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Abstract: In this paper, the well known duplication formula for the cosine is used as a veritable tool to analyse 

the chaotic behaviour of two classical non- linear maps. The results are then extended to certain polynomial 

functions of higher dimensions which are related to the Chebyshev polynomials as well as to certain rational 

functions closely related to the duplication formulas of the circular and Jacobian elliptic functions. 

  

I. Introduction 
In the study of iteration of complex functions, considerable attention is paid to the set of points 𝑧0 in 

the complex plane such that the n-th iterate  𝑓𝑛(𝑧0) of the function 

                                                           𝑓(𝑧) = 𝑧2-𝜇 

evaluated at some point 𝑧 = 𝑧0 should remain bounded as 𝑛 → ∞. We have only to recall the book by 

Mandelbrot [6, 7] which has rendered the subject accessible to a much wider audience with its fine illustrations 

and graphical descriptions. It is also instructive to mention, among others, the papers by Barnsley et al [1], 

which has generated allot of recent wave of activities. 

A similar problem to the one just highlighted is to analyse the behaviour of the n-th iterate  𝐹𝑛(𝑥0)  of the 

function 

                                                         𝐹 𝑥 = 𝐾𝑥(1 − 𝑥) 

evaluated at the point 𝑥 = 𝑥0  in the unit interval. A comprehensive overview of the problem for this, as well as 

for other more general classes is provided by the survey articles by Blanchard [2] and Whitley[10] and also the 

book by Preston [8]. „Chaos‟ is the general appellation received by the behaviour exhibited by the n-th iterate of 

𝑓 𝑎𝑛𝑑 𝐹 as 𝑛 → ∞ in both of these situations. 

The book by Devaney [4, p39-53] has derived explicit analytical formulas for the n-th iterates of 

𝑓 𝑎𝑛𝑑 𝐹 in the special cases 𝜇 = 2 𝑎𝑛𝑑 𝐾 = 4 and thus describing exactly the set of points for which 𝑓𝑛(𝑧0) 

remains bounded as 𝑛 → ∞ on the interval −2 ≤ 𝑧 ≤ 2. We shall in the sequel show that the set of points 𝑥0 is 

dense in the interval 0 ≤ 𝑥 ≤ 1 as n runs over the positive integers in each of the following cases: the orbit of 𝑥0 

is periodic, eventually absorbed into a fixed point and the orbit of 𝑥0 is dense in [0,1]. 

These results are extended to certain polynomial functions of higher degree which are related to the Chebyshev 

polynomials, and indeed to certain rational functions which are associated with the duplication formulas of the 

circular and Jacobian elliptic functions and in this connection, the work of Lattes [5] is highly valued. 

 

II. Analytical Perspectives 
In this section our ideal point of departure will be the function 

                                                 𝑋 = 𝐹 𝑥 = 4𝑥(1 − 𝑥)   

which maps the interval  0 ≤ 𝑥 ≤ 1 onto itself. It is clear that by the simple variation given by 

                                       𝑧 = 𝜑 𝑥 = 2 − 4𝑥  and   𝑍 = 𝜑 𝑋 = 2 − 4𝑋 , we see the close connection between 

𝐹 and 𝑓 defined earlier. From this, the resulting function is simply 

                                                    𝑍 = 𝑓 𝑧 = 𝑧2 − 2                                          

Evidently, 𝑍 = 𝜑 𝑍 = 𝑓(𝑧) implies that 𝜑𝐹 = 𝑓𝜑, and 𝜑 maps the interval [0, 1] onto the interval [-2,2]. 

Furthermore, by introducing the function,  𝑧 = 𝑕 𝑢 = 2𝑐𝑜𝑠𝑢, we see that it maps the interval [0, 𝜋] onto [-2,2]. 

This suggests that by defining 𝑔 𝑢 = 2𝑢  then by an easy calculation we can show that 

                          𝑓𝑕(𝑢) = (2𝑐𝑜𝑠𝑢)2 − 2 = 2 2𝑐𝑜𝑠2𝑢 − 1 = 2𝑐𝑜𝑠2𝑢 = 𝑕𝑔(𝑢) 

That is to say 𝑓𝑕 𝑧 = 𝑕𝑔(𝑧) throughout their common domain. 

A simple iteration of this relation produces  

                                             𝑓2𝑕 = 𝑓𝑓𝑕 = 𝑓𝑕𝑔 = 𝑕𝑔𝑔 = 𝑕𝑔2 .   
And inductively as well as the general result 

                                                        𝑓𝑛𝑕 = 𝑕𝑔𝑛  
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for every positive integer n. But then  𝑔𝑛 𝑢 = 2𝑛𝑢 for each positive integer n, and this can be stated 

analytically in the form 

                                𝑓𝑛 2𝑐𝑜𝑠𝑢 = 2𝑐𝑜𝑠𝑔𝑛 𝑢 = 2cos⁡(2𝑛𝑢) 

for 𝑢𝜖[0, 𝜋]. This result is significant and so necessitates a theorem which we state without hesitation as follows; 

 

Theorem 2.1 If 𝑓 𝑧 = 𝑧2 − 2 and  𝑧𝜖[−2,2], then, 

                           𝑓𝑛 2𝑐𝑜𝑠𝑢 = 2 cos 2𝑛𝑢 ,  𝑢𝜖[0, 𝜋]  for each positive integer n. 

A corollary is immediate from this theorem. 

 𝑪𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 𝟐. 𝟐  𝐼𝑓 𝐹 𝑧 = 4𝑥(1 − 𝑥),  𝑥𝜖 0,1 , then  𝐹𝑛 𝑠𝑖𝑛2𝑢 = 𝑠𝑖𝑛2(2𝑛𝑢),  𝑢𝜖[0,
𝜋

2
]  

Proof. Since 𝜑 conjugates 𝐹𝑎𝑛𝑑 𝑓  through the relation  𝜑𝐹 = 𝑓𝜑  which implies  𝐹𝑛 = 𝜑−1𝑓𝑛𝜑  and we have 

only to observe that if we put 𝑥 = 𝑠𝑖𝑛2𝑢, then we will have that 𝜑 𝑥 = 2𝑐𝑜𝑠2𝑢 and  

                            𝐹𝑛 𝑥 = 𝜑−1 𝑓𝑛 2𝑐𝑜𝑠2𝑢  = 𝜑−1 2𝑐𝑜𝑠2𝑛2𝑢 =
1−cos⁡(2𝑛2𝑢)

2
= 𝑠𝑖𝑛2 2𝑛𝑢 . 

We note however that since 𝑓 𝑧 = 𝑧2 − 2 is analytic throughout the complex plane, it follows that our 

analytical formula of Theorem 2.1 which was shown to be valid in its domain must remain valid for all 

complex values of 𝑢 by the principle of the permanence of analytical forms. Besides, if we make the substitution 

𝑢 = 𝑣 + 𝑖𝑤 and recall that,    

                                         𝑐𝑜𝑠𝑢 2 =  𝑐𝑜𝑠2𝑣 + 𝑠𝑖𝑛𝑕2𝑤 
  We then deduce that 

                                 cos⁡(2𝑛𝑢) 2 = 𝑐𝑜𝑠2 2𝑛𝑣 + 𝑠𝑖𝑛𝑕2(2𝑛𝑤), for each positive integer n, from which it 

follows that if the imaginary part 𝑤 𝑜𝑓 𝑢 is non-zero, then the orbits of 𝑓 tend to infinity with n. 

Furthermore, the relation 

                                              𝑐𝑜𝑠𝑢 = 𝑐𝑜𝑠𝑣 𝑐𝑜𝑠𝑕𝑤 − 𝑖𝑠𝑖𝑛𝑣 𝑠𝑖𝑛𝑕𝑤 

indicates that the transformation 𝑈 = 2𝑐𝑜𝑠𝑢 maps the line 𝑣 = 𝜋 to the negative real axis defined by  

𝑈 ≤ −2. Consequently, 𝑓𝑛(𝑈) → ∞ as  𝑛 → ∞, with the exception of the point  𝑈 = −2. Likewise, the cosine 

mapping sends the line 𝑣 = 0  to the real axis defined by 𝑈 ≥ 2, and for such values, 𝑓𝑛(𝑈) → ∞ as 𝑛 → ∞ with 

the exception of 𝑈 = 2. Thus the only points 𝑧0 in the complex plane for which 𝑓𝑛(𝑧0) remains bounded as n 

runs over the positive integers are those in [-2,2] 

These results can now be carried over to certain higher degree polynomials𝑓(𝑧). In this connection we retain the 

function 𝑧 = 𝑕 𝑢 = 2𝑐𝑜𝑠𝑢  but now introduce 𝑔 𝑢 = 𝑘𝑢,  where 𝑘 is a positive integer. 

Evidently, 

                           𝑕𝑔 𝑢 = 2𝑐𝑜𝑠𝑘𝑢 = 2𝑇𝑘 𝑐𝑜𝑠𝑢 , 
where 𝑇𝑘  is the Chebyshev polynomial of degree k defined by                                                                

          𝑇𝑘 𝑧 = cos 𝑘𝑎𝑟𝑐𝑐𝑜𝑠𝑧 .  
Obviously, the leading coefficient of 𝑇𝑘 , is given by 2𝑘−1. So if we require a polynomial 𝑓𝑘  with leading 

coefficient 1, then we must put 𝑓𝑘 𝑧 = 2𝑇𝑘(𝑧 2 ) and it readily follows that 

                            𝑓𝑘𝑕 𝑢 = 2𝑇𝑘 𝑐𝑜𝑠𝑢 = 2𝑐𝑜𝑠𝑘𝑢 = 𝑕𝑔(𝑢). 

The case 𝑘 = 2  now follows similarly and leads us to the next theorem while a few examples of these 

polynomials are readily available in Whittaker [9].   

Theorem 2.2    If  𝑇𝑘  denotes the k-th Chebyshev polynomial and𝑓𝑘 𝑧 = 2𝑇𝑘(𝑧 2 ), then 

                                           𝑓𝑘
𝑛 2𝑐𝑜𝑠𝑢 = 2cos⁡(2𝑛𝑢) 

    for all positive integers n and all complex values of 𝑢.  

 

III. Evolving A Dynamical Model 
A cursory look at the works of various authors such as Collet and Eckmann[3] as well as Whitley [10] 

reveal a different perspective of  the difficulties outlined above in that they considered the natural iterates  𝑓𝑛  

𝑜𝑓 𝑓 as only the numerous phases of a dynamical system. However, it is apparent from Theorem 2.1 that we 

can indeed imbed 𝑓𝑛  in a continuously evolving system-𝑓𝑡  for real values of the time t according to the formula 

                                      𝑓𝑡 2𝑐𝑜𝑠𝑧 = 2 cos 2𝑡𝑧 .  
We then re-cast this equation into a more convenient form by means of the change of time scale defined by 

𝑡 = 𝑠 𝑙𝑜𝑔2,  and the system is then governed by the formula 

                                      𝑓𝑠 2𝑐𝑜𝑠𝑧 = 2cos⁡(𝑒𝑠𝑧). 

If we introduce 

                           𝑥 𝑠 = 2cos⁡(𝑎𝑒𝑠),   𝑦 𝑠 = 2𝑎𝑒𝑠 sin 𝑎𝑒𝑠 ,    𝑧 𝑠 = 2𝑎2𝑒2𝑠cos⁡(𝑎𝑒𝑠)                  (1) 

where a is some constant, then by repeated differentiation we obtain the equations 

                𝑥 ′ = −𝑦,             𝑦′ = 𝑦 + 𝑧,           𝑧 ′ = 2𝑧 − 𝑎2𝑒2𝑠𝑦                                                           (2) 

By the use of the relation  𝑧 = 𝑎2𝑒2𝑠𝑥  in 𝑧′ of equation (2), we arrive at the following independent system of 

non-linear ordinary differential equations, hence forth, (ODEs) in what follows. 
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                𝑥 ′ = −𝑦,            𝑦′ = 𝑦 + 𝑧,            𝑧 ′ = 2𝑧 −
𝑦𝑧

𝑥
                                                                  (3) 

The system (3) can further be reduced to the single third order equation 

                                 𝑥 ′′′ = 3𝑥 ′′ +
𝑥′𝑥′′

𝑥
 –

𝑥′2

𝑥
 − 2𝑥′  

We then examine an arbitrary trajectory coordinate (𝑥 𝑠 , 𝑦 𝑠 , 𝑧(𝑠)) of the system (3) with initial values  

                              𝑥 0 = 𝑥0,     𝑦 0 = 𝑦0 ,    𝑧 0 = 𝑧0.  
Since all the right hand sides of equation (3) are continuously differentiable everywhere except at 𝑥 = 0, it 

follows from the classical existence and uniqueness theorems of ODEs that the trajectory passing through 

(𝑥0 , 𝑦0 , 𝑧0) must be unique provided that 𝑥0 ≠ 0.  
From 

          
𝑑

𝑑𝑠
 𝑥𝑧 + 𝑦2 = 𝑥 ′𝑧 + 𝑥𝑧 ′ + 2𝑦𝑦′ = −𝑦𝑧 + 𝑥  2𝑧

𝑦𝑧

𝑥
 + 2𝑦 𝑦 + 𝑧 = 2(𝑥𝑦 + 𝑦2) , by (3), we infer that 

                                 𝑥 𝑠 𝑧 𝑠 + (𝑦(𝑠))2 = (𝑥0𝑧0 + 𝑦0
2)𝑒2𝑠                                                                  (4) 

We shall assume that 𝑥0 , 𝑧0 > 0 in what follows and observe that 

                                     
𝑑

𝑑𝑠
 
𝑧

𝑥
 =  

𝑥𝑧 ′−𝑧𝑥 ′

𝑥2 =
𝑥(2𝑧−𝑦𝑧 𝑥)−𝑧(−𝑦) 

𝑥2 = 2
𝑧

𝑥
 

which implies that 

                                      
𝑧(𝑠)

𝑥(𝑠)
=

𝑧0

𝑥0
𝑒2𝑠 

    and if we put              𝜇2 =
𝑥0

𝑧0
(𝑥0𝑧0 + 𝑦0

2)  and eliminate 𝑒2𝑠 in the foregoing, we will then obtain 

                                         
𝑧

𝑥
=

1

𝜇2 (𝑥𝑧 + 𝑦2)  

Solving for 𝑧 yields the result   

                                        𝑧 =
𝑥𝑦2

𝜇2−𝑥2                                                                                                         (5) 

   Consequently, we infer that the trajectory must lie on the rational surface (5) in the (𝑥, 𝑦, 𝑧) and so must be 

nowhere dense. 

In seeking a general analytical solution of the system (3), we make use of the substitution 

           𝑧 =
𝑧0

𝑧0
 𝑒2𝑠𝑥,  𝑦 = −𝑥′  into (4) yielding the single equation  

           
𝑧0

𝑥0
 𝑒2𝑠𝑥2 + 𝑥′2 =

𝑧0

𝑥0
 𝜇2𝑒2𝑠 , which simplifies to the form 

           𝑥2 +
𝑥0

𝑧0
 𝜇2𝑒−2𝑠𝑥′2 = 𝜇2                                                                                                             (6) 

with an initial condition 𝑥 0 = 𝑥0 ,  and by simple integration or direct substitution, the solution to (6) becomes 

𝑥 𝑠 = 𝜇cos⁡( 
𝑧0

𝑥0

𝑒𝑠 − 1

𝜇
+ 𝑎𝑟𝑐𝑐𝑜𝑠

𝑥0

𝜇
 ) 

The complete solution of (3) now follows from 

                                    𝑦 = −𝑥 ′ =  
𝑧0

𝑥0
  𝑒𝑠sin⁡( 

𝑧0

𝑥0

𝑒𝑠−1

𝜇
+ 𝑎𝑟𝑐𝑐𝑜𝑠

𝑥0

𝜇
 )  

                                    𝑧 = 𝑦′ − 𝑦 =
𝑧0

𝜇𝑥 0
 𝑒2𝑠cos⁡( 

𝑧0

𝑥0

𝑒𝑠−1

𝜇
+ 𝑎𝑟𝑐𝑐𝑜𝑠

𝑥0

𝜇
 )   

and when s assumes such values that 

                                                
𝑧0

𝑥0

𝑒𝑠−1

𝜇
+ 𝑎𝑟𝑐𝑐𝑜𝑠

𝑥0

𝜇
 = 2𝑛𝜋 for some 𝑛, we will then have 

                                  𝑥 𝑠 = 𝜇,         𝑦 𝑠 = 0,         𝑧 𝑠 =
𝑧0

𝜇𝑥 0
 𝑒2𝑠  . 

It is pertinent to remark at this point that, if 𝑠 denotes the surface defined by (5) whose domain lies in 

   𝑥2 <  𝜇2,  then, the trajectories on 𝑠 can cross over the 𝑥-axis when the they lie either directly above the  

point (𝜇, 0,0), or else directly below the point (−𝜇, 0,0). Since 𝑦0 = 0 implies 𝑧0 = 0 in (5), we must exclude all 

other initial values with 𝑦0 = 0, so the surface s ought to have an open slit both above and below the segment 

joining the points (𝜇, 0,0) and (−𝜇, 0,0). Similarly the vertical half line must be adjoined above (𝜇, 0,0) as well 

as below (−𝜇, 0,0) so that s remains connected but no longer simply connected. 

We shall choose 𝑦0  𝑎𝑛𝑑 𝑧0  for any prescribed values of 𝑥0  𝑎𝑛𝑑𝜇 so that 

          
𝑧0

𝑥0
= 𝜇𝑎𝑟𝑐𝑐𝑜𝑠

𝑥0

𝜇
,   𝑦0 =  𝜇0

2 −𝑥0
2 𝑎𝑟𝑐𝑐𝑜𝑠

𝑥0

𝜇
                                                                        (7) 

Consequently, our trajectories will now assume the form  

                     𝑥(𝑠) =  𝜇cos⁡(𝑒𝑠𝑎𝑟𝑐𝑐𝑜𝑠
𝑥0

𝜇
 ), 



The Duplication Formula for the Cosine as a Tool for Analytical Description of the Chaotic...  

DOI: 10.9790/5728-1202030307                              www.iosrjournals.org                                                 6 | Page 

                     𝑦 𝑠 = 𝜇  𝑎𝑟𝑐𝑐𝑜𝑠
𝑥0

𝜇
  𝑒𝑠 sin  𝑒𝑠𝑎𝑟𝑐𝑐𝑜𝑠

𝑥0

𝜇
 ,                                                               (8) 

                      𝑧 𝑠 = 𝜇(𝑎𝑟𝑐𝑐𝑜𝑠
𝑥0

𝜇
 )2𝑒2𝑠cos⁡(𝑒𝑠𝑎𝑟𝑐𝑐𝑜𝑠

𝑥0

𝜇
). 

If one may then ask, “how do these trajectories exhibit chaotic behaviour”? We answer this poser by introducing 

a time delay of log2, and we clearly see that 

            𝑥 𝑠 + 𝑙𝑜𝑔2 = 𝜇 cos  2𝑒𝑠𝑎𝑟𝑐𝑐𝑜𝑠
𝑥0

𝜇
  = 𝜇  2𝑐𝑜𝑠2  𝑒𝑠𝑎𝑟𝑐𝑐𝑜𝑠

𝑥0

𝜇
  − 1 =

2

𝜇
(𝑥 𝑠 )2 − 𝜇 

            𝑦 𝑠 + 𝑙𝑜𝑔2 = 2𝜇  𝑎𝑟𝑐𝑐𝑜𝑠
𝑥0

𝜇
  𝑒𝑠sin⁡(2𝑒𝑠𝑎𝑟𝑐𝑐𝑜𝑠

𝑥0

𝜇
) 

                                  = 4𝜇  𝑎𝑟𝑐𝑐𝑜𝑠
𝑥0

𝜇
   𝑒𝑠 sin  𝑒𝑠𝑎𝑟𝑐𝑐𝑜𝑠

𝑥0

𝜇
 𝑐𝑜𝑠  𝑒𝑠𝑎𝑟𝑐𝑐𝑜𝑠

𝑥0

𝜇
 =

4

𝜇
𝑥 𝑠 𝑦 𝑠 . 

             𝑧 𝑠 + 𝑙𝑜𝑔2 = 4𝜇(𝑎𝑟𝑐𝑐𝑜𝑠
𝑥0

𝜇
 )2𝑒2𝑠 cos  2𝑒𝑠𝑎𝑟𝑐𝑐𝑜𝑠

𝑥0

𝜇
  

                                   = 4𝜇(𝑎𝑟𝑐𝑐𝑜𝑠
𝑥0

𝜇
 )2𝑒2𝑠(𝑐𝑜𝑠2  𝑒𝑠𝑎𝑟𝑐𝑐𝑜𝑠

𝑥0

𝜇
  − 𝑠𝑖𝑛2(𝑒𝑠𝑎𝑟𝑐𝑐𝑜𝑜𝑢𝑡𝑖𝑛𝑔𝑠

𝑥0

𝜇
 ))                                                                                                                                                                                                                                                                                   

                                    =
4

𝜇
(𝑥 𝑠 𝑧 𝑠 −  𝑦 𝑠 )2 . 

This means, in particular, that if we put 𝑓 𝑥 =  
2

𝜇
 𝑥2 − 𝜇 and 𝑥 𝑠 = 𝑥, then it becomes apparent that 

we will have 𝑥 𝑠 + 𝑙𝑜𝑔2 = 𝑓(𝑥), and further iteration of this relation leads to 

                                             𝑥 𝑠 + 𝑛𝑙𝑜𝑔2 = 𝑓𝑛(𝑥) 

for every positive integer 𝑛 𝑎𝑛𝑑 𝑠 ≥ 0. Therefore, if 𝑠 is measured in units of 𝑙𝑜𝑔2, then the                           

𝑥 − coordinates of the trajectory will exhibit the kind of chaotic behaviour earlier discussed. 

 

IV. Chaotic Behaviour Of Orbits 
Generally, the behaviour of the iterates 𝑓𝑛(2𝑐𝑜𝑠𝑢) for 0 ≤ 𝑢 ≤ 𝜋  of 𝑓 𝑧 = 𝑧2 − 2  as n runs over 

positive integers can be analyzed most conveniently by putting 𝑟 = 𝑢 𝜋  so that 0 ≤ 𝑟 ≤ 1. The fixed points of 

𝑓 clearly correspond to 𝑟 = 0, 𝑢 = 0 and 𝑟 = 2 3, 𝑢 = 2𝜋 3  . From the general formula 

                         𝑓𝑛 2𝑐𝑜𝑠𝜋𝑟 = 2cos⁡(2𝑛𝜋𝑟) 

we conclude that the behaviour of 2𝑛𝑟 can best be described when we represent r by means of its dyadic 

expansion 

                         𝑟 =
𝑎1

2
+  

𝑎2

22 + ⋯+  
𝑎𝑘

2𝑘 + ⋯ = . 𝑎1𝑎2 …𝑎𝑘 …, 

where 𝑎𝑘  is either 0 or 1. We shall be interested in the necessary and sufficient conditions governing 𝑟  
for which the iterates 𝑓𝑛(2𝑐𝑜𝑠𝜋𝑟) can be absorbed into one or the other of the fixed points.                

Hence given the elementary formula 

                         𝑐𝑜𝑠2𝜋𝑟 = 𝑐𝑜𝑠2𝜋(1 − 𝑟) 

we infer that if 𝑟 < 1 2,  then we can compute the next iterate 𝑐𝑜𝑠2𝜋𝑟 using the formula 

                         𝑐𝑜𝑠2𝜋𝑟 = cos 𝜋𝑇 𝑟  . where 𝑇(𝑟) is the shift defined to be the fractional part of 2𝑟, that is  

                         𝑇 𝑟 = 𝑇 . 𝑎1𝑎2 … = . 𝑎2𝑎3 …                                                                                 (9) 

However, if  𝑟 > 1 2 , then we must define 𝑇(𝑟) to be 1- fractional part of 2𝑟 according to the formula  

                                   𝑇 𝑟 = 𝑇 . 𝑎1𝑎2 …  = . 𝑎′2𝑎′3 …,                                                                   (10) 

where 𝑎𝑘
′ = 1 − 𝑎𝑘   for each index 𝑘 and compute  

                              𝑐𝑜𝑠2𝜋𝑟 = cos 𝜋𝑇 𝑟  . 

Equations (9) and (10) clearly can be compacted into a single formula depending upon whether 𝑎1 = 0 or 

𝑎1 = 0. But certainly, the two agree in the ambiguous cases 

                           𝑇 . 0111 …  = .111…,   𝑇 . 111 …  = .000 …, 
 

with the fixed points 

                                𝑟 = 2 3 = .101010…,   𝑟 = 0 = .000… 

clearly satisfying the relation 𝑇 𝑟 = 𝑟. However, the relation 

                                       𝑇 . 010101 …  = .101010 …  

reveals that the iterates of  

                                       𝑟 = 1 3 = .010101… 

are readily absorbed into the fixed point  𝑟 = 2 3 .   From these observations we can easily deduce the following 

results. 

A necessary and sufficient condition for 𝑇𝑛 𝑟  to be absorbed eventually into the fixed point 𝑟 = 2 3  

is that the tail of the dyadic expansion  𝑟 =. 𝑎1𝑎2 … should be …010101 … . Similarly, a necessary and 

sufficient condition for 𝑇𝑛 𝑟  to be absorbed eventually into the fixed point  𝑟 = 0 is that the tail of 𝑟 should be 

. 0000…,  that is that the dyadic expansion of 𝑟 should be finite.  But by taking 𝑟 = .100100 … we calculate 
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𝑇 𝑟 = .110110... Then 𝑇 𝑇 𝑟  =  𝑇2 𝑟 = .010010. ., 𝑇3 𝑟 = .100100 … and we see clearly that for such 𝑟 

the iterates are eventually periodic and our aim will be to show that a necessary and sufficient condition for the 

iterates of 𝑟 to be eventually periodic is that  𝑟 should have a dyadic expansion with periodic tail of period 𝑝. 

We have already dealt with the case 𝑝 ≤ 2 in the preceding analysis where the iterates are eventually 

absorbed into either 𝑟 = 0 or 𝑟 = 2
3 .  If we denote the orbit 𝑂(𝑟) of 𝑟 by 𝑇𝑛(𝑟) as 𝑟 runs over the positive 

integers, then the example 𝑟 = .0111011 … shows that such orbit need not include 𝑟 in its periodic oscillations 

for 𝑇(𝑟) = .110110 …, and such orbit has already been charted. In the same vein, the period of 𝑇𝑛(𝑟) need not 

coincide with the period of the dyadic expansion as can be seen from the example 𝑟 = .11001100 …, 𝑇 𝑟 =
.01100110 …, 𝑇𝑛 𝑟 = .11001100 … = 𝑟. Nevertheless, we need to show that the period  𝑇𝑛(𝑟)  can not 

exceed the period of the dyadic expansion. It is worth noting that in order to understand  the action of the 

function 𝑇 we need observe that it consists of a truncation of the initial digit and, in other cases, a reversal of the 

remaining digits. This reversal will normally occur at the first appearance of a 1 in the dyadic expansion, and 

then at each digit 𝑎𝑘  such that 𝑎𝑘−1 ≠ 𝑎𝑘 . If 𝑝 is the period of the dyadic expansion, the we have 𝑎𝑘+𝑝 = 𝑎𝑘  for 

sufficiently large indices 𝑘.If there is a reversal at 𝑎𝑘 , then another is sure to occur at 𝑎𝑘+𝑝 , provided that 𝑎𝑘  is 

not the first 1 in the expansion, if it is then another reversal need not occur at 𝑎𝑘+𝑝  as seen in the case of the 

orbit 

𝑂 . 101101 …  =  . 100100 …,   .110110… , .010010 …   
where clearly an even number of shifts and reversals is equivalent to an even number of shifts with no 

reversals, and if there were an even number of reversals within one complete period of the dyadic expansion, 

then the values of 𝑇𝑛 𝑟  would certainly repeat with the same period 𝑝.In consequence, a well known 

elementary arguement shows that the smallest period 𝑇𝑛(𝑟) as a function of n has  to be a divisor of 𝑝. Then the 

converse of this result, that if 𝑇𝑛(𝑟) is eventually periodic, then the dyadic expansion or r must be periodic as 

well becomes obvious. These results are vital that we synthesize them into a theorem. 

Theorem 4.1 Given that the dyadic expansion of r is eventually periodic with period p, then 𝑇𝑛(𝑟) will 

eventually be periodic and its period will be a divisor of p. Conversely if  𝑇𝑛(𝑟)  is eventually periodic, the 

dyadic expansion of r will also be periodic. 

Finally, we turn our attention to the orbits 𝑂(𝑟) which are infinite. By considering for example, the orbit 𝑂(𝑟) 

where 𝑟 = .1010010001 … which is infinite and shows that its limit points are 1, 1
2 , …1

2𝑛 ,… ,0 so 𝑂(𝑟) is 

nowhere dense in [0,1]. 

Finally, we round up the paper with a vital result of Whittaker on the denseness of orbits for any two arbitrary 

close points in [0,1] in the following theorem. 

Theorem 4.2 (Whittaker [9] ). For any 𝑟0𝜖 [0,1],we can always find a point 𝑟  arbitrarily close to 𝑟0 such that 

𝑂(𝑟) is dense in [0,1]. 

For the proof of this result we shall refer the interested reader to Whittaker [9]. We wish to note however, that 

the proof is analogous to what obtains in Devaney [4 , p42] in the sense that the 𝑂(𝑟) is analogous to period 

𝑃𝑒𝑟(𝜎) the period of the shift map 𝜎 in which there exists not only a dense orbit for 𝜎 in [0,1] but that 𝑃𝑒𝑟(𝜎) 

itself is dense in [0,1]. 

Remark. We remark here that to prove that 𝑃𝑒𝑟(𝜎) is dense, we need only to produce a sequence of periodic 

points which converge to an arbitrary point 𝑝 in [0, 1]. These are clearly the cases under    Theorem 4.1. 

However, any repeating sequence that is infinite can never be periodic and indeed they      outnumber the 

periodic ones and besides, there are non-periodic orbits which wind densely about [0,1], a   property that is a 

common characteristic of topologically transitive maps.   
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