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Abstract: This article examines the accuracy and forecasting performance of volatility models for the Sudanese 

Pound SDG/USA dollars exchange rate return, including the ARMA, Generalized Autoregressive Conditional 

Heteroscedasticity (GARCH), and Asymmetric GARCH models with normal and non-normal (student’s t) 

distributions. In fitting these models to the monthly exchange rate returns data over the period January 1999 to 

December 2013, we found that, the Asymmetric (GARCH) and GARCH model better fits under the non-normal 

distribution than the normal distribution and improve the overall estimation for measuring conditional 

variance. The DEG-GARCH model using the Student t- distribution is most successful and better forecast the 

Sudanese pound exchange rate volatility. Finally, the study suggests that the given models are suitable for 

modeling the exchange rate volatility of the sudan and the Asymmetric GARCH models shows asymmetric in 

exchange rate returns, resulting to the presence of leverage effect. Given the implication of exchange rate 

volatility, the study would be of great value to policy makers, investors and researchers at home and abroad in 

promoting development of the capital market and foreign exchange market stability in emerging economies. 

 

I. Introduction 

There has been considerable volatility (and uncertainty) in the past few years in mature and emerging 

financial markets worldwide. Most investors and financial analysts are concerned about the uncertainty of the 

returns on their investment assets, caused by the variability in speculative market prices (and market risk) and 

the instability of business performance (Alexander, 1999). Recent developments in 

financial econometrics require the use of quantitative models that are able to explain the attitude of 

investors not only towards expected returns and risks, but towards volatility as well. Hence, market participants 

should be aware of the need to manage risks associated with volatility. This requires models that are capable of 

dealing with the volatility of the market (and the series). Due to unexpected events, uncertainties in prices (and 

returns) and the non-constant variance in the financial markets, financial analysts started to model and explain 

the behavior of exchange rate returns and volatility using time series econometric models. 

One of the most prominent tools for capturing such changing variance was the Autoregressive 

Conditional Heteroskedasticity (ARCH) process is based on the assumption that the recent past gives 

information about one period forecast variance. In (1982) Engle proposed a volatility process with time varying 

conditional variance, which is Autoregressive Conditional Heteroskedasticity (ARCH) process. Four years after 

Engel‟s introduced the ARCH process, Bollerslev 1986, proposed the Generalized ARCH (GARCH) models as 

a natural solution to the problem with the high ARCH orders, these models are based on an infinite ARCH 

specification and it allows to dramatically reducing the number of estimated parameters from an infinite number 

to just a few. In ARCH / GARCH models the conditional variance is expressed as a linear function of past 

squared innovations and earlier calculated conditional variances.  

The usual assumptions of linear models are the disturbance terms 𝜀𝑡  distributed as a normal distribution 

with mean zero, constant variance and𝜀𝑡 ′𝑠 are uncorrelated, i.e.𝜀𝑡 ∼ 𝑁(0, 𝜎2), E(𝜀𝑡) = 0, 𝐸 𝜀𝑡
2 =

𝜎2, 𝐸 𝜀𝑖𝜀𝑗 = 0 𝑓𝑜𝑟 𝑖 ≠ 𝑗). This paper will briefly consider the case when the disturbance terms 𝜀𝑡  are vary over 

time, which means the errors 𝜀𝑡 ′𝑠 doesn't have an equal Variance (Heteroskedasticity) which, can be caused by 

incorrect specification or used of the wrong functional form. Many economic time series exhibit periods of 

unusually large volatility followed by periods of relative tranquility, common examples of these such as a series 

include stock prices, foreign exchange rates and other prices determined in financial markets are known as their 

variance is seems to be vary over time.  

This paper aims at modelling and forecasting exchange rate volatility in the Sudan using Asymmetric 

GARCH Generalized Autoregressive Conditional Heteroskedasticity models as well as understanding exchange 

rates behavior to monetary policy and international trade 

 

II. Literature Review 
To capture the volatility in financial time series, a comprehensive empirical analysis of the returns and 

conditional variance of the financial time series have been carried out using autoregressive conditional 

Heteroskedasticity models. Bellow a literature review of these studies: 
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Sharaf Obaid, Abdalla Suliman.(2013).Estimating Stock Returns Volatility  of Khartoum Stock Exchange 

through GARCH Models this study modeled and estimated stock returns volatility of Khartoum Stock Exchange 

(KSE) index using symmetric and asymmetric GARCH family models namely :GARCH (1.1)  GARCH-M (1.1) 

EGARCH (1.1) and GJR-GRACH (1.1) models, they carried out that  based on daily closing prices over the 

period from Jan 2006 to Aug 2010 ،that high volatility processing present in KSE index return series . The result 

also provided evidence on the existence of risk premium and indicate the presence of leverage effect in the KSE 

index returns series our findings indicate the student-t is the most favored distribution for all models estimated. 

Mohd.Aminal Islam (2013) Estimating Volatility of Stock  Index Returns by using Symmetric GARCH  

Models, this study was utilize Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models to 

estimate volatility of financial asset returns of three Asian markets namely kualalampur composite index (KLCI) 

of Malaysia Jakarta Stock Exchange Composite Index (JKSE) of Indonesia and straits Times index (STI) of 

Singapore. Two symmetric GARCH models with imposing names such as the GARCH (1.1) and the GARCH-

in-Mean or GARCH-M (1.1) are considered in this study. They was cover the period 2007-2012 comprising 

daily Observations of 1477 for KLCI. 1461 for JKSE and 1493 for STI excluding the public holidays we choose 

to apply GARCH models as they are especially suitable for high frequency financial market data such as stock 

returns which has a time-varying variance unlike the linear structural models  GARCH models are found useful 

in explaining a number of important features commonly observed in most financial time series Ahmed E l 

sheikh M. Ahmed and SulimanZakaria (2013) Modeling stock Market volatility using GARCH Models 

Evidence from Sudan, they used the Generalized Autoregressive conditional Heteroskedastic Models to estimate 

volatility (conditional variance) In the daily returns of the principal stock exchange of Sudan namely Khartoum 

stock Exchange (KSE) over the period from 2006 to 2010. daily Observations of 1326 for (KSE)  The models 

include both symmetric and asymmetric models that capture the most common stylized facts about index returns 

such as volatility clustering and leverage effect the empirical result show that the conditional variance process is 

highly persistent (explosive process) and provide evidence on the existence of risk premium of the KSE index 

return series which support the positive correlation hypothesis between volatility and the expected stock returns 

was findings also show that the asymmetric models provide better fit than the symmetric models; which 

confirms . The presence of leverage effect. These results in general explain that high volatility of index return 

series is present in Sudanese stock market over the sample period. 

 

III. Methodology 
In this section, we briefly present the models specification, conditional distributions and forecasting 

criterias as well as data set we use to model the SDG/US Dollars Exchange rate returns volatility in the Sudan 

economy. This article analyses the volatility of the Sudan exchange rate using various volatility models such as 

Autoregressive Integrated Moving Average (ARIMA), GARCH, the Glosten, Jagannathan and Runkle (GJR) 

GARCH, Asymmetric Power Autoregressive conditional Heteroskedasticity APARCH model of Ding et.al 

(1993) as well as the conditional distributions such as normal and Student-t distributions. In this study three 

different criteria‟s, Mean Squared Error (MSE), Mean Absolute Error (MAE) and Adjusted Mean Absolute 

Percentage Error (AMAPE) are used to evaluate the forecasting performance for the conditional 

heteroscedasticity models. 

 

1.1  ARIMA Model 

The AR, MA and ARMA models assume stationary series. If the time series is nonstationary we can 

have a model which reflects this fact. This model which is called an ARIMA model and written as 

Autoregressive Integrated- Moving Average and denoted by 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) represents ARMA model with 

nonstationarity. In general it takes the form: 

𝜙 𝐵 (1 − 𝐵)𝑑𝑥𝑡 = 𝜃(𝐵)𝑒𝑡 ,…………………………………………….(3.1) 

where (1 − 𝐵)𝑑  is the dth order difference.   

In the notation of Box-Jenkins it can be written as: 

𝜙 𝐵 ∆𝑥𝑡 = 𝜃(𝐵)𝑒𝑡 ,………………...…………………………………..(3.2) 

This is the model that calls for the dth order difference of the time series in order to make it stationary.  

In ARIMA (p,d,q)    

p = order of the autoregressive process,  

d= degree of differencing employed,  

q= order of moving average process   . 

In practice the value of p, d and q rarely exceed 2 (they are usually 0 or 1). 

 

1.2  GARCH Model   
Bollerslev (1986) proposed a useful extension known as generalized ARCH (GARCH) process. In 

GARCH model the conditional variance of return series is expressed as a function of constant, past news about 
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volatility (𝜀𝑡−𝑖
2 ) terms and past forecast variance (ℎ𝑡−𝑖

2 ) terms.In the GARCH (p,q) the conditional variance is 

expressed as follows: 

εt =  η
t ht  ,……………………….……………...…………………….. (3.3) 

                   ,……………………..…………… (3.4)  

Where η
t
 is independently identicaly distrebuted random variable with mean zero and variance 1, δ  > 0,  

αi ≥ 0,    β
j
≥ 0  and     

 (
max ⁡(p,q)
i=1  αi + β

j
) < 1 ,…………………………..………..…………. (3.4) 

A parsimonious and simpler form of GARCH (p,q) models is the GARCH(1,1) model which is specified as 

follows: 

ℎ𝑡
2 = 𝛿 + 𝜶𝜀𝑡−1

2 + 𝜷ℎ𝑡−1
2 ,………………………………………………. (3.5) 

Where  𝛿, 𝜶 > 0, 𝜷 ≥ 0 and α+β< 1. 

Persistence of the volatility in the commodity series is measured by the sum of α and β. 

 

1.3 The APARCH Model   

      Ding, Granger and Engle (1993) also introduced the Power GARCH (PGARCH) specification to 

deal with asymmetry. Unlike other GARCH models, in this model, the standard deviation is modeled rather than 

the variance as in most of the GARCH-family. In Power GARCH an optional parameter 𝛾 can be added to 

account for asymmetry (Floros, 2008). The model also affords one the opportunity to estimate the power 

parameter 𝛿 instead of imposing it on the model (Ocran and Biekets, 2007). The general asymmetric Power 

GARCH model specifies ℎ𝑡
𝛿  as of the following form: 

                                   ,……………..……(3.6) 

 

Where  𝜔 > 0 ,    𝛿 ≥ 0,    𝛼𝑖 ≥ 0  , 𝛽𝑗 ≥ 0,−1 <  𝛾𝑖 < 1 ,  i=1,2,…,p, j=1,2,….,q. 

The model is couples the flexibility of varying exponent with the asymmetry coefficient, moreover The 

APARCH includes other ARCH extensions as special cases. 

 

a) GJR-GARCH 

Glaston, Jagannathan and Runkle Generalized Autoregressive Conditional Heteroskedasticity This 

model is known as GJR GARCH models, proposed by Glaston, Jagannathan & Runkle (1993), are capable of 

capturing the symmetric effect in regard to the conditional volatility. The variance equation in the GJR (p,q) 

model is specified as follows: 

ℎ𝑡
2 = 𝜔 +  𝛼𝑖(|

𝑝
𝑖=1 1t | − 𝛾 1t )² +  𝛽𝑗

𝑞
𝑗=1 ℎ𝑡−𝑗

2  ……..………..(3.7) 

where 𝜔 > 0,    𝛼𝑖 ≥ 0, 𝛽𝑗 ≥ 0,  i=1, 2…p,     j=1.2……q,  

The impact of 𝜀𝑡
2 on the conditional variance ℎ𝑡

2 in this model is different when 𝜀𝑡  is positive or negative. The 

negative innovations (bad news) have ahigher impact than positive ones. When 𝜀𝑡−1 is positive, the total 

contribution to the volatility of innovation is 𝛼𝜀𝑡−1
2 ; when 𝜀𝑡−1 is negative, the total contribution to the volatility 

of innovation is (𝛼 + 𝛾) 𝜀𝑡−1
2 .  

𝛾 would expect to be positive, so that the (bad news) has larger impact, in this case there is a leverage effect.  

 

b) DGE-GARCH 

ℎ𝑡
𝛿 = 𝜔 +  𝛼𝑖

𝑝
𝑖=1 𝜀𝑡−𝑖

𝛿 +  𝛽𝑗
𝑞
𝑗=1 ℎ𝑡−𝑗

𝛿 + 𝛾𝜀𝑡−𝑖
𝛿 𝐼𝑡−𝑖  ………………….(3.8) 

where 𝛿 > 0,    𝛼 ≥ 0, 𝛽 ≥ 0 and  -1< 𝛾ᵢ  <1 

 

1.4   Distribution Assumptions 

In this paper: the normal distribution, and the Student-t distribution  are considered in order to take into 

account the skewness, excess kurtosis and heavy-tails of return distributions. 

 

1.4.1 Normal Distribution 

The standard GARCH (p, q) model introduced by Tim Bollerslev (1986) is with normal distributed 

error   𝜀𝑡  = ℎ𝑡𝑧𝑡  , 𝑧𝑡  ~  iid(0,1) . Use maximum log-likelihood method to estimate the parameter in the standard 

GARCH model, given the error following the Gaussian and we can get the log-likelihood function: 
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𝑓 𝜀𝑡
  𝜀𝑡 , 𝜃 = ln  𝑇

𝑖=1
1

 2𝜋ℎ2
exp⁡(−

1

2
 
𝜀𝑡

2

ℎ𝑡
2) = ln  𝑇

𝑖=1
1

 2𝜋ℎ2
exp −⁡

𝑧𝑡
2

2
 …..(3.9) 

                    = ⁡−
1

2
 [ln⁡ 2𝜋 + ln⁡(ht

2
𝑡 ) + 𝑧𝑡

2] 

 

         Where 𝑧𝑡
2 =

𝜀𝑡
2

ℎ𝑡
2    is independently and identically distributed 

 

1.4.2 Student’s t-Distribution 

As mentioned before, GARCH model often does not allow asymmetry and is not sufficiently fat-tailed 

to capture the excess kurtosis found in most financial return data. This has led to a search for more flexible 

conditional distribution (non-normal distributions) to replace the conditional normal assumption. Bollerslev 

(1987) was the first combined the GARCH models with a standardized Student‟s t-distribution with v > 2 

degrees of freedom whose density is given by: 

 

        ƒ(𝒛𝒕  \v) =
𝜞 

𝒗+𝟏

𝟐
 

𝜞 
𝒗

𝟐
  𝝅 𝒗−𝟐 

(𝟏 + 
𝑧𝑡

2

𝒗−𝟏
)−

𝒗+𝟏

𝟐    ……………..(3.10) 

 

where  𝒛𝒕  =  𝜀𝑡/ℎ𝑡  be the standardized error , Γ(v) is the gamma function , v is the parameter that measures the 

tail thickness. 

  

1.5   Data 

The data will be use in the analysis of this paper  are monthly readings of Exchange Rate in the Sudan 

covered the period from 01/01/1999 to 31/12/2013 obtained from Central Bureau of Statistics, Bank of Sudan 

and Khartoum Stock market. and then transformed into logarithmic return series. The corresponding transform 

price series into monthly logarithmic return are calculated by using. the formula:     𝑟𝑡 = ln(𝑥𝑡/𝑥𝑡−1)    where   

𝑥𝑡   is the exchange rate and  𝑟𝑡   denotes the returns     

         

IV. Empirical Result and Discussions 
In this section, we present the empirical results as well as discussions of estimation results we obtained 

to account for the SDP/US Dollars exchange rate returns volatility in Sudan. The analysis was done using the 

Eviews 8 to provide empirical results of the monthly exchange rate prices data The parameter estimation method 

that we choose is the Maximum Likelihood Estimation (MLE), and estimates the models with the given 

distributional assumption to determine the best performance of forecasting model of exchange rate volatility. 

Some summary statistics for the monthly exchange rate returns (SDG/USD) are displayed in Table 1 

 

Table 1: Summary Statistics of Exchange rate Returns (SDG/ USA ($)) 

 
 

The summary statistics of this study is presented in table 1.This indicates that the returns series have 

monthly positive mean of (0.0051) while the monthly volatility is (0.013),without loss of generality the mean 

grows at a linear rate while the volatility grows approximately at a square root rate. The lowest monthly returns 

correspond to (-0.076) and the best monthly exchange rate returns is (0.373). The returns series of the exchange 

rate shows positive skewness. This implies that the series is flatter to the right. The kurtosis value is higher than 

the normal value of perfectly normal distribution in which value for skewness is „zero‟ and kurtosis is „three‟ 

and this suggest that the kurtosis curve of the exchange rate return series is leptokurtic. The results of this study 

reveal that, the series is not normally distributed. Our empirical result is consistent with the Jarque-Bera (JB) 

tests Obtain above which is used to assess whether the given series is normally distributed or not. Here, the null 

hypothesis is that the series is normally distributed. Results of JB test find that the null hypothesis is rejected for 

the return series and suggest that the observed series are not normally distributed 

 

 

 

 

 

 

 

 

Sample size Mean Median Var. S.Dev Min. Max. Skew. Kurt. Jarque Bera  P-value 

178 0.0051 0.000 0.013 0.036 -0.076 0.373 6.717 62.241 27521.52 0.000 
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Table 2: Parameter Estimation of the ARMA (1, 2)-GARCH (1, 1), GJR (1, 1) and DGE (1, 1) Models with the 

Conditional 

 

Table 2 presents the parameter estimation results of ARMA (2, 1) - GARCH (1, 1), GJR-GARCH (1, 1) and 

DGE-GARCH (1, 1) models with the normal and, student‟s-t distributions and their corresponding p-values. The 

results show that the parameters estimated in these three models are all significant under the given conditional 

distributions except for the coefficients of Mu. Under the student‟s- t distribution, the sum of the GARCH 

parameter estimates (𝛼ᵢ + 𝛽ј) is greater than 1, implying that the volatility rate model is strictly stationary 

GARCH model is less than 1, which indicates that the model is well fitted. For the normal distribution  the sum 

of the GARCH parameter is less than 1 for the GJR-GARCH and DGE-GARCH models with the which also 

show that the shocks in volatility is limited and stationary and the model is well fitted, the sum is greater than 1 

in case of the GARCH model. The leverage effect term (gamma) in both the GJR model and the DGE is not 

statistically significant but it is negative, implying that negative shocks results to a higher next period 

conditional variance than positive shocks of the same sign, it indicates that the bad news (negative shocks)  

effect the volatility more than the good news. The table shows that the estimated δ of the DGE -GARCH model 

under the normal distribution is 1.8is not significant which is significantly in student-t distribution. 

 

Table 3: Analysis of standardized residuals and fitted parameters 

 

 

 

 GARCH GJR-GARCH DEG-GARCH 

Conditional Distribution Normal Student-t Normal Student-t Normal Student-t 

Mu(μ) 
0.048 -0.00011 0.002 -7.82E-05 0.003 -4.29E-05 

0.053 0.4221 0.474 0.2887 0.3602 0.99 

Ar1(φ) 
0.998 0.372 0.394 0.351 0.45 0.38 

0.000 0.000 0.466 0.000 0.14 0.000 

 Ma(θ₁) 
-0.883 -0.042 0.056 -0.081 -0.032 -0.049 

0.000 0.336 0.991 0.011 0.89 0.042 

Ma(θ₂) 
-0.109 0.00048 0.009 -0.008 0.002 0.0026 

0.035 0.975 0.971 0.375 0.99 0.364 

Omega (ω) 
1.26E-07 2.05E-06 0.0002 6.55E-07 0.00065 0.0016 

0.908 0.007 0.000 0.0134 0.863 0.605 

Alpha (α₁) 
5.272 2.022 0.842 7.233 0.918 6.957 

0.000 0.0292 0.000 0.039 0.0007 0.352 

Beta(β₁) 
0.006 -0.0015 -0.168 -0.125 -0.197 -0.155 

0.5007 0.6735 0.101 0.192 0.094 0.127 

Gamma(γ₁) 
  -0.028 -0.002 -0.043 0.015 

  0.376 0.604 0.739 0.602 

Delta (δ) 
  2 2 1.8 0.893 

    0.198 0.0018 

Shape (v ) 
   2.253  2.025 

   0.000  0.000 

 GARCH GJR-GARCH DEG-GARCH 

Conditional Distribution Normal Student-t Normal Student-t Normal Student-t 

Log likelihood 504.885 675.582 466.085 695.039 464.773 708.127 

Jarque – Bera Test 
4134.971 36547.94 7546.622 42675.11 8051.477 50508.8 

0.000 0.000 0.000 0.000 0.000 0.000 

Ljung- Box Test  

R (Q10) 

12.69 1.2776 3.3783 0.3547 4.1727 0.0376 

0.08 0.989 0.848 1.000 0.76 1.000 

Ljung- Box Test  
R (Q15) 

20.483 17.563 16.566 18.276 17.43 20.51 

0.058 0.130 0.167 0.108 0.134 0.058 

Ljung- Box Test  

R (Q20) 

32.424 42.635 37.737 45.818 39.782 45.216 

0.013 0.001 0.003 0.000 0.001 0.000 

Ljung- Box Test  
Rᶺ2 (Q10) 

1.462 0.2803 2.9889 0.2483 2.2772 0.2189 

0.999 1.000 0.982 1.000 0.994 1.000 

Ljung- Box Test  

Rᶺ2 (Q15) 

3.533 8.3468 13.078 8.2591 11.666 9.013 

0.999 0.909 0.596 0.913 0.704 0.877 

Ljung- Box Test  

Rᶺ2 (Q20) 

41.934 26.456 35.174 27.357 33.795 22.171 

0.003 0.151 0.019 0.126 0.028 0.331 

LM Arch Test 
0.0167 0.0317 2.404 0.0293 1.7665 0.025 

0.897 0.858 0.1224 0.864 0.183 0.874 

AIC -5.594 -7.5009 -5.147 -7.7088 -5.121 -7.844 

BIC -5.469 -7.357 -5.004 -7.547 -4.960 -7.665 
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The coefficients reported as shown in the table are the maximum likelihood estimates of the parameters 

and the p-values are in parentheses for the ARMA (1,2) - GARCH (1,1), GJR-GARCH (1, 1) and DGE-GARCH 

(1, 1), models. The estimation results of the models with the conditional distributions, including log-likelihood 

value, the Box-Pierce statistics of lags 10, 15 and 20 of the standardized and squared standardized residuals, the 

Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC), the ARCH test and their 

respective p-values are listed in Table 3. Comparing the log-likelihood, the Akaike Information Criterion (AIC) 

and Bayesian Information Criterion (BIC) values among these models DGE-GARCH and GJR-GARCH models 

better estimate the exchange rate return series than the GARCH model with the Student t-distribution 

assumption gives better results. The results also show that the student‟s t-distribution outperforms the normal 

distribution, discussed in this paper. With these models, DEG-GARCH with Student t-distribution gives the 

highest log-likelihood value of 708.124. The AIC and BIC values of the GARCH and DEG -GARCH models 

under the three conditional distribution gives the lowest values when compared to the GJR-GARCH and 

GARCH models and that the DEG -GARCH model with the student‟s t-distribution provides the smallest values 

of AIC (-7.884) and BIC (- 7.665) respectively, this implies that DEG -GARCH model under the student‟s t-

distribution provides a better fit for the monthly exchange rate returns according to this criterions. 

The table shown the t-statistics and p-values are in parentheses for ARMA (1, 2)- 

GARCH(1,1),GJR(1,1) and DGE(1, 1) models.(AIC) represent Akaike Information Criterion, (BIC) is Bayesian 

Information Criterion (BIC), Ljung-Box Test R (Standardized Residuals and Ljung-Box TestR^2 (Square 

Standardized Residual) The Jarque-Bera statistic to test the null hypothesis of whether the standardized residuals 

are normally distributed. The results presented in table 3 show that the standardized residuals are leptokurtic and 

the Jarque-Bera statistic strongly rejects the hypothesis of normal distribution which means that the fat-tailed 

asymmetric conditional distributions outperform the normal for modeling and forecasting the exchange rates 

volatility returns. The Ljung Box tests for the residuals have p-values that are statistically not significant 

indicating that no serial correlation exists except twentieth-order. The Ljung-Box statistics for up to twentieth-

order serial correlation of squared residuals are not significant suggesting that no significance correlation exist. 

As for the LM-ARCH test the results reveals that the conditional heteroskedasticity that existed in the exchange 

rate returns time series have successfully removed, indicating that no significant appearance of the ARCH effect 

 

1.6 Forecasting 

The forecasting ability of the GARCH models has been discussed precisely by Poon and Granger 

(2003). We use the Eviews 8 to evaluate a five step ahead forecast using 180 observations for the monthly 

exchange rate returns. The forecasts are evaluated using three different measures which provide robustness in 

choosing the optimal predicts models for the return series. We consider the following measures 

 

1). Mean Squared Error (MSE): 

As a measure of desperation of forecast error, statisticians have taken the average of the squared 

individual errors. The smaller the MSE value, the more stable the model. However, interpreting the MSE value 

can be misleading, for the mean squared error will be accentuate large error terms. it can be describes as: 

𝑴𝑺𝑬 =
𝟏

𝒉+𝟏
 (𝝈 𝒕

𝟐 − 𝝈𝒕
𝟐)𝟐𝒔+𝒉

𝒕=𝒔  ,………………………...…………………..(4.1) 

2). Mean absolute error (MAE): 

This error measurement is the average of the absolute value of the error without regard to whether the error was 

an overestimate or underestimates (Krajewski and Ritzman, 1993), it is equation takes the form: 

𝑴𝑨𝑬 =
𝟏

𝒉+𝟏
 |𝒔+𝒉

𝒕=𝒔 𝝈 𝒕
𝟐 − 𝝈𝒕

𝟐| ,……………………………………………..(4.2) 

3). Adjusted mean absolute percentage error: Adjusted Mean Absolute Percentage Error (AMAPE) is a measure 

based on 

Percentage errors. 

𝑨𝑴𝑨𝑷𝑬 =
𝟏

𝒉+𝟏
 |

𝝈 𝒕
𝟐−𝝈𝒕

𝟐

𝝈 𝒕
𝟐+𝝈𝒕

𝟐
𝒔+𝒉
𝒕=𝒔 | ,………………………………….…………(4.3) 

where h is the number of head steps, s is the sample size,  𝜎 𝑡
2 is the forecasted variance and 𝜎𝑡

2 is the actual 

variance. 

 

Table 4: Forecasting Analysis for the Exchange rate returns with the Conditional distributions 

 

Exchange rate returns GARCH GJR-GARCH DEG-GARCH 

(SDG /USA($) Normal Student Normal Student Normal Student 

MSE 0.00406 0.001354 0.001337 0.001354 0.001334 0.001353 

MAE 0.058991 0.011101 0.012129 0.011098 0.012587 0.011080 

AMAPE 8582.155 90.45945 372.7228 87.82762 491.7924 83.77597 



Modelling Exchange Rate Volatility Using Asymmetric GARCH Models (Case Study Sudan) 

DOI: 10.9790/5728-1202047177                                 www.iosrjournals.org                                             77 | Page 

The results, as shown in the table 4 above, indicate that the forecasting performance of the GJR-

GARCH and DGE-GARCH models, especially when fat-tailed asymmetric conditional distributions are taken 

into account in the conditional volatility, is better than the GARCH model. However, the comparison between 

the models with normal and student-t distributions shows that, according to the different measures used for 

evaluating the performance of volatility forecasts, the DEG –GARCH model provides the best forecasts and 

clearly outperforms GJR-GARCH and GARCH models and the DGE-GARCH model provides less satisfactory 

forecast results while the poorest forecast results was registered for the GARCH model. Moreover, it is found 

that the Student-t distribution is more appropriate for modeling and forecasting the exchange rate returns 

volatility. 

 

V. Conclusion 
Modeling exchange rate volatility has received considerable attention from academies, market participant, policy 

makers, investors and practitioners in recent years as it provide a measure of risk in the financial market. It is important to 

note that, portfolio selection, asset valuations, risk management, option pricing and hedging strategies provides the 

importance of modeling and forecasting the conditional volatility of exchange rate returns. To modeling the financial time 

series data, we review of the autoregressive conditional heteroscedasticity (ARCH) and generalized autoregressive 

conditional heteroscedasticity (GARCH) model. Consider of the stylized facts of the asset return series including the ARMA, 

GARCH, GJR-GARCH, and DGE-GARCH with normal and  student-t  distribution.  

The results show that the forecasting performance of asymmetric GARCH Models (GJR and DGE), especially 

when fat-tailed asymmetric conditional distributions are taken into consideration in the conditional volatility, is better than 

GARCH model. The estimated parameters of the Models are statistically significant except, the coefficients of Mu for the 

GARCH and GJR- GARCH models under the three conditional distributions. Also, the coefficients on the standardized 

residuals and squared residuals of 10, 15 and 20except 20 and the ARCH effect are not statistically significance which 

implies that no serial correlation exists in the exchange rate return series and that no significant appearance of the ARCH 

effect in the returns series and the variance equation is correctly specified. 
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