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Abstract: This paper study initial value problem for a class of hyperbolic equation with variable
coefficients.Similar to finding D’ Lambert formulaofstring vibrating equation, we decompose the hyperbolic
differential operator first, and then reduce thesolution of hyperbolic equation to the solution of characteristic
lines.
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. Introduction
For the partial differential equation with variable coefficients:

2 2 2,272
Ou= (0, —a"xo, —a“xo Ju= f(xt), (0)
its discriminant A = a*x? >0 (Vx = 0) which implies that itis hyperbolic for x = 0; and obviously itdegenerates

to a second order ordinary differential equation when x=0.
Observing the fact that hyperbolic equation (0) and the string vibrating equation

Ju= (0% —a%")u=f(x,t) have similar operator decomposition: A=(0,+ad,)(©, —ad,) M and
(= (0, +axo, ) (0, —axd, ). This fact hints us thatequation can be also solved by reducing to its characteristic
line equations dx/dt=+ax.
In this paper, we studies the initialvalue problem of the above-mentioned partial differential:
(0% —a’xo, —a’x?d® Ju = f(x,t), x=0,t >0,
u(x,0) = o(x), x=0, (1)
U, (x,0) =y (x), x %0,

and the main results are as follows:
Theorem 1.11f

@ €C?(0,0), y eC*0,), f eC?[(0,0)x(0,)], x>0,
@ € C?*(—»0,0), w eC'(-x,0), f eC?[(~0,0)x(0,0)], x<O0.
Then, the solution of the initial-value problem (1) can be expressed asl

'Sincex=0is a degenerated line,so the boundary condition for x = Qis not needed. As a matter of fact,(1) consists
of two initial value problems:

(0% —a’xo, —a’x’d* Ju = f(xt), x>0, t>0, (8%, —a*xd, —a’x*d? Ju = f(x,t), x<0, t>0,
u(%,0) = p(x), x>0, 9 u(x.0) = p(x), X <0,
u, (x,0) = (x), x>0 u,(x,0) = (x), x<0

The two parts of the formula in Theorem 1.1 are solutions corresponding to these two initial value problems.

DOI: 10.9790/5728-1202032631 www.iosrjournals.org 26 | Page




Evaluation Of The Second Cancer’s Risk In Conformal Therapy And Intensity Modulated

u(x,t) =
¢( In x— at)+¢(elnx+at) 1 In x+at 5 Inx+a(t— r)
2 +£J‘Inx—at ( )dé:_'__J. J.Inx a(t-r) T)dézdf x>0,
(D(_eln(fx)fat)+¢(_eln(—x)+at) 1 (in(-x)+at of In(—x)+a(t— T)
2 +2_ajln(—x)—at )d§+_j I ¢, 7)d&dr, x<O.

In(—=x)-a(t—7)

Il.  The preliminary Results
By the superposition principle, (1) can be divided into the following three initial value problems:

Uu, =0,x=0,t>0,
U, (x,0)=0,x =0,

)
o,u,(x,0) =w(x), x =0,
Uu,=0,x=0,t>0,
U, (x,0) = #(x), x £ 0, ®)

0,U,(x,0)=0,x#0,
and
Ou, = f(x,1), x=0,t>0,

Uy (x,0)=0,x =0,

(4)
0, (x,0) =0, x = 0.

Lemma 2.1 9,andJcan be exchanged order, i.e. 0,[]=10, .
Indeed, we have

0,0=0,(0] —a*x0, —a’x’0})
=008 —a2xd,0, —a2x20,02,
= (0] —a’xo, —a’x*0.2)o,
=020, —a’xd,d, —a>x20 20,
=007 —a’xd,0, —a’x20,02.

Proposition 2.1 Assumeu, = M (x,t) is the solution of (2), then the solution of initial value problems
(3), (4) can be expressed as:

U, =§M¢(x,t), ©)
u, = j; M, (xt—7)dr. 6)

where f_ = f(x,z)and M (x,t), M (x,t—r)are sufficiently smooth with respect to X, t and r respectively
Proof:Weshow (5) satisfies (3) first. According to the assumption, it is known M satisfies
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@)
M, =0,
M, (x,0) =0, 8)
0
EM¢(X’O) =¢(X). (9)
Thus, by Lemma 2.1, andby (7) - (9), we have
Ou, :DQM,,, :ﬁGM¢ =0,
ot ot
0 0)= o M =(a’xo ’x%0,, )M =0
auz(x’ )—ﬁ » |t:0_(a Xo,+a X xx) ? |t:0_ J
0
u,(x,0)= P M, (X,0) = o(X).
Then we prove (6) satisfies (4). Notice thatw=M ‘. (x,t—7)satisfies
10

Ow =0, (10
e = 0, (1)

0

EWL:T = f (X, T)’ (12)

Thus by (10) - (12), we have
Uy (x,0) =0,

0 t o0
%= M, (xt-7)]_, +.|'OEM . (xt-7)dz

0
=j0§|v| , (xt-7)dr.

Then
0
—Uu,(x,0)=0.
P 5(x,0)
As well as
ou, o t 0
2 =MD+ M (xt-)de
(13) t o o
= f(xt)+a jo(x aX2+xax)|v|f,(x,t 7)dr
o’ O\t
= f(x,t)+a2(x 8X2+an)LMh(x,t 7)dr.
And so
0° 0’ 0
—u, = f(x,t)+a’(x? +X—=—)U,.
el (x,t)+a’( v ax)s

I11.  Solution of Characteristic Lines
According to Proposition 2.1, it is enough to solve initial value problems (2) in detail. To apply the
characteristic line theory to solve (2), we give the operator decomposition first:
Lemma 3.1. The operator[] can be decomposed into

U= (6t + axax)(at — axax). 13)
Proof: Indeed
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(0, +ax0,)(0, —axo,)

=0,(0, —axo,)+axo, (0, —axd,)

=0 —ax0,0, +axd,0, —a’xd, —a’x?d;}
=07 —a’x0, —a*x’0?

1.
Proposition 3.1 Initial Value Problem (2) has a solution

U, (x,t) =4 2a=nee
1A, 1 In(=x)+at 1 0 (14)
zj.ln(—x)_at l//(_e ) 51 X > 0.

Proof: By Lemma 3.1,
Uu=0,
u(x,0) =0, (15)

U, (%,0) =y (X).
can be divided into the following two initial value problem of first order equations:

ou—axo,u=v, (16)
u(x,0)=0,
oVv+axo,v=0,
an
V(x,0) = 0,u(x,0) —axd,u(x, 0 =y (x).
Let
dx dx
— =-ax, —=ax.
dt dt
Then the characteristic line of (16), (17) are solved as:
e, x>0,
X=X/(t) = t (18
-, x<0,
c+at
e x>0, (19

X=X, (t)=
o7

Along the characteristic line x, (t) , (16) can be transformed into

Oy @0, 20
Along the characteristic line x, (t) , (17) can be transformed into

Mx,®.10_4 21
dt
By (17), (21) , we obtain:
VX, (1), 1] =V[%,(0),0] = (x,(0). (22)
Since x,(t) =x, and
e’, x>0,

X, (O) = {

_{elnxat, X>0,

—e°, x<0,
_eln(fx)—at, X<O,

the solution of (17) is indeed as follows:
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V(X,t) {l/l( Inx at) X>0,
w(—e"0), x> 0.

Substitute it into (20) , then by (16) , we obtain

. J' l//( Inxl(r) ar)dz_ X>O,
ulx (0,11 = [y iye, x<o
0 74 T, X<V,

[y, x>0,

I(Il//(—ec’za’)dr, x <0.

By (18), we obtain the solution of (17) as follows:
When x>0,

u(x) = (e )dr

:——J.C 2at f)df (23)

1 ginx+at

Z Inx—at V/(ef)df

When x>0,
t c-2ar
b, () = [ y(—e"*)dr

1 pc-2at
=—oo)weeds

1 pIn(-x)+at
N Z_a In(—x)-at

(24)

y(-€°)ds.
V. The Proof of Theorem 1.1

By Proposition 2.1, 3.1, we obtain:
When x>0,

0,(x.) —5[2— [ pef)de]

_ _[a¢(elnx+at) . (_a)¢)(eln x—at)] (25)

( Inx+at)+¢(elnx—at)

In(—x)+a(t— r)
u; (x,t) = .[ Ln( x)-a(t— r) T)d(de (26)
1n(—x)+a(t— ‘r)
d
J‘J‘n( x)-a(t— r) T) de
Whenx<0
B Ol 1 (in(=x)+at §
U, (%) —5{2— [ )dcf}

_ 2_1a[a¢(_e1n(fx)+at) _ (_a)(o(_eln(*x)*a‘)] (27)

1n(—x)+at ln(—x)—at)

)+o(=¢
2

_o(-e
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Uy (x,t) = j jl”‘ Hrel ”f( e 7)d&dr
(28)

1n(—x +a(t—r)
_aé

J-J‘ln( x)-a(t-r) f(-e*,r)dcdr.
By the superposition principle, the solution of (1) is

u(x,t) =u, (x,t) +u, (X, t) +us(x,t)

( Inx— at)+(p(elnx+at) 1 plnxsat 5 Inx+a(t— 1)
2 +£Lnx—at )d§+_»[ Ilnx a(t- r) T)dcfdl’ x>0,
q)(_eln(—x)—at)+¢)(_eln(fx)+al) i In(~x)+at 5 1 In(-x)+a(t-r) L
2 " 2a J.In(—x)—at )dé: J. -[lﬂ( x)-a(t-7) f( ¢ ,T)dé:drl x<0.
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