1)}(\Omega) \to |u|^{p^{2/2(p-1)}} \operatorname{sgn} u \in L^p(\Omega)$ is continuous.

This completes the proof.

Remark 3.5. Since $\Phi_p(u+a) = \Phi_p(u)$, for any $u \in W^{1,p}(\Omega)$ and $\alpha \in C_0^{\infty}(\Omega)$, we have $f \in A_p u$ implies that $f = B_{p,q1,q2,\dots,qm}$ in the sense of distributions.

Proposition 3.6. For $f \in L^p(\Omega)$, if there exists $u \in L^p(\Omega)$ such that $f \in A_p u$, then u is the unique solution of (1.7).

Proof. First we show that

$$-div \left[\left(1 + \frac{|\nabla u|^{p}}{\sqrt{1 + |\nabla u|^{2p}}} \right) |\nabla u|^{(p-2)} \nabla u \right] + \lambda \left(|u|^{q-2} u + |u|^{q^{2-2}} u + \dots + |u|^{q^{m-2}} u \right) = f(x), a.e.x \text{ in } \Omega \qquad \text{is}$$

available.

 $f \in A_{p}u \text{ implies that } f = B_{p,q1,q2,\dots,qm} u + \partial \Phi_{p}(u). \text{ For all } \varphi \in C_{0}^{\infty}(\Omega), \text{ by remark (3.12), we have;}$ $(\varphi, f) = \left(\varphi, B_{p,q1,q2,\dots,qm}u + \partial \Phi_{p}(u)\right)$

$$= \left(\varphi, B_{p,q1,q2,\dots,qm}u\right) = \int_{\Omega} \left\langle \left(1 + \frac{\left|\nabla u\right|^{p}}{\sqrt{1 + \left|\nabla u\right|^{2p}}}\right) \left|\nabla u\right|^{(p-2)} \nabla u, \nabla \varphi \right\rangle dx$$
$$+ \lambda \int_{\Omega} \int_{\Omega}^{|u|q1-2u\varphi dx} + \lambda \int_{\Omega} \int_{\Omega}^{|u|q2-2u\varphi dx+\dots+1} \lambda \int_{\Omega} \int_{\Omega}^{|u|qm-2u\varphi dx}$$

DOI: 10.9790/5728-1214101113

$$= \int_{\Omega} - div \left[\left(1 + \frac{|\nabla u|^{p}}{\sqrt{1 + |\nabla u|^{2p}}} \right) |\nabla u|^{(p-2)} \nabla u \right] \varphi dx + \lambda \int_{\Omega} \int_{\Omega}^{|u|q^{1-2u\varphi dx}} + \lambda \int_{\Omega} \int_{\Omega}^{|u|q^{2-2u\varphi dx+...+}} \lambda \int_{\Omega} \int_{\Omega}^{|u|q^{m-2u\varphi dx}} dx$$

which implies that (3.25) is true. Secondly, we show that

(3.4)
$$-\left\langle \upsilon, \left(1 + \frac{|\nabla u|^p}{\sqrt{1 + |\nabla u|^{2p}}}\right) |\nabla u|^{(p-2)} \nabla u, \right\rangle \in \beta_x(u(x)), a.e \ x \in \Gamma$$

This will be proved under the condition that $|\beta_x(u)| \le a|u|^{p/p'} + b(x)$, where $b(x) \in L^{p'}(\Gamma)$ and $a \in R$. From (3.25), $f \in A_p u$ implies that

$$f(x) = -div \left[\left(1 + \frac{\left|\nabla u\right|^{p}}{\sqrt{1 + \left|\nabla u\right|^{2p}}} \right) \left|\nabla u\right|^{(p-2)} \nabla u \right] + \lambda \left|u\right|^{q-2} u + \lambda \left|u\right|^{q-2} u + \dots + \lambda \left|u\right|^{qm-2} u \in L^{p}(\Omega).$$

Using Green's Formula, we have that for any $\upsilon \in W^{1,p}(\Omega)$,

$$\int_{\Gamma} \left\langle \upsilon, \left(1 + \frac{|\nabla u|^{p}}{\sqrt{1 + |\nabla u|^{2p}}}\right) |\nabla u|^{(p-2)} \nabla u, \right\rangle \upsilon|_{\Gamma} d\Gamma(x)$$

$$= \int_{\Omega} div \left[\left(1 + \frac{|\nabla u|^{p}}{\sqrt{1 + |\nabla u|^{2p}}}\right) |\nabla u|^{(p-2)} \nabla u\right] \upsilon d(x)$$

$$+ \int_{\Omega} \left\langle \left(1 + \frac{|\nabla u|^{p}}{\sqrt{1 + |\nabla u|^{2p}}}\right) |\nabla u|^{(p-2)} \nabla u, \nabla \upsilon \right\rangle d(x)$$

Then

$$-\left\langle \upsilon, \left(1+\left|\nabla u\right|^{p}/\sqrt{1+\left|\nabla u\right|^{2p}}\right) \left|\nabla u\right|^{(p-2)} \nabla u, \right\rangle \in W^{(1/p)p'}(\Gamma) = \left(W^{1/p,p'}(\Gamma)\right)^{*},$$

where $W^{1/p,p}(\Gamma)$ is the space of races of $W^{1,p}(\Omega)$. Let the mapping $B: L^p(\Gamma) \to L^{p'}(\Gamma)$ be defined by Bu = g(x), for any $u \in L^p(\Gamma)$, where $g(x) = \beta_x(u(x))$ a.e. on Γ . Clearly, $B = \partial \psi$ where $\psi(u) = \int \Gamma^{qx(u(x))d\Gamma(x)}$

is a proper, convex and lower-semi continuous function on $L^{p}(\Gamma)$ Now define the mapping K: $W^{1,p}(\Omega) \rightarrow L^{p}(\Gamma)$ by $K(\upsilon) = \upsilon/\Gamma$ for any $\upsilon \in W^{l,p}(\Omega)$

Then

$$K^*BK: W^{l,p}(\Omega) \rightarrow (W^{l,p}(\Omega))^*$$

is maximal monotone since both K, B are continuous. Finally, for any $u, v \in W^{l,p}(\Omega)$, we have

$$\psi(K\upsilon) - \psi(Ku) = \int_{\Gamma}^{\left[\varphi_x(\upsilon/\Gamma(x)) - \varphi_x(u|\Gamma(x))\right] d\Gamma(x)}$$

$$\geq \int_{\Gamma} \int_{\Gamma} \beta_{x} (u | \Gamma(x)(\upsilon | \Gamma(x)) - u | \Gamma(x)) d\Gamma(x)$$

= $(BKu, K\upsilon - Ku) = (K^{*}BKu, \upsilon - u).$

Hence we get that K $_*$ BK $\subset \partial \Phi_p$ and so K * BK $= \partial \Phi_p$. Therefore, we have that

$$-\left\langle \upsilon \left(1+\frac{\left|\nabla u\right|^{p}}{\sqrt{1+\left|\nabla u\right|^{2p}}}\right) \left|\nabla u\right|^{(p-2)} \nabla u,\right\rangle \in \beta_{x}(u(x)), a.e \in \Gamma$$

Next we show that u is unique.

If $f \in A_p u$ and $f \in A_p v$, where $u, v \in D(A_p)$ then

(3.5)
$$0 \le \left(u - v, B_{p,q1,q2,\dots,qm} \ u - B_{p,q1,q2,\dots,qm} v\right)$$

(3.6)
$$= \left(u - v, \partial \Phi_p(v) - \partial \Phi_p(u)\right) \le 0$$

 $B_{p,q1,q2,\dots,qm}$ being strictly monotone and $\partial \Phi_p$ maximal monotone, implies that u(x) = v(x). This completes the proof.

Remark 3.7. If $B_x = 0$ for any $x \in \Gamma$ then $\partial \Phi_p(u) \equiv 0$, for all $u \in W^{1,p}(\Omega)$.

Proposition 3.8. If $B_x \equiv 0$ for any $x \in \Gamma$ then $\{f \in L^p(\Omega) \mid \} \int_{\Omega} f dx = 0 \} \subset R(A_p)$.

Proof. In view of lemmas 2.4, 2.5 and 3.1 we note that $R(B_{p,q1,q2,\dots,qm}) = (W^{1,p}(\Omega))^*$. Note also that for any $f \in L^p(\omega)$ with $\int_{\Omega} f dx = 0$, the linear function $u \in W^{1,p}(\omega) \to \int_{\Omega} f u dx$ is an element of $(W^{1,p}(\Omega))^*$. So there exists a $u \in W^{1,p}(\Omega)$ such that

+
$$\lambda \int_{\Omega} \int_{\Omega}^{|u|q1^{-2}uvdx+\lambda} \int_{\Omega} \int_{\Omega}^{|u|q2^{-2}uvdx+\ldots+\lambda} \int_{\Omega}^{|u|qm^{-2}uvdx}$$

for any $\upsilon \in W^{1,p}(\Omega)$. Therefore, $f = A_p u$ in view of Remark 3.12. This completes the proof.

Definition 3.9. (see [1, 7]). For $t \in R_t$, $x \in \Gamma$, let $B_x^0(t) \in B_x(t)$ be the element with least absolute value if $\beta_x(t) \neq 0$ and $\beta_x^0(t) = \pm \infty$, where t > 0 or t < 0 respectively, in case $B_x(t) = \emptyset$. finally, let $\beta_x(t) = \lim_{t \to \infty} \beta_x^0(t)$ (in the extended sense) for $x \in \Gamma$. $\beta_x(t)$ define measurable functions on Γ , in view of our assumptions on β_x .

Proposition 3.10. Let $f \in L^p(\Omega)$ such that

(3.7) $\int_{\Gamma} \int_{\Omega}^{\beta - (x)d\Gamma(x)} < \int_{\Omega} \int_{\Omega}^{\beta + (x)d\Gamma(x)} Then \ f \in IntR(A_p)$

Proof. Let $f \in L^p(\Omega)$ and satisfy (3.31), by proposition 3.5, there exists $\mathbf{u}_n \in L^p(\Omega)$ such that, for each $n \ge 1$, $f = (1/\upsilon)u_n + A_pu_n$. In the same reason as that in [1], we only need to prove that $||u_n||_p < \text{const for all } n \ge 1$.

Indeed suppose to the contrary that $1 \le ||u_n||_p \to \infty$. Let $\upsilon_n = \frac{u_n}{||u||_p}$. Let $\psi : \mathbb{R} \to \mathbb{R}$ be defined

by $\psi(t) = |t| = |t|^p$, $\partial \psi: R \to R$ be its sub differential and for $\mu > 0$, $\partial \psi_u: R \to R$ denote the Yosidaapproximation of $\partial \psi$. Let $\theta_u: R \to R$ denote the indefinite integral of $[(\partial \psi \mu)]^{1/p}$ with $\theta_u(0) = 0$ so that $(\theta'_p)^p = (\partial \psi_\mu)$. In view of [1] we have

(3.8)
$$(\partial \psi_{\mu}(\upsilon n), \partial \Phi(u_n)) \ge \int_{\Gamma} \beta_x ((1 + \mu \partial \psi)^{-1}(u_n / \Gamma(x))) x \, \partial \psi_{\mu}(\upsilon_n / \Gamma(x)) d\Gamma(x) \ge 0.$$

Now multiplying the equation $f = (1/n)u_n + A_p u_n$ by $\partial \psi_u(u_n)$, we get that (3.9)

$$\left(\partial \psi_u(\upsilon_n), f \right) = \left(\partial \psi_u(\upsilon_n), \frac{1}{n} u_n \right) + \left(\partial \psi_\mu(\upsilon_n), B_{p,q1,q2\dots,qm} u_n \right) + \left(\partial \psi_\mu(\upsilon_n), \partial \phi_p(\mu_n) \right)$$

Since $\partial \psi_{\mu}(0) = 0$, it follows that $(\partial \psi_{\mu}(v_n), u_n) \ge 0$. Also we have that $(\partial \psi_{\mu}(v_n), B_{p,q1,q2,...,qm}u_n)$

$$\int_{\Omega} \left\langle \left(1 + \frac{|\nabla u_n|^p}{\sqrt{1 + |\nabla u_n|^{2p}}}\right) |\nabla u_n|^{(p-2)} \nabla u_n, \nabla v_n, \right\rangle (\partial \psi_\mu)' (v_n) dx + \lambda \int_{\Omega} |u_n|^{(p-2)} |u_n|^{(p-2)} |u_n|^{(p-2)} |u_n|^{(p-2)} \int_{\Omega} |u_n|^{(p-2)} |u_n|^{($$

Then we get from (3.33) that

$$\begin{aligned} \|u_n\|_p^{p-1} \int_{\Omega} \left| \operatorname{grad} \left(\theta_{\mu}(\upsilon_n) \right) \right|^p dx + \int_{\Gamma} \beta_x \left((1 + \mu \partial \psi)^{-1} \left(u_n | \Gamma(x) | \right) \right) \times \partial \psi_{\upsilon}(\upsilon_n / \Gamma(x)) d\Gamma(x) \\ &\leq \left(\partial \psi_{\mu}(\upsilon_n), f \right) \end{aligned}$$

since $|\partial \psi_{\mu}(t) \leq |\partial \psi(t)|$ for any $t \in \Re$ and $\mu > 0$, we see from $\|\psi_n\|_p = 1$, that $\|\partial \psi_{\mu}(\psi_n)\|_p \leq c$ for $\mu > 0$ where c is a constant which does not depend on *n* or μ and $\left(\frac{1}{p}\right) + \left(\frac{1}{p^t}\right) = 1$ From (3.36), we have

that

(3.10)
$$\int_{\Omega} \left| grad \left(\theta_{\mu} \left(\upsilon_{n} \right) \right) \right|^{p} dx \leq \frac{c}{\left\| u_{n} \right\|_{p}^{p-1}}$$

for $\mu > 0$, $n \ge 1$ Now, we know that $(\theta'_{\mu})^p = (\partial \psi_{\mu}) \rightarrow (\partial \psi)'$, as $\mu \rightarrow o$ a.e. on \Re . Letting $\mu \rightarrow 0$ we see from Fatou's lemma and (3.37) that

(3.11)
$$\int_{\Omega} \left| \operatorname{grad} \left(|v_n|^2 - \left(\frac{2}{p} \right) \operatorname{sgn} v_n \right) \right|^p dx \le \frac{c}{\|u_n\|_p^{p-1}}$$

From (3.38), we know that $|\upsilon_n|^{2-\left(\frac{2}{p}\right)}$ sgn $\upsilon_n \to k$ (*a cons* tan *t*) in $L^p(\Omega)$ as $n \to +\infty$.

Next, we show that $k \neq 0$ is in $L^{p}(\Omega)$ from two aspects:

(1) If $p \ge 2$, $\sin ce$

$$\left\| \left| \boldsymbol{\upsilon}_n \right|^{2 - \left(\frac{2}{p}\right)} \operatorname{sgn} \boldsymbol{\upsilon}_n \right\|^p = \left\| \boldsymbol{\upsilon}_n \right\|^{2 - \left(\frac{2}{p}\right)}_{2p-2} \ge \left\| \boldsymbol{\upsilon}_n \right\|^{2 - \left(\frac{2}{p}\right)} = 1$$

it follows that $k \neq 0$ in $L^{p}(\Omega)$ (2) If =

$$2N/(N+1)$$

Then $\left(\left|\upsilon_{n}\right|^{2-\left(\frac{2}{p}\right)}\operatorname{sgn}\upsilon_{n}\right)$ is bounded in $W^{1,p}(\Omega)$. By lemma (1.3) $W^{1,p}(\Omega) \rightarrow C_{B}(\Omega)$ when N = 1 and

$$W^{1,p}(\Omega) \mapsto L^{p^{2/2(p-1)}}(\Omega)$$
 when $N \ge 2$. So $\left(\left| \upsilon_n \right|^{2 - \left(\frac{2}{p}\right)} \operatorname{sgn} \upsilon_n \right)$ is relatively compact in $L^{p^{2/2(p-1)}}(\Omega)$.

Then there exists a subsequence of $\left(\left|\mathcal{U}_n\right|^{2-\left(\frac{2}{p}\right)}\operatorname{sgn}\mathcal{U}_n\right)$, satisfying

 $\left(\left|\upsilon_{n}\right|^{2-\left(\frac{2}{p}\right)}\operatorname{sgn}\upsilon_{n}\right) \to g \text{ in } L^{p^{2/2}(p-1)}(\Omega). \text{ Noticing that } p \leq p^{2}/2(p-1) \text{ when } 2N/(N+1)$

follows that k = g almost everywhere on Ω . Now,

$$1 = \|\upsilon_n\|_p^p = \int_{\Omega} \|\upsilon_n\|_{2-\left(\frac{2}{p}\right)}^{2-\left(\frac{2}{p}\right)} \operatorname{sgn} \upsilon_n \Big|_{2-\left(\frac{2}{p}\right)}^{p^{2/2}(p-1)dx}$$

$$\leq \operatorname{const} \int_{\Omega} \|\upsilon_n\|_{2-\left(\frac{2}{p}\right)}^{2-\left(\frac{2}{p}\right)} \operatorname{sgn} \upsilon_n - g \Big|_{2-\left(\frac{2}{p}\right)}^{p^{2/2}(p-1)dx}$$

$$+ \operatorname{const} \|g\|_{p^{2/2}(p-1)}^{p^{2/2}(p-1)}$$

It follows that $g \neq 0$ in $L^p(\Omega)$ and then $k \neq 0$ in $L^p(\Omega)$. Assume, now, k > 0, we see from (3.36) that

$$\int_{\Gamma} \beta_{x} \left((1 + \mu \partial \psi)^{-1} (u_{n} / \Gamma(x)) \times \partial \psi_{\mu} (\upsilon_{n} | \Gamma(x)) d\Gamma(x) \leq (\partial \psi_{\mu}) (\upsilon_{n}), f \right)$$

Choosing a subsequence so that $u_n/\Gamma(x) \to +\infty$ *a.e.* on Γ , we see letting $n \to +\infty$ so that $\int_{\Gamma} B + (x) d\Gamma(x) \leq \int_{\Omega} f(x) dx$ which is a contradiction. Thus $f \in \operatorname{int} R(A_p)$.

This completes the proof.

Proposition 3.11. $A_p + B_1: L^p(\Omega) \to L^p(Omega)$ is m-accretive and has a compact resolvent.

Proof. Using a theorem in Corduneanu, we know that $A_p + B_1$: $L^p(\Omega) \to L^{p'}(\Omega)$ is m-accretive. To show that $A_p + B_1$: $L^p(\Omega) \to L^{p'}(\Omega)$ has a compact resolvent, we only need to prove that if $w \in A_p u + B_1 u$ with (w) being bounded in $L^p(\Omega)$, then (u) is relatively compact in $L^p(\Omega)$. Now, we discuss it from it from two aspects.

(1) If $p \ge 2$, since

$$\int_{\Omega}^{|\nabla u|^{p} dx} \leq \left(u, B_{p,q1,q2,\dots,qm}u\right)$$

= $\left(u, A_{p}u\right) - \left(u, \partial \Phi p(u)\right)$
 $\leq \left(u, A_{p}u\right) + \left(u, B, u\right) = \left(u, w\right) \leq \left\|u\right\|_{p} \left\|u\right\|_{p'} \leq const.$

It follows that (u) is bounded in $W^{1,p}(\Omega)$ where $\left(\frac{1}{p}\right) + \left(\frac{1}{p'}\right) = 1$ Then (u) is relatively compact in $L^p(\Omega)$ since $W^{1,p}(\Omega) \hookrightarrow \sqcup L^p(\Omega)$ (2) If 2N/(N+1) , sin*ce* $<math>\omega \in A_p u + B_1 u$ with (ω) and (u) being bounded in $L^p(\Omega)$, we have w-B₁u \in A_pu with w-B₁u and u being bounded in $L^p(\Omega)$ which gives that u is relatively compact in $L^p(\Omega)$ since A_p is m-accretive by proposition (3.8) and has a compact resolvent by lemma (2.9) This completes the proof.

Theorem: Let $f \in L^p(\Omega)$ be such that

$$\int_{\Gamma} \beta - (x) d\Gamma(x) + \int_{\Omega} g - (x) dx < \int_{\Omega} f(x) dx < \int_{\Gamma} \beta + (x) d\Gamma(x) + \int_{\Omega} g + (x) dx$$

Then, (1.4) has a unique solution in $L^{p}(\Omega)$, where $2N/(N+1) and <math>N \ge 1$

Proof. We want to use theorem (1.9) to finish our proof. From the propositions we use see that all of the conditions in theorem (1.9) are satisfied. It suffices to show that $f \in \operatorname{int} [R(A_p) + R(B_1)]$ which ensure that $f \in R(A_p + B_1 + B_2)$. Thus proposition (2.11) tells us that (1.4) has a unique solution $L^p(\Omega)$.

(1.4) has a unique solution $L^{4}(S2)$.

Using the similar methods as those in [2,4,7], by dividing it into two cases and using propositions (2.13) and (2.15) respectively, we know that $f \in \operatorname{int} [R(A_p) + R(B_1)]$. This completes the proof.

Remark: Compared to the work done in [1.7], not only the existence of the solution of (1.4) is obtained but also the uniqueness of the solution is obtained. Furthermore, our work extended the work of [12].

References

- B.D. Calvert and C.P. Gupta; "Nonlinear elliptic boundary value problems in L^P spaces and sums of ranges of accretive operators". Nonlinear Analysis, vol. 2, no. 1, pp 1-26.1978.
- [2]. L. Wei and Z. He; "The Applications of sums of ranges of accretive operators to nonlinear equations involving the p-Laplacian operator". Nonlinear Analysis: Theory, Methods and Applications, vol.24, no.2, pp 185-193, 1995.
- [3]. L. Wei; "Existence of solutions of nonlinear elliptic boundary value problems". Mathematics in Practice and Theory, vol.31, no.3 pp 360-364, 2001 (Chinese).
- [4]. L. Wei and Z. Hen; "The Applications of Theories of accretive operators to nonlinear elliptic boundary value problems in L^P spaces". Nonlinear Analysis: Theory, Methods and Applications. Vol. 46, no. 2, pp 199-211, 2001.
- [5]. L. Wei and H.Y. Zhou; "Existence of solutions of a family of nonlinear boundary value problems in L² spaces", Applied Mathematics, a journal of Chinese universities, vol.20, no.2, pp 175-182, 2005.
- [6]. L. Wei and H.Y. Zhou; "The existence of solutions of nonlinear boundary value problems involving the p-Laplacian operators in L^s spaces", Journal of Systems science and complexity, vol. 18, no. 4, pp 511-521, 2005.
- [7]. L. Wei and R.P. Agrawal, "Existence of solutions to nonlinear Neumann boundary value problems with generalized p-Laplacian operator". Computers and Mathematics with Applications, vol. 56, no.2, pp 530-541, 2008.
- [8]. Z.C. Chen and T. Luo; "The eigenvalue problem of p-Laplacian-like equations. Acta Mathematica Sinica, vol. 46, no. 4, pp 631-638, 2003(Chinese).
- [9]. L.K. Li and Y.T. Guo; "The Theory of Sobolov Spaces". Shanghai Science and Technology Press, Shanghai, China 1981.
- [10]. L. Wei, L. Duan and H. Zhou; "Study of the existence and uniqueness of solution of generalized capillarity problem". Abstract and Applied Analysis, vol. 2012, Article ID 154307, 18 pages.
- [11]. D. Pascali and S. Sburlan; "Nonlinear Mappings of Monotone Type", Martinus Nijhoff, The Hagne, The Netherlands, 1978.
- [12]. L. Wei, L. Duan and H. Zhou; "Solution of nonlinear elliptic boundary value problems and its iterative construction", Abstract and Applied Analysis, vol.2012, Article ID 210325, 14 pages.